Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Phosphate Esters and Phosphorylated Cellulosic Fibers
2.3. Fiber Characterization
2.4. Adsorption/Ion Exchange Trials
- qe—represents the adsorption capacity at equilibrium (mg/g);
- Ce—is the (final) equilibrium concentration of metal in solution (mg/L);
- KL—is the Langmuir constant (L/mg);
- qmax—is the maximum adsorption capacity (mg/g).
- Vsol—is the volume of ion metal solution used in trial (L);
- mF—is the weight of the KFP fiber used in trial (g);
- TH—is the moisture content of the KFP fiber, expressed as units;
- C0—is the initial concentration of metal in solution (mg/L);
- Ce—is the (final) equilibrium concentration of metal in solution (mg/L).
- ΔG—is the change in Gibbs free energy of the system at a temperature T (kJ/mol);
- R—is the gas constant (kJ/mol·K);
- T—is the temperature of the system (K);
- KL—is the Langmuir constant (L/mg);
- M—is the atomic mass of the metal (g/mol).
- ΔG—is the change in the Gibbs free energy of the system at a temperature T (kJ/mol);
- T—is the temperature of the system (K);
- ΔH—is the change in the enthalpy of the system (kJ/mol);
- ΔS—is the change in the entropy of the system (kJ/mol·K).
3. Results and Discussion
3.1. Fiber Characteristics
3.2. Adsorption Results
3.2.1. Langmuir Model of Adsorption
3.2.2. Maximum Adsorption Capacity
3.2.3. Thermodynamics of Adsorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belousov, A.; Lushpeev, V.; Sokolov, A.; Sultanbekov, R.; Tyan, Y.; Ovchinnikov, E.; Shvets, A.; Bushuev, V.; Islamov, S. Experimental Research of the Possibility of Applying the Hartmann–Sprenger Effect to Regulate the Pressure of Natural Gas in Non-Stationary Conditions. Processes 2025, 13, 1189. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Wang, S.; Yu, Y.; Huang, W.; Xu, Q.; Zeng, L. Pollution Risk Assessment and Sources Analysis of Heavy Metal in Soil from Bamboo Shoots. Int. J. Environ. Res. Public Health 2022, 19, 14806. [Google Scholar] [CrossRef]
- Hao, X.; Liu, K.; Zhu, L.; Rong, L.; Jiang, D.; Bai, L. Migration and risk assessment of heavy metals from swine manure in an organic fertilizer-soil-ryegrass-rex rabbit system: Based on field trials. Sci. Total Environ. 2025, 959, 178332. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yang, Y. Revealing the synergistic spatial effects in soil heavy metal pollution with explainable machine learning models. J. Hazard. Mater. 2024, 482, 136578. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, J.; Hassinen, J.; Kumar, A.A.; Johansson, L.-S.; Mäenpää, R.; Pahimanolis, N.; Pradeep, T.; Ikkala, O.; Rojas, O.J. Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture. Cellulose 2020, 27, 10719–10732. [Google Scholar] [CrossRef]
- Nyamato, G.S.; Apollo, S. Removal of heavy metals from wastewater using synthetic chelating agents. Phys. Sci. Rev. 2024, 9, 755–763. [Google Scholar] [CrossRef]
- Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016, 91, 156–173. [Google Scholar] [CrossRef]
- Fei, Y.; Hu, Y. Recent progress in removal of heavy metals from wastewater: A comprehensive review. Chemosphere 2023, 335, 139077. [Google Scholar] [CrossRef]
- Han, N.; Zhang, J.; Hoang, M.; Gray, S.; Xie, Z. A review of process and wastewater reuse in the recycled paper industry. Environ. Technol. Innov. 2021, 24, 101860. [Google Scholar] [CrossRef]
- Marin, N.M.; Nita Lazar, M.; Popa, M.; Galaon, T.; Pascu, L.F. Current Trends in Development and Use of Polymeric Ion-Exchange Resins in Wastewater Treatment. Materials 2024, 17, 5994. [Google Scholar] [CrossRef]
- Zagorodni, A.A. Ion Exchange Materials: Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sharma, V. Ion exchange and their applications. J. Drug Deliv. Ther. 2014, 4, 115–123. [Google Scholar] [CrossRef]
- Ahmer, M.F.; Uddin, M.K. Structure properties and industrial applications of anion exchange resins for the removal of electroactive nitrate ions from contaminated water. RSC Adv. 2024, 14, 33629–33648. [Google Scholar] [CrossRef]
- Edebali, S.; Pehlivan, E. Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr(VI) from aqueous solution. Chem. Eng. J. 2010, 161, 161–166. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Wang, C.; Ji, M. Comparison study on Cr(VI) removal by anion exchange resins of Amberlite IRA96, D301R, and DEX-Cr: Isotherm, kinetics, thermodynamics, and regeneration studies. Desalination Water Treat. 2014, 55, 1840–1850. [Google Scholar] [CrossRef]
- Boughanmi, R.; Oelmann, M.; Steinbach, C.; Schwarz, S. Sustainable polyelectrolyte complexes of pectin and chitosan as adsorbents for heavy metal ions from surface water. J. Polym. Sci. 2024, 63, 133–145. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Mei, A.; Peng, L.; Sun, J. Novel chitosan/lignin hydrogel prepared by the Mannich reaction for Pb(II) and Cu(II) removal from aqueous solution. Int. J. Biol. Macromol. 2024, 285, 138177. [Google Scholar] [CrossRef]
- Rong, X.; Man, R. Surface Modification of Starch by Isopropoxytris(ethylenediamino-N-ethoxy)Titanate with a Chelating Claw for Heavy Metal Removal. ChemistrySelect 2024, 10, e202404832. [Google Scholar] [CrossRef]
- Shackford, L.D. A Comparison of Pulping and Bleaching of Kraft Softwood and Eucalyptus Pulps. In Proceedings of the 36th International Pulp and Paper Congress and Exhibition, Säo Paulo, Brazil, 13–16 October 2003; pp. 1–17. [Google Scholar]
- Horrocks, A.R.; Kandola, B.K.; Davies, P.J.; Zhang, S.; Padbury, S.A. Developments in flame retardant textiles—A review. Polym. Degrad. Stab. 2005, 88, 3–12. [Google Scholar] [CrossRef]
- Carrillo-Varela, I.; Albornoz, M.; Isidora Reyes-González Aguayo, M.G.; Elgueta, E.; Reyes-Contreras, P.; Pereira, M.; Mendonça, R.T. Tailoring cellulose-based hydrogels by phosphorylation of unbleached kraft pulps for adsorption applications. Cellulose 2024, 31, 7629–7660. [Google Scholar] [CrossRef]
- Luo, X.; Yuan, J.; Liu, Y.; Liu, C.; Zhu, X.; Dai, X.; Ma, Z.; Wang, F. Improved Solid-Phase Synthesis of Phosphorylated Cellulose Microsphere Adsorbents for Highly Effective Pb2+ Removal from Water: Batch and Fixed-Bed Column Performance and Adsorption Mechanism. ACS Sustain. Chem. Eng. 2017, 5, 5108–5117. [Google Scholar] [CrossRef]
- Oshima, T.; Kondo, K.; Ohto, K.; Inoue, K.; Baba, Y. Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. React. Funct. Polym. 2008, 68, 376–383. [Google Scholar] [CrossRef]
- Nada Hassan, M.L. Phosphorylated cation-exchangers from cotton stalks and their constituents. J. Appl. Polym. Sci. 2003, 89, 2950–2956. [Google Scholar] [CrossRef]
- Mautner, A.; Maples, H.A.; Kobkeatthawin, T.; Kokol, V.; Karim, Z.; Li, K.; Bismarck, A. Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. Int. J. Environ. Sci. Technol. 2016, 13, 1861–1872. [Google Scholar] [CrossRef]
- Brandes, R.; Belosinschi, D.; Brouillette, F.; Chabot, B. A new electrospun chitosan/phosphorylated nanocellulose biosorbent for the removal of cadmium ions from aqueous solutions. J. Environ. Chem. Eng. 2019, l7, 103477. [Google Scholar] [CrossRef]
- Shi, Y.; Belosinschi, D.; Brouillette, F.; Belfkira, A.; Chabot, B. Phosphorylation of Kraft fibers with phosphate esters. Carbohydr. Polym. 2014, 106, 121–127. [Google Scholar] [CrossRef]
- Abenghal, L.; Brouillette, F. Phosphate Esters: New Coating Materials for a Sustainable Release Paper. Chem. Sel. 2024, 9, e202400134. [Google Scholar] [CrossRef]
- Lamoudan, H.; Abenghal, L.; Belosinschi, D.; Brouillette, F.; Dolez, P.; Panneton, R.; Fonrouge, C. Sustainable Transformation of Cellulose-Containing Textile Waste into Multifunctional Panels with Tailored FR-Lignocellulosic Fibres. Polymers 2024, 16, 3242. [Google Scholar] [CrossRef]
- Lamoudan, H.; Abenghal, L.; Brouillette, F. Improving the Mechanical Strength of Paper Sheets Made from Phosphorylated Fibers Through the Use of Forming Agents. J. Nat. Fibers 2024, 21, 2332705. [Google Scholar] [CrossRef]
- Lamoudan, H.; Brouillette, F. Fabrication of high strength paper from different types of phosphorylated fibers using hot pressing and forming agents. Cellul. Chem. Technol. 2024, 58, 313–322. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Ablouh, E.-H.; Brouillette, F.; Taourirte, M.; Sehaqui, H.; El Achaby, M.; Belfkira, A. A highly efficient chemical approach to producing green phosphorylated cellulosic macromolecules. RSC Adv. 2021, 11, 24206–24216. [Google Scholar] [CrossRef]
- Liu, J.; Chen, T.; Yang, Y.; Bai, Z.-C.; Xia, L.; Wang, M.; Xiaolan Lv Li, L. Removal of heavy metal ions and anionic dyes from aqueous solutions using amide-functionalized cellulose-based adsorbents. Carbohydr. Polym. 2020, 230, 115619. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zuo, K.; Wu, W.; Xu, Z.; Yi, Y.; Jing, Y.; Dai, H.; Fang, G. Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydr. Polym. 2018, 196, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Jiang, H.; Lin, Z.; Xu, S.; Xie, J.; Zhang, A. Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions. Carbohydr. Polym. 2019, 224, 115022. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, M.; Duan, C.; Sun, J.; Xu, Y. Preparation and characterization of cellulose-based adsorbent and its application in heavy metal ions removal. Carbohydr. Polym. 2019, 206, 837–843. [Google Scholar] [CrossRef]
- Fakhre, N.A.; Ibrahim, B.M. The use of new chemically modified cellulose for heavy metal ion adsorption. J. Hazard. Mater. 2018, 343, 324–331. [Google Scholar] [CrossRef]
- Khalid, A.M.; Hossain, M.S.; Khalil, N.A.; Zulkifli, M.; Arafath, M.A.; Shaharun, M.S.; Ayub, R.; Yahaya, A.N.A.; Ismail, N. Adsorptive Elimination of Heavy Metals from Aqueous Solution Using Magnetic Chitosan/Cellulose-Fe(III) Composite as a Bio-Sorbent. Nanomaterials 2023, 13, 1595. [Google Scholar] [CrossRef]
Fiber Dimensions | Electrostatic Properties in Water | ||||||
---|---|---|---|---|---|---|---|
Length (mm) | Width (µm) | Fines (%) | Total Charge (mmol/kg) | Surface Charge (µeq/g) | Zeta Potential (mV) | Humidity Content (%) | |
KF | 2.14 ± 0.1 | 26.6 ± 0.2 | 0.7 ± 0.1 | 80 ± 20 | 30 ± 5 | −60 to −20 | 4 ± 1 |
KFP | 1.95 ± 0.1 | 32.1 ± 0.2 | 0.2 ± 0.1 | 4850 ± 200 | 530 ± 20 | −25 to −8 | 8 ± 2 |
KFP-HYB | KFP-H | KFP-Na | |
---|---|---|---|
R2 | R2 | R2 | |
Ni | 0.9995 | 0.9723 | 0.9995 |
Cu | 0.9999 | 0.9850 | 0.9997 |
Cd | 0.9999 | 0.9977 | 0.9997 |
Pb | 0.9974 | 0.9984 | 0.9995 |
KFP-HYB | KFP-H | KFP-Na | Dowex 50WX2-400 | Dowex Marathon C | |
---|---|---|---|---|---|
qmax (mmol/g) | qmax (mmol/g) | qmax (mmol/g) | * qe (mmol/g) | * qe (mmol/g) | |
Ni | 2.4 | 1.9 | 2.8 | 2.4 | 2.5 |
Cu | 2.5 | 2.0 | 2.8 | 2.4 | 2.5 |
Cd | 2.3 | 1.7 | 2.7 | 2.5 | 2.5 |
Pb | 2.7 | 2.5 | 2.9 | 2.5 | 2.6 |
Raw Materials | Heavy Metals | pH | Maximum Adsorption Capacity (mmol/g) | References |
---|---|---|---|---|
Aerogel based on amide-functionalized cellulose | Cu(II) | 7 | 0.81 | [34] |
Aerogel based on nanocellulose and polyethyleneimine | Cu(II) and Pb(II) | 2–5 | 2.74 and 1.73 | [35] |
Cellulose hydrogels based on acrylamide/acrylic acid | Cu(II), Pb(II), and Cd(II) | 1–6 | 2.48, 1.9, and 2.58 | [36] |
Carboxymethylated cellulose fibers | Cu(II) and Ni(II) | 2–7 | 0.26 and 0.19 | [37] |
Cellulose/dibenzo-18-crown 6 composites | Cu(II), Pb(II), Cd, and Ni(II) | 6 | 3.02, 0.97, 1.75, and 3.17 | [38] |
Magnetic chitosan/cellulose nanofiber-Fe(III) | Pb(II) | 1–8 | 0.48 | [39] |
KFP-HYB | Cu (II), Pb(II), Cd(II), and Ni(II) | 3–10 | 2.5, 2.7, 2.3, and 2.4 | This work |
KFP-H | 2.0, 2.5, 1.7, and 1.9 | This work | ||
KFP-Na | 2.8, 2.9, 2.7, and 2.8 | This work |
KFP-HYB | KFP-H | KFP-Na | ||||
---|---|---|---|---|---|---|
ΔH (kJ/mol) | ΔS (kJ/mol·K) | ΔH (kJ/mol) | ΔS (kJ/mol·K) | ΔH (kJ/mol) | ΔS (kJ/mol·K) | |
Ni | 0.45 | 0.07 | 3.50 | 0.07 | 2.37 | 0.09 |
Cu | 9.09 | 0.10 | 1.09 | 0.08 | 3.38 | 0.09 |
Cd | 3.17 | 0.09 | 0.70 | 0.07 | 15.47 | 0.14 |
Pb | 9.22 | 0.10 | 3.41 | 0.08 | 10.12 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abenghal, L.; Ratier, A.; Lamoudan, H.; Belosinschi, D.; Brouillette, F. Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers. Polymers 2025, 17, 2022. https://doi.org/10.3390/polym17152022
Abenghal L, Ratier A, Lamoudan H, Belosinschi D, Brouillette F. Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers. Polymers. 2025; 17(15):2022. https://doi.org/10.3390/polym17152022
Chicago/Turabian StyleAbenghal, Lahbib, Adrien Ratier, Hamid Lamoudan, Dan Belosinschi, and François Brouillette. 2025. "Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers" Polymers 17, no. 15: 2022. https://doi.org/10.3390/polym17152022
APA StyleAbenghal, L., Ratier, A., Lamoudan, H., Belosinschi, D., & Brouillette, F. (2025). Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers. Polymers, 17(15), 2022. https://doi.org/10.3390/polym17152022