All-Solid-State Anode-Free Sodium Batteries: Challenges and Prospects
Abstract
1. Introduction
2. The Interface Between a Solid Electrolyte and a Current Collector
3. The Interface Between a Solid Electrolyte and Sodium
4. The Interface Between a Solid Electrolyte and a Cathode
5. Solid Electrolytes
6. Forecast of Possible Characteristics of Future All-Solid-State Anode-Free Sodium Batteries
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neudecker, B.J.; Dudney, N.J.; Bates, J.B. “Lithium-Free” Thin-Film Battery with In Situ Plated Li Anode. J. Electrochem. Soc. 2000, 147, 517–523. [Google Scholar] [CrossRef]
- Ni, Q.; Yang, Y.; Du, H.; Deng, H.; Lin, J.; Lin, L.; Yuan, M.; Sun, Z.; Sun, G. Anode-Free Rechargeable Sodium-Metal Batteries. Batteries 2022, 8, 272. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, L.; Wang, X.; Zheng, Q.; Han, C.; Li, W. Current Progress of Anode-Free Rechargeable Sodium Metal Batteries: Origin, Challenges, Strategies, and Perspectives. Adv. Funct. Mater. 2024, 34, 2313823. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, C.; Zhang, N.; Liu, J.; Li, H.; Davey, K.; Qiao, S. Prospects for practical anode-free sodium batteries. Mater. Today 2024, 73, 260–274. [Google Scholar] [CrossRef]
- Yang, T.; Luo, D.; Liu, Y.; Aiping Yu, A.; Chen, Z. Anode-free sodium metal batteries as rising stars for lithium-ion alternatives. iScience 2023, 26, 105982. [Google Scholar] [CrossRef]
- Xu, P.; Huang, F.; Sun, Y.; Lei, Y.; Cao, X.; Liang, S.; Fang, G. Anode-Free Alkali Metal Batteries: From Laboratory to Practicability. Adv. Funct. Mater. 2024, 34, 2406080. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.; Wei, C.; Jiang, H.; Xiong, S.; Feng, J.; Qian, Y. Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy 2020, 78, 105344. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Weng, S.; Ding, F.; Qi, X.; Lu, J.; Li, Y.; Zhang, X.; Rong, X.; Lu, Y.; et al. Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries. Nat. Energy 2022, 7, 511–519. [Google Scholar] [CrossRef]
- Heubner, C.; Maletti, S.; Auer, H.; Hüttl, J.; Voigt, K.; Lohrberg, O.; Nikolowski, K.; Partsch, M.; Michaelis, A. From Lithium-Metal toward Anode-Free Solid-State Batteries: Current Developments, Issues, and Challenges. Adv. Funct. Mater. 2021, 31, 2106608. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, Z.; An, X.; Yue, X.; Wang, J.; Abudula, A.; Guan, G. Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Mater. 2020, 32, 386–401. [Google Scholar] [CrossRef]
- Tong, Z.; Bazri, B.; Hu, S.; Liu, R.S. Interfacial chemistry in anode-free batteries: Challenges and strategies. J. Mater. Chem. A 2021, 9, 7396–7406. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.; Chen, L. Solid-State Sodium Batteries. Adv. Energy Mater. 2018, 8, 1703012. [Google Scholar] [CrossRef]
- Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y. Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Adv. Energy Mater. 2018, 8, 1702657. [Google Scholar] [CrossRef]
- Lu, G.; Li, M.; Deng, R.; Hou, W.; Lu, L.; Song, S.; Xu, C.; Wang, R. Ultralong lifespan solid-state sodium battery with a supersodiophilic and fast ionic conductive composite sodium anode. Energy Storage Mater. 2024, 72, 103755. [Google Scholar] [CrossRef]
- Janek, J.; Zeier, W.G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240. [Google Scholar] [CrossRef]
- Zheng, X.; Bommier, C.; Luo, W.; Jiang, L.; Hao, Y.; Huang, Y. Sodium Metal Anodes for Room-Temperature Sodium-Ion Batteries: Applications, Challenges and Solutions. Energy Storage Mater. 2019, 16, 6–23. [Google Scholar] [CrossRef]
- Zhao, Y.; Adair, K.R.; Sun, X. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci. 2018, 11, 2673–2695. [Google Scholar] [CrossRef]
- Eckhardt, J.K.; Klar, P.J.; Janek, J.; Heiliger, C. Interplay of Dynamic Constriction and Interface Morphology between Reversible Metal Anode and Solid Electrolyte in Solid State Batteries. ACS Appl. Mater. Interfaces 2022, 14, 35545–35554. [Google Scholar] [CrossRef]
- Mazur, R.G.; Dickey, D.H. A Spreading Resistance Technique for Resistivity Measurements on Silicon. J. Electrochem. Soc. 1966, 113, 255–259. [Google Scholar] [CrossRef]
- Denhoff, M.W. An accurate calculation of spreading resistance. J. Phys. D Appl. Phys. 2006, 39, 1761–1765. [Google Scholar] [CrossRef]
- Zhang, P.; Lau, Y.Y.; Timsit, R.S. On the Spreading Resistance of Thin-Film Contacts. IEEE Trans. Electron Devices 2012, 59, 1936–1940. [Google Scholar] [CrossRef]
- Eckhardt, J.K.; Fuchs, T.; Burkhardt, S.; Klar, P.J.; Janek, J.; Heiliger, C. 3D Impedance Modeling of Metal Anodes in Solid-State Batteries–Incompatibility of Pore Formation and Constriction Effect in Physical-Based 1D Circuit Models. ACS Appl. Mater. Interfaces 2022, 14, 42757–42769. [Google Scholar] [CrossRef] [PubMed]
- Fleig, J.; Maier, J. Rough electrodes in solid and liquid electrochemistry: Impact of morphology on the impedance. Solid State Ionics 1997, 94, 199–207. [Google Scholar] [CrossRef]
- Jolly, D.S.; Ning, Z.; Darnbrough, J.E.; Kasemchainan, J.; Hartley, G.O.; Adamson, P.; Armstrong, D.E.J.; Marrow, J.; Bruce, P.G. Sodium/Na β″ Alumina Interface: Effect of Pressure on Voids. ACS Appl. Mater. Interfaces 2020, 12, 678–685. [Google Scholar] [CrossRef]
- Koshikawa, H.; Matsuda, S.; Kamiya, K.; Miyayama, M.; Kubo, Y.; Uosaki, K.; Hashimoto, K.; Nakanishi, S. Dynamic changes in charge-transfer resistance at Li metal/Li7La3Zr2O12 interfaces during electrochemical Li dissolution/deposition cycles. J. Power Sources 2018, 376, 147–151. [Google Scholar] [CrossRef]
- Bay, M.; Wang, M.; Grissa, R.; Heinz, M.V.F.; Sakamoto, J.; Battaglia, C. Sodium Plating from Na-β″-Alumina Ceramics at Room Temperature, Paving the Way for Fast-Charging All-Solid-State Batteries. Adv. Energy Mater. 2020, 10, 1902899. [Google Scholar] [CrossRef]
- Krauskopf, T.; Hartmann, H.; Zeier, W.G.; Janek, J. Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries—An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 2019, 11, 14463–14477. [Google Scholar] [CrossRef]
- Janek, J. Oscillating reactions at metal electrodes in solid electrolytes. Solid State Ion. 1997, 101–103, 721–727. [Google Scholar] [CrossRef]
- Rohnke, M.; Rosenkranz, C.; Janek, J. The influence of non-equilibrium defects on the anodic dissolution of a metal into a solid electrolyte. Solid State Ion. 2006, 177, 447–456. [Google Scholar] [CrossRef]
- Janek, J.; Majoni, S. Investigation of Charge Transport Across the Ag I AgI-interface: (I) Occurrence of Periodic Phenomena During Anodic Dissolution of Silver. Ber. Bunsenges. Phys. Chem. 1995, 99, 14–20. [Google Scholar] [CrossRef]
- Majoni, S.; Janek, J. Investigation of Charge Transport Across the Agl AgI-Interface: (II) Dilatometric Study of the Anodic Dissolution of Silver. Ber. Bunsenges. Phys. Chem. 1998, 102, 756–762. [Google Scholar] [CrossRef]
- Motoyama, M.; Ejiri, M.; Iriyama, Y. Modeling the Nucleation and Growth of Li at Metal Current Collector/LiPON Interfaces. J. Electrochem. Soc. 2015, 162, A7067–A7071. [Google Scholar] [CrossRef]
- Motoyama, M.; Ejiri, M.; Yamamoto, T.; Iriyama, Y. In Situ Scanning Electron Microscope Observations of Li Plating/Stripping Reactions with Pt Current Collectors on LiPON Electrolyte. J. Electrochem. Soc. 2018, 165, A1338–A1347. [Google Scholar] [CrossRef]
- Motoyama, M.; Hirota, M.; Yamamoto, T.; Iriyama, Y. Temperature Effects on Li Nucleation at Cu/LiPON Interfaces. ACS Appl. Mater. Interfaces 2020, 12, 38045–38053. [Google Scholar] [CrossRef]
- Kazyak, E.; Wang, M.J.; Lee, K.; Yadavalli, S.; Sanchez, A.J.; Thouless, M.D.; Sakamoto, J.; Dasgupta, N.P. Understanding the electro-chemo-mechanics of Li plating in anode-free solid-state batteries with operando 3D microscopy. Matter 2022, 5, 3912–3934. [Google Scholar] [CrossRef]
- Fuchs, T.; Ortmann, T.; Becker, J.; Haslam, C.G.; Ziegler, M.; Singh, V.K.; Rohnke, M.; Mogwitz, B.; Peppler, K.; Nazar, L.F.; et al. Imaging the microstructure of lithium and sodium metal in anode-free solid-state batteries using electron backscatter diffraction. Nat. Mater. 2024, 23, 1678–1685. [Google Scholar] [CrossRef]
- Ortmann, T.; Fuchs, T.; Eckhardt, J.K.; Ding, Z.; Ma, Q.; Tietz, F.; Kübel, C.; Rohnke, M.; Janek, J. Deposition of Sodium Metal at the Copper-NaSICON Interface for Reservoir-Free Solid-State Sodium Batteries. Adv. Energy Mater. 2024, 14, 2302729. [Google Scholar] [CrossRef]
- Ortmann, T.; Burkhardt, S.; Eckhardt, J.K.; Fuchs, T.; Ding, Z.; Sann, J.; Rohnke, M.; Ma, Q.; Tietz, F.; Fattakhova-Rohlfing, D.; et al. Kinetics and Pore Formation of the Sodium Metal Anode on NASICON-Type Na3.4Zr2Si2.4P0.6O12 for Sodium Solid-State Batteries. Adv. Energy Mater. 2023, 13, 2202712. [Google Scholar] [CrossRef]
- Gao, H.; Xin, S.; Xue, L.; Goodenough, J.B. Stabilizing a High-Energy-Density Rechargeable Sodium Battery with a Solid Electrolyte. Chem 2018, 4, 833–844. [Google Scholar] [CrossRef]
- Oh, J.A.S.; Wang, Y.; Zeng, Q.; Sun, J.; Sun, Q.; Goh, M.; Chua, B.; Zeng, K.; Lu, L. Intrinsic low sodium/NASICON interfacial resistance paving the way for room temperature sodium-metal battery. J. Colloid Interface Sci. 2021, 601, 418–426. [Google Scholar] [CrossRef]
- Quérel, E.; Seymour, I.D.; Cavallaro, A.; Ma, Q.; Tietz, F.; Aguadero, A. The role of NaSICON surface chemistry in stabilizing fast-charging Na metal solid-state batteries. J. Phys. Energy 2021, 3, 044007. [Google Scholar] [CrossRef]
- Quérel, E.; Williams, N.J.; Seymour, I.D.; Skinner, S.J.; Aguadero, A. Operando Characterization and Theoretical Modeling of Metal|Electrolyte Interphase Growth Kinetics in Solid-State Batteries. Part I: Experiments. Chem. Mater. 2023, 35, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, L.; Zhang, Q.; Niu, Z.; Chen, J. Electrolyte and Interface Engineering for Solid-State Sodium Batteries. Joule 2018, 2, 1747–1770. [Google Scholar] [CrossRef]
- Tang, X.; Han, W.; Zhang, Y.; Liu, S. Interface engineering of sodium metal anode for all-solid-state sodium batteries. J. Power Sources 2024, 623, 235397. [Google Scholar] [CrossRef]
- Tsai, C.; Lan, T.; Dellen, C.; Ling, Y.; Ma, Q.; Fattakhova-Rohlfing, D.; Guillon, O.; Tietz, F. Dendrite-tolerant all-solid-state sodium batteries and an important mechanism of metal self-diffusion. J. Power Sources 2020, 476, 228666. [Google Scholar] [CrossRef]
- Li, R.; Jiang, D.; Du, P.; Yuan, C.; Cui, X.; Tang, Q.; Zheng, J.; Li, Y.; Lu, K.; Ren, X.; et al. Negating Na‖Na3Zr2Si2PO12 interfacial resistance for dendrite-free and “Na-less” solid-state batteries. Chem. Sci. 2022, 13, 14132–14140. [Google Scholar] [CrossRef]
- Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett. 2017, 17, 1132–1139. [Google Scholar] [CrossRef]
- Xu, P.; Li, X.; Yan, M.; Ni, H.; Huang, H.; Lin, X.; Liu, X.; Fan, J.; Zheng, M.; Yuan, R.; et al. A highly reversible sodium metal anode by mitigating electrodeposition overpotential. J. Mater. Chem. A 2021, 9, 22892–22900. [Google Scholar] [CrossRef]
- Willow, A.; Hussein, H.E.M.; Vajirakaphan, S.; Chasri, A.; Margadonna, S. Improving In-Situ Sodium Metal Plating on Copper Foil Through Optimization of Mechanical Pressure: Towards High-Performance Anode-Free Sodium Ion Batteries. Front. Energy Res. 2022, 10, 888321. [Google Scholar] [CrossRef]
- Sayahpour, B.; Li, W.; Bai, S.; Lu, B.; Han, B.; Chen, Y.; Deysher, G.; Parab, S.; Ridley, P.; Raghavendran, G.; et al. Quantitative analysis of sodium metal deposition and interphase in Na metal batteries. Energy Environ. Sci. 2024, 17, 1216–1228. [Google Scholar] [CrossRef]
- Louli, A.J.; Genovese, M.; Weber, R.; Hames, S.G.; Logan, E.R.; Dahn, J.R. Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. J. Electrochem. Soc. 2019, 166, A1291–A1299. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.J.; Harrison, K.L.; Roberts, S.A.; Harris, S.J. Pressure-Driven Interface Evolution in Solid-State Lithium Metal Batteries. Cell Rep. Phys. Sci. 2020, 1, 100012. [Google Scholar] [CrossRef]
- Wang, M.J.; Chang, J.; Wolfenstine, J.B.; Sakamoto, J. Analysis of elastic, plastic, and creep properties of sodium metal and implications for solid-state batteries. Materialia 2020, 12, 100792. [Google Scholar] [CrossRef]
- Sun, C.; Li, Y.; Sun, Z.; Yuan, X.; Jin, H.; Zhao, Y. Ferroelectric interface for efficient sodium metal cycling in anode-free solid-state batteries. Mater. Today 2024, 80, 395–405. [Google Scholar] [CrossRef]
- Ding, Z.; Tang, Y.; Ortmann, T.; Eckhardt, J.K.; Dai, Y.; Rohnke, M.; Melinte, G.; Heiliger, C.; Janek, J.; Kübel, C. The Impact of Microstructure on Filament Growth at the Sodium Metal Anode in All-Solid-State Sodium Batteries. Adv. Energy Mater. 2023, 13, 2302322. [Google Scholar] [CrossRef]
- Ding, Z.; Tang, Y.; Ortmann, T.; Eckhardt, J.K.; Rohnke, M.; Melinte, G.; Heiliger, C.; Janek, J.; Kübel, C. Microstructural Influence on Sodium Filament Growth in All Solid-state Batteries. BIO Web Conf. 2024, 129, 25020. [Google Scholar] [CrossRef]
- Lou, S.; Zhang, F.; Fu, C.; Chen, M.; Ma, Y.; Yin, G.; Wang, J. Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond. Adv. Mater. 2020, 32, 2000721. [Google Scholar] [CrossRef]
- Tian, Y.; Shi, T.; Richards, W.D.; Li, J.; Kim, J.C.; Bo, S.; Ceder, G. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci. 2017, 10, 1150–1166. [Google Scholar] [CrossRef]
- Wang, S.; Xu, H.; Li, W.; Dolocan, A.; Manthiram, A. Interfacial Chemistry in Solid-state Batteries: Formation of Inter-phase and Its Consequences. J. Am. Chem. Soc. 2018, 140, 250–257. [Google Scholar] [CrossRef]
- Ma, Q.; Ortmann, T.; Yang, A.; Sebold, D.; Burkhardt, S.; Rohnke, M.; Tietz, F.; Fattakhova-Rohlfing, D.; Janek, J.; Guillon, O. Enhancing the Dendrite Tolerance of NaSICON Electrolytes by Suppressing Edge Growth of Na Electrode along Ceramic Surface. Adv. Energy Mater. 2022, 12, 2201680. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Mao, Z.; Wang, D. Effective resistance to dendrite growth of NASICON solid electrolyte with lower electronic conductivity. Chem. Eng. J. 2022, 427, 130899. [Google Scholar] [CrossRef]
- Zhang, Z.; Wenzel, S.; Zhu, Y.; Sann, J.; Shen, L.; Yang, J.; Yao, X.; Hu, Y.; Wolverton, C.; Li, H.; et al. Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries. ACS Appl. Energy Mater. 2020, 3, 7427–7437. [Google Scholar] [CrossRef]
- Hu, X.; Wang, M.; Liu, Y.; Meng, X.; Zhong, Y.; Wang, X.; Tu, J. Fluorinated solid electrolyte interphase enables interfacial stability for sulfide-based solid-state sodium metal batteries. Chem. Eng. J. 2024, 499, 156290. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, J.; Yuan, H.; Fu, H.; Li, Y.; Li, Y.; Ferber, T.; Guhl, C.; Sun, H.; Jaegermann, W.; et al. Stabilizing Na3Zr2Si2PO12/Na Interfacial Performance by Introducing a Clean and Na-Deficient Surface. Chem. Mater. 2020, 32, 3970–3979. [Google Scholar] [CrossRef]
- Li, Y.; Sun, C.; Sun, Z.; Li, M.; Jin, H.; Zhao, Y. Boosting Na-O Affinity in Na3Zr2Si2PO12 Electrolyte Promises Highly Rechargeable Solid-State Sodium Batteries. Adv. Funct. Mater. 2024, 34, 2403937. [Google Scholar] [CrossRef]
- Wang, C.; Jin, H.; Zhao, Y. Surface Potential Regulation Realizing Stable Sodium/Na3Zr2Si2PO12 Interface for Room-Temperature Sodium Metal Batteries. Small 2021, 17, 2100974. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Xin, S.; Goodenough, J.B. Rechargeable Sodium All-Solid-State Battery. ACS Cent. Sci. 2017, 3, 52–57. [Google Scholar] [CrossRef]
- Lu, Y.; Alonso, J.A.; Yi, Q.; Lu, L.; Wang, Z.L.; Sun, C. A High-Performance Monolithic Solid-State Sodium Battery with Ca2+ Doped Na3Zr2Si2PO12 Electrolyte. Adv. Energy Mater. 2019, 9, 1901205. [Google Scholar] [CrossRef]
- Tian, H.; Liu, S.; Deng, L.; Wang, L.; Dai, L. New-type Hf-based NASICON electrolyte for solid-state Na-ion batteries with superior long-cycling stability and rate capability. Energy Storage Mater. 2021, 39, 232–238. [Google Scholar] [CrossRef]
- Suo, J.; Zhao, Q.; Tian, H.; Wang, L.; Dai, L.; Luo, J.; Liu, S. Designing a quasi-liquid alloy interface for solid Na-ion battery. ACS Nano 2023, 17, 10229–10235. [Google Scholar] [CrossRef]
- Miao, X.; Di, H.; Ge, X.; Zhao, D.; Wang, P.; Wang, R.; Wang, C.; Yin, L. AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte. Energy Storage Mater. 2020, 30, 170–178. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. Sodium-Sulfur Batteries with a Polymer-Coated NASICON-type Sodium-Ion Solid Electrolyte. Matter 2019, 1, 439–451. [Google Scholar] [CrossRef]
- Miao, X.; Wang, H.; Sun, R.; Ge, X.; Zhao, D.; Peng Wang, P.; Wang, R.; Yin, L. Isotropous Sulfurized Polyacrylonitrile Interlayer with Homogeneous Na+ Flux Dynamics for Solid-State Na Metal Batteries. Adv. Energy Mater. 2021, 11, 2003469. [Google Scholar] [CrossRef]
- Chi, X.; Hao, F.; Zhang, J.; Wu, X.; Zhang, Y.; Gheytani, S.; Wen, Z.; Yao, Y. A high-energy quinone-based all-solid-state sodium metal battery. Nano Energy 2019, 62, 718–724. [Google Scholar] [CrossRef]
- Yang, J.; Gao, Z.; Ferber, T.; Zhang, H.; Guhl, C.; Yang, L.; Li, Y.; Deng, Z.; Liu, P.; Cheng, C.; et al. Guided-formation of favorable interface for stabilizing Na metal solid-state batteries. J. Mater. Chem. A 2020, 8, 7828–7835. [Google Scholar] [CrossRef]
- Wu, T.; Wen, Z.; Sun, C.; Wu, X.; Zhang, S.; Yang, J. Disordered Carbon Tubes Based on Cotton Cloth for Modulating the Interface Impedance in β”-Al2O3-based Solid-state Sodium Metal Batteries. J. Mater. Chem. A 2018, 6, 12623–12629. [Google Scholar] [CrossRef]
- Matios, E.; Wang, H.; Wang, C.; Hu, X.; Lu, X.; Luo, J.; Li, W. Graphene Regulated Ceramic Electrolyte for Solid-State Sodium Metal Battery with Superior Electrochemical Stability. ACS Appl. Mater. Interfaces 2019, 11, 5064–5072. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Li, Y.; Wang, C.; Miao, R.; Yang, S.; Zhao, Y.; Ding, Y.; He, J.; Chen, L.; Li, N.; et al. Wide-temperature solid-state sodium metal batteries using Na+ superionic conductor-type solid electrolytes. Energy Storage Mater. 2025, 74, 103973. [Google Scholar] [CrossRef]
- Jaschin, P.W.; Tang, C.R.; Eric, D.; Wachsman, E.D. High-rate cycling in 3D dual-doped NASICON architectures toward room-temperature sodium-metal-anode solid-state batteries. Energy Environ. Sci. 2024, 17, 727–737. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Wang, D.; Mao, Z. Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding. Nat. Commun. 2021, 12, 7109. [Google Scholar] [CrossRef]
- Uchida, Y.; Hasegawa, G.; Shima, K.; Inada, M.; Enomoto, N.; Akamatsu, H.; Hayashi, K. Insights into Sodium Ion Transfer at the Na/NASICON Interface Improved by Uniaxial Compression. ACS Appl. Energy Mater. 2019, 2, 2913–2920. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mahato, J.C.; Chung, J.S.; Kang, S.G.; Gupta, B.C. Theoretical prediction of the potential of using two-dimensional V2S2 as an effective anode for alkali metal ion batteries. Surf. Interfaces 2024, 51, 104750. [Google Scholar] [CrossRef]
- Dey, T.; Chowdhury, S.; Kang, S.G.; Sen, P.; Gupta, B.C.; Mahato, J.C. Two-dimensional ScTe2 monolayer: An efficient anode material for sodium-ion battery and cathode material for lithium-ion and potassium-ion battery. Comput. Mater. Sci. 2025, 253, 113824. [Google Scholar] [CrossRef]
- Gao, H.; Xue, L.; Xin, S.; Park, K.; Goodenough, J.B. A Plastic–Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries. Angew. Chem. Int. Ed. 2017, 56, 5541–5545. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Shi, J.; Chu, Y.S.; Yu, X.; Xu, K.; Ge, M.; Yan, H.; Li, W.; Gu, L.; et al. A Self-Forming Composite Electrolyte for Solid-State Sodium Battery with Ultralong Cycle Life. Adv. Energy Mater. 2016, 6, 1601196. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, C.; Li, L.; Liu, X.; Zhang, X.; Gao, G.; Wang, Y.; Li, G. Sc-doping in Na3Zr2Si2PO12 electrolytes enables preeminent performance of solid-state sodium batteries in a wide temperature range. Energy Storage Mater. 2023, 54, 135–145. [Google Scholar] [CrossRef]
- Zatovsky, I.V. NASICON-type Na3V2(PO4)3. Acta Cryst. 2010, 66, i12. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Ren, C.; Luo, F.; Ma, Q.; Hu, Y.; Zhou, Z.; Li, H.; Huang, X.; Chen, L. A ceramic/polymer composite solid electrolyte for sodium batteries. J. Mater. Chem. A 2016, 4, 15823–15828. [Google Scholar] [CrossRef]
- Pandit, B.; Johansen, M.; Martínez-Cisneros, C.S.; Naranjo-Balseca, J.M.; Levenfeld, B.; Ravnsbæk, D.B.; Varez, A. Na3V2(PO4)3 Cathode for Room-Temperature Solid-State Sodium-Ion Batteries: Advanced In Situ Synchrotron X-ray Studies to Understand Intermediate Phase Evolution. Chem. Mater. 2024, 36, 2314–2324. [Google Scholar] [CrossRef]
- Kehne, P.; Guhl, C.; Mac, Q.; Tietz, F.; Alff, L.; Hausbrand, R.; Komissinskiy, P. Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance. J. Power Sources 2019, 409, 86–93. [Google Scholar] [CrossRef]
- Li, L.; Yao, J.; Xu, R.; Lin, Q.; Yan, X.; Yu, C.; Zhang, L. Highly stable and encapsulation-microstructural cathode derived by self-pressurization behavior in Na-halides-based all-solid-state batteries. Energy Storage Mater. 2023, 63, 103016. [Google Scholar] [CrossRef]
- Sun, C.; Xie, L.; Wang, B.; Tan, H.; Zhang, Q.; Han, L.; Liu, Y.; Sydorov, D. Improve the cycling performance of solid-state sodium batteries through the design of a cathode interface buffering layer. Appl. Surf. Sci. 2025, 680, 161265. [Google Scholar] [CrossRef]
- Liu, L.; Qi, X.; Ma, Q.; Rong, X.; Hu, Y.; Zhou, Z.; Li, H.; Huang, X.; Chen, L. Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. ACS Appl. Mater. Interfaces 2016, 8, 32631–32636. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Lv, Y.; Wang, H.; Li, B.; Zhao, S.; Zheng, L.; Huang, Y.; Hong, Z. Durable high voltage solid-state sodium batteries with Pseudocapacitive P2 layered oxide cathode. Energy Storage Mater. 2024, 73, 103804. [Google Scholar] [CrossRef]
- Yang, S.; Shao, C.; Xiao, X.; Fang, D.; Li, N.; Zhao, E.; Wang, C.; Chen, L.; Li, N.; Li, J.; et al. Revealing stable organic cathode/solid electrolyte interface to promote all-solid-state sodium batteries using organic cathodes. Energy Storage Mater. 2024, 73, 103857. [Google Scholar] [CrossRef]
- Du, K.; Guo, H.; Hu, G.; Peng, Z.; Cao, Y. Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries. J. Power Sources 2013, 223, 284–288. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, R.; Deng, W.; Ai, X.; Yang, H.; Cao, Y. An All-solid-state and All-organic Sodium-ion Battery based on Redox-active Polymers and Plastic Crystal Electrolyte. Electrochim. Acta 2015, 178, 55–59. [Google Scholar] [CrossRef]
- Ma, Q.; Tietz, F. Solid-State Electrolyte Materials for Sodium Batteries: Towards Practical Applications. ChemElectroChem 2020, 7, 2693–2713. [Google Scholar] [CrossRef]
- Åvall, G.; Mindemark, J.; Brandell, D.; Johansson, P. Sodium-Ion Battery Electrolytes: Modeling and Simulations. Adv. Energy Mater. 2018, 8, 1703036. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, K.; Park, I.; Kang, K. Progress in the Development of Sodium-Ion Solid Electrolytes. Small Methods 2017, 1, 1700219. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y.; Li, H.; Janek, J.; Nazar, L.F.; Nan, C.; Maier, J.; Armand, M.; et al. New Horizons for Inorganic Solid State Ion Conductors. Energy Environ. Sci. 2018, 11, 1945–1976. [Google Scholar] [CrossRef]
- Zhao, Q.; Stalin, S.; Zhao, C.; Archer, L.A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252. [Google Scholar] [CrossRef]
- Ahmad, H.; Kubra, K.T.; Butt, A.; Nisar, U.; Iftikhar, F.J.; Ali, G. Recent progress, challenges, and perspectives in the development of solid-state electrolytes for sodium batteries. J. Power Sources 2023, 581, 233518. [Google Scholar] [CrossRef]
- Hou, W.; Guo, X.; Shen, X.; Amine, K.; Yu, H.; Lu, J. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective. Nano Energy 2018, 52, 279–291. [Google Scholar] [CrossRef]
- Kumar, P.P.; Yashonath, S. Ionic conduction in the solid state. J. Chem. Sci. 2006, 118, 135–154. [Google Scholar] [CrossRef]
- Guin, M.; Tietz, F. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries. J. Power Sources 2015, 273, 1056–1064. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, R.; Fu, Q.; Zhang, J.; Zhou, X.; Gao, P.; Xu, C.; Liu, J.; Guo, X. Inorganic Solid Electrolytes for All-Solid-State Sodium Batteries: Fundamentals and Strategies for Battery Optimization. Adv. Funct. Mater. 2021, 31, 2008165. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, B.; Ren, D.; Yu, X.; Gao, Y.; Wu, Y.; Yang, Y.; Chen, Z.; Zhou, Z. Advancing solid-state sodium batteries: Status quo of sulfide-based solid electrolytes. Mater. Today 2024, 80, 429–449. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Hong, H.Y.; Kafalas, J.A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203–220. [Google Scholar] [CrossRef]
- Hong, H.Y. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 1976, 11, 173–182. [Google Scholar] [CrossRef]
- Boilot, J.P.; Collin, G.; Colomban, P. Relation structure-fast ion conduction in the NASICON solid solution. J. Solid State Chem. 1998, 73, 160–171. [Google Scholar] [CrossRef]
- Park, H.; Jung, K.; Nezafati, M.; Kim, C.; Kang, B. Sodium Ion Diffusion in Nasicon (Na3Zr2Si2PO12) Solid Electrolytes: Effects of Excess Sodium. ACS Appl. Mater. Interfaces 2016, 8, 27814–27824. [Google Scholar] [CrossRef]
- Zhang, Z.; Zou, Z.; Kaup, K.; Xiao, R.; Shi, S.; Avdeev, M.; Hu, Y.; Wang, D.; He, B.; Li, H.; et al. Correlated Migration Invokes Higher Na+-Ion Conductivity in NaSICON-Type Solid Electrolytes. Adv. Energy Mater. 2019, 9, 1902373. [Google Scholar] [CrossRef]
- Ma, Q.; Tsai, C.; Wei, X.; Heggen, M.; Tietz, F.; Irvine, J.T.S. Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm-1 and its primary applications in symmetric battery cells. J. Mater. Chem. A 2019, 7, 7766–7776. [Google Scholar] [CrossRef]
- Fuentes, R.O.; Figueiredo, F.; Marques, F.M.B.; Franco, J.I. Optimised NASICON Ceramics for Na+ Sensing. Ionics 2002, 8, 383–390. [Google Scholar] [CrossRef]
- He, J.; Yang, S.; Xiao, X.; Fang, D.; Miao, R.; Wang, C.; Chen, L.; Li, N.; Li, J.; Su, Y.; et al. Aliovalent cation substitution in Na3Zr2Si2PO12 for practical solid-state sodium metal batteries. Energy Storage Mater. 2025, 75, 104037. [Google Scholar] [CrossRef]
- Takahashi, T.; Kuwabara, K.; Shibata, M. Solid-state Ionics—Conductivities of Na+ ion conductors based on NASICON. Solid State Ion. 1980, 1, 163–175. [Google Scholar] [CrossRef]
- Bohnke, O.; Ronchetti, S.; Mazza, D. Conductivity measurements on nasicon and nasicon-modified materials. Solid State Ion. 1999, 122, 127–136. [Google Scholar] [CrossRef]
- Anantharamulu, N.; Rao, K.K.; Rambabu, G.; Kumar, B.V.; Radha, V.; Vithal, M. A wide-ranging review on Nasicon type materials. J. Mater. Sci. 2011, 46, 2821–2837. [Google Scholar] [CrossRef]
- Chen, D.; Luo, F.; Zhou, W.; Zhu, D. Influence of Nb5+, Ti4+, Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity. J. Alloys Compd. 2018, 757, 348–355. [Google Scholar] [CrossRef]
- Yang, J.; Liu, G.; Avdeev, M.; Wan, H.; Han, F.; Shen, L.; Zou, Z.; Shi, S.; Hu, Y.; Wang, C.; et al. Ultrastable All-Solid-State Sodium Rechargeable Batteries. ACS Energy Lett. 2020, 5, 2835–2841. [Google Scholar] [CrossRef]
- Vogel, E.M.; Cava, R.J.; Rietman, E. Na+ ion conductivity and crystallographic cell characterization in the Hf-nasicon system Na1+xHf2SixP3−xO12. Solid State Ion. 1984, 14, 1–6. [Google Scholar] [CrossRef]
- Bogusz, W.; Krok, F.; Jakubowski, W. Influence of doping on some physical properties of NASICON. Solid State Ion. 1983, 9–10, 803–807. [Google Scholar] [CrossRef]
- Krok, F.; Kony, D.; Dygas, J.R.; Jakubowski, W.; Bogusz, W. On some properties of NASICON doped with MgO and CoO. Solid State Ion. 1989, 36, 251–254. [Google Scholar] [CrossRef]
- Ma, Q.; Guin, M.; Naqash, S.; Tsai, C.; Tietz, F.; Guillon, O. Scandium-Substituted Na3Zr2(SiO4)2(PO4) Prepared by a Solution-Assisted Solid-State Reaction Method as Sodium-Ion Conductors. Chem. Mater. 2016, 28, 4821–4828. [Google Scholar] [CrossRef]
- Yang, J.; Wan, H.; Zhang, Z.; Liu, G.; Xu, X.; Hu, Y.; Yao, X. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met. 2018, 37, 480–487. [Google Scholar] [CrossRef]
- Oh, J.A.S.; He, L.; Plewa, A.; Morita, M.; Zhao, Y.; Sakamoto, T.; Song, X.; Zhai, W.; Zeng, K.; Lu, L. Composite NASICON (Na3Zr2Si2PO12) Solid-State Electrolyte with Enhanced Na+ Ionic Conductivity: Effect of Liquid Phase Sintering. ACS Appl. Mater. Interfaces 2019, 11, 40125–40133. [Google Scholar] [CrossRef]
- Nafis, M.S.; Liang, Z.; Lee, S.; Ban, C. Structural engineering developments in sulfide solid-state electrolytes for lithium and sodium solid-state batteries. Nano Energy 2025, 133, 110447. [Google Scholar] [CrossRef]
- Hayashi, A.; Noi, K.; Tanibata, N.; Nagao, M.; Tatsumisago, M. High sodium ion conductivity of glasseceramic electrolytes with cubic Na3PS4. J. Power Sources 2014, 258, 420–423. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, D.; Yang, K.; Yan, X.; Wang, L.; Mi, J.; Xu, B.; Li, Y. Vacancy-Contained Tetragonal Na3SbS4 Superionic Conductor. Adv. Sci. 2016, 3, 1600089. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, X.; Xu, D.; Wang, N.; Yu, C.; Hu, W.; Yan, X.; Mi, J.; Wen, B.; Wang, L.; et al. Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries. Electrochim. Acta 2018, 259, 100–109. [Google Scholar] [CrossRef]
- Zhang, Z.; Ramos, E.; Lalère, F.; Assoud, J.; Kaup, K.; Hartman, P.; Nazar, L.F. Na11Sn2PS12: A New Solid State Sodium Superionic Conductor. Energy Environ. Sci. 2018, 11, 87–93. [Google Scholar] [CrossRef]
- Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 2012, 3, 856. [Google Scholar] [CrossRef]
- Banerjee, A.; Park, K.H.; Heo, J.W.; Nam, Y.J.; Moon, C.K.; Oh, S.M.; Seung-Tae Hong, S.; Jung, Y.S. Na3SbS4: A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2016, 55, 9634–9638. [Google Scholar] [CrossRef]
- Noi, K.; Hayashi, A.; Tatsumisago, M. Structure and properties of the Na2S–P2S5 glasses and glass—ceramics prepared by mechanical milling. J. Power Sources 2014, 269, 260–265. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Hood, Z.D.; Sahu, G.; Pandian, A.S.; Keum, J.K.; An, K.; Liang, C. An Air-Stable Na3SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure. Angew. Chem. Int. Ed. 2016, 55, 8551–8555. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Mao, A.; Sen, S.; Kim, S. Fast Na-Ion Conduction in a Chalcogenide Glass–Ceramic in the Ternary System Na2Se–Ga2Se3–GeSe2. Chem. Mater. 2014, 26, 5695–5699. [Google Scholar] [CrossRef]
- Jansen, M.; Henseler, U. Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate. J. Solid State Chem. 1992, 99, 110–119. [Google Scholar] [CrossRef]
- Tatsumisago, M.; Hayashi, A. Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries. Int. J. Appl. Glass Sci. 2014, 5, 226–235. [Google Scholar] [CrossRef]
- Chu, I.; Kompella, C.S.; Nguyen, H.; Zhu, Z.; Hy, S.; Deng, Z.; Meng, Y.S.; Ong, S.P. Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor. Sci. Rep. 2016, 6, 33733. [Google Scholar] [CrossRef]
- de Klerk, N.J.J.; Wagemaker, M. Diffusion Mechanism of the Sodium-Ion Solid Electrolyte Na3PS4 and Potential Improvements of Halogen Doping. Chem. Mater. 2016, 28, 3122–3130. [Google Scholar] [CrossRef]
- Bo, S.; Wang, Y.; Kim, J.C.; Richards, W.D.; Ceder, G. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na3PSe4. Chem. Mater. 2016, 28, 252–258. [Google Scholar] [CrossRef]
- Tanibata, N.; Noi, K.; Hayashi, A.; Tatsumisago, M. Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes. RSC Adv. 2014, 4, 17120–17123. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, K.; Mi, J.; Lu, L.; Zhao, L.; Wang, L.; Li, Y.; Zeng, H. Na3PSe4; A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity. Adv. Energy Mater. 2015, 5, 1501294. [Google Scholar] [CrossRef]
- Zhu, Z.; Chu, I.; Deng, Z.; Ong, S.P. Role of Na+ Interstitials and Dopants in Enhancing the Na+ Conductivity of the Cubic Na3PS4 Superionic Conductor. Chem. Mater. 2015, 27, 8318–8325. [Google Scholar] [CrossRef]
- Yu, L.; Jiao, Q.; Liang, B.; Shan, H.; Lin, C.; Gao, C.; Shen, X.; Dai, S. Exceptionally high sodium ion conductivity and enhanced air stability in Na3SbS4 via germanium doping. J. Alloys and Compd. 2022, 913, 165229. [Google Scholar] [CrossRef]
- Yu, Z.; Shang, S.; Seo, J.; Wang, D.; Luo, X.; Huang, Q.; Chen, S.; Lu, J.; Li, X.; Liu, Z.; et al. Exceptionally High Ionic Conductivity in Na3P0.62As0.38S4 with Improved Moisture Stability for Solid-State Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1605. [Google Scholar] [CrossRef]
- Bo, S.; Wang, Y.; Ceder, G. Structural and Na-ion conduction characteristics of Na3PSxSe4−x. J. Mater. Chem. A 2016, 4, 9044–9053. [Google Scholar] [CrossRef]
- Takayanagi, T.; Nasu, A.; Tsuji, F.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Mechanochemically Prepared Highly Conductive Na2.88Sb0.88W0.12S4–NaI Composite Electrolytes for All-Solid-State Sodium Battery. Electrochemistry 2022, 90, 047005. [Google Scholar] [CrossRef]
- Takayanagi, T.; Nasu, A.; Tsuji, F.; Motohashi, K.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Preparation and characterization of Na2.88Sb0.88W0.12S4–xOx solid electrolyte. J. Ceram. Soc. Jpn. 2022, 130, 498–503. [Google Scholar] [CrossRef]
- Hayashi, A.; Masuzawa, N.; Yubuchi, S.; Tsuji, F.; Hotehama, C.; Sakuda, A.; Tatsumisago, M. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat. Commun. 2019, 10, 5266. [Google Scholar] [CrossRef]
- Hibi, Y.; Tanibata, N.; Hayashi, A.; Tatsumisago, M. Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique. Solid State Ion. 2015, 270, 6–9. [Google Scholar] [CrossRef]
- Tsuji, F.; Nasu, A.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Mechanochemical synthesis and characterization of Na3–xP1–xWxS4 solid electrolytes. J. Power Sources 2021, 506, 230100. [Google Scholar] [CrossRef]
- Fuchs, T.; Culver, S.P.; Till, P.; Zeier, W.G. Defect-Mediated Conductivity Enhancements in Na3−xPn1−xWxS4 (Pn = P, Sb) Using Aliovalent Substitutions. ACS Energy Lett. 2020, 5, 146–151. [Google Scholar] [CrossRef]
- Oh, K.; Chang, D.; Park, I.; Yoon, K.; Kang, K. First-Principles Investigations on Sodium Superionic Conductor Na11Sn2PS12. Chem. Mater. 2019, 31, 6066–6075. [Google Scholar] [CrossRef]
- Richards, W.R.; Tsujimura, T.; Miara, L.J.; Wang, Y.; Kim, J.C.; Ong, S.P.; Uechi, I.; Suzuki, N.; Ceder, G. Design and synthesis of the superionic conductor Na10SnP2S12. Nat. Commun. 2016, 7, 11009. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Chien, P.; Zhu, Z.; Chu, I.; Wang, P.; Immediato-Scuotto, M.; Arabzadeh, H.; Ong, S.P.; Hu, Y. Studies of Functional Defects for Fast Na-Ion Conduction in Na3−yPS4−xClx with a Combined Experimental and Computational Approach. Adv. Funct. Mater. 2019, 29, 1807951. [Google Scholar] [CrossRef]
- Yu, L.; Yin, J.; Gao, C.; Lin, C.; Shen, X.; Dai, S.; Jiao, Q. Halogen Doping Mechanism and Interface Strengthening in the Na3SbS4 Electrolyte via Solid-State Synthesis. ACS Appl. Mater. Interfaces 2023, 15, 31635–31642. [Google Scholar] [CrossRef]
- Shu, L.; Gao, C.; Liu, Y.; Zhou, X.; Ma, H.; Zhang, X.; Shen, X.; Dai, S.; Lin, C.; Jiao, Q. Enhancing interface stability and ionic conductivity in the designed Na3SbP0.4xS4−xOx sulfide solid electrolyte through bridging oxygen. J. Colloid Interface Sci. 2023, 652, 2042–2053. [Google Scholar] [CrossRef]
- Wang, Y.; Richards, W.D.; Bo, S.; Miara, L.J.; Ceder, G. Computational Prediction and Evaluation of Solid-State Sodium Superionic Conductors Na7P3X11 (X = O, S, Se). Chem. Mater. 2017, 29, 7475–7482. [Google Scholar] [CrossRef]
- Matsuo, M.; Kuromoto, S.; Sato, T.; Oguchi, H.; Takamura, H.; Orimo, S. Sodium ionic conduction in complex hydrides with [BH4]− and [NH2]− anions. Appl. Phys. Lett. 2012, 100, 203904. [Google Scholar] [CrossRef]
- Udovic, T.J.; Motoaki Matsuo, M.; Unemoto, A.; Verdal, N.; Stavila, V.; Skripov, A.V.; Rush, J.J.; Takamura, H.; Orimo, S. Sodium superionic conduction in Na2B12H12. Chem. Commun. 2014, 50, 3750–3752. [Google Scholar] [CrossRef]
- Zhou, L.; Bazak, J.D.; Singh, B.; Li, C.; Assoud, A.; Washton, N.M.; Murugesan, V.; Nazar, L.F. A New Sodium Thioborate Fast Ion Conductor: Na3B5S9. Angew. Chem. Int. Ed. 2023, 62, e202300404. [Google Scholar] [CrossRef]
- Fu, C.; Li, Y.; Xu, W.; Feng, X.; Gu, W.; Liu, J.; Deng, W.; Wang, W.; Abeykoon, A.M.M.; Su, L.; et al. LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries. Nat. Commun. 2024, 15, 4315. [Google Scholar] [CrossRef]
Electrolyte | Cathode | Anode | Voltage Range, V | Ionic Conductivity of Electrolyte, RT, S/cm | Cathode Specific Capacity, mAh/g | Cycles | Ref. |
---|---|---|---|---|---|---|---|
Na3Zr2Si2PO12 | Na2MnFe(CN)6 | Na | 4.0–2.5 | 1.2·10−3 at 60 °C | 120 at 0.5 C | 200 | [39] |
Na3.4Zr2(SiO4)2.4(PO4)0.6 | Na3V2(PO4)3 | Na | 3.8–2.0 | 5·10−3 | 0.6 mAh/cm2 at 0.5 mA/cm2 | 70 | [45] |
Na3Zr2Si2PO12 | Na3V2(PO4)3 | Na | 3.8–2.0 | 6·10−4 | 88 at 0.2 C | 100 | [46] |
Na3Zr2Si2PO12 | NaCu1/9Ni2/9Fe1/3Mn1/3O2 | BaTiO3/C@Al | 3.8–2.0 | 6·10−4 | 93.1 at 0.1 mA/cm2 | 300 | [54] |
Na3Zr2Si2PO12 | Na3.5V0.5Mn0.5Fe0.5 Ti0.5(PO4)3 | Na | 4.4–2.0 | 6·10−3 | 152 at 1 C | 1000 | [65] |
Na3Zr2Si2PO12 | Na3V1.5Cr0.5(PO4)3 | Na | 4.3–2.5 | 0.85·10−3 | 103 at 1 C | 400 | [66] |
Na3.2Zr1.9Ca0.1Si2PO12 | Na3V2(PO4)3 | Na | 3.8–2.7 | 1.67·10−3 | 94.9 at 1 C | 450 | [68] |
Na3.2Hf1.9Ca0.1Si2PO12 | Na3V2(PO4)3 | Na/SnO2 | 3.8–2.7 | 1.07·10−3 | 103.1 at 0.5 C | 300 | [69] |
β″-Al2O3 | Na3V2(PO4)3 | Na | 3.8–2.5 | 1.17·10−4 | 100 at 0.2 C | 100 | [76] |
Na3Zr2Si2PO12 | Na3V2(PO4)3 | Na | 4.0–2.6 | 4.3·10−4 | 110 at 0.1 mA/cm2 | 900 | [80] |
Na3Zr2Si2PO12 | Na3V2(PO4)3 | Na | 4.0–2.5 | 3.3·10−4 | 90 at 0.1 C | 100 | [84] |
Na3.4Zr1.6Sc0.4Si2PO12 | Na3V2(PO4)3 | Na | 3.8–2.3 | 1.77·10−4 | 100 at 1 C | 300 | [86] |
Na-β″-Al2O3 | Na0.66Ni0.33Mn0.67O2 | Na | 3.8–2.5 | 1.0·10−3 | 79 at 6 C | 10,000 | [93] |
Na3.4Zr1.9Zn0.1Si2.2P0.8O12 | FeS2 | Na | 2.5–0.7 | 5.27·10−3 | 236.5 at 0.1 C 133.1 at 0.5 C | 100 300 | [121] |
Na3.1Zr1.95Mg0.05Si2PO12 | Na0.9Cu0.22Fe0.3Mn0.48O2 | Na | 3.8–2.5 | 1.33·10−3 | 57.9 at 0.5 C | 100 | [126] |
Na3PS4 | NaCrO2 | Na15Sn4 | 4.0–1.0 | 4.6·10−4 | 90 at 0.013 mA/cm2 | 20 | [129] |
Na3PS4 | NaCrO2 | Na15Sn4 | 3.0–1.0 | 4.0·10−4 | 250 | 10 | [131] |
Na3SbS4 | NaCrO2 | Na | 4.0–1.5 | 1.1·10−3 | 108 at 0.05 mA/cm2 | 1 | [134] |
t-Na2.9375PS3.9375Cl0.0625 | TiS2 | Na | 2.4–1.2 | 1.14·10−3 | 80 at 0.1 C | 10 | [140] |
Na3P0.62As0.38S4 | TiS2 | Na-Sn | 2.4–1.2 | 1.46·10−3 | 150 at 0.02 C | 10 | [147] |
Na2.88Sb0.88W0.12S4·0.5NaI | TiS2 | Na-Sn | 2.4–1.2 | 10−2 | 100 at 0.057 C | 5 | [149] |
Na2.88Sb0.88W0.12S3.7O0.3 | TiS2 | Na-Sn | 2.4–1.2 | 2.2·10−3 | 130 at 0.057 C | 5 | [150] |
Na2.85P0.85W0.15S4 | TiS2 | Na-Sn | 2.4–1.2 | 8.8·10−3 | 140 at 0.057 C | 5 | [153] |
Na3.0PS3.8Cl0.2 | Na3V2(PO4)3 | Na | 3.8–2.5 | 1.96·10−3 | 100 at 0.1 C | 10 | [157] |
Na0.7Zr0.3La0.7Cl4 | NaCrO2 | Na2Sn | 3.4–2.0 | 2.9·10−4 | 114 at 0.3 C | 70 | [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skundin, A.M.; Kulova, T.L. All-Solid-State Anode-Free Sodium Batteries: Challenges and Prospects. Batteries 2025, 11, 292. https://doi.org/10.3390/batteries11080292
Skundin AM, Kulova TL. All-Solid-State Anode-Free Sodium Batteries: Challenges and Prospects. Batteries. 2025; 11(8):292. https://doi.org/10.3390/batteries11080292
Chicago/Turabian StyleSkundin, Alexander M., and Tatiana L. Kulova. 2025. "All-Solid-State Anode-Free Sodium Batteries: Challenges and Prospects" Batteries 11, no. 8: 292. https://doi.org/10.3390/batteries11080292
APA StyleSkundin, A. M., & Kulova, T. L. (2025). All-Solid-State Anode-Free Sodium Batteries: Challenges and Prospects. Batteries, 11(8), 292. https://doi.org/10.3390/batteries11080292