The Inhibitory Effect and Adsorption Properties of Testagen Peptide on Copper Surfaces in Saline Environments: An Experimental and Computational Study
Abstract
1. Introduction
2. Results and Discussion
2.1. Electrochemical Measurements
2.1.1. Open Circuit Potential (OCP) Measurements
2.1.2. Potentiodynamic Polarization Curves
2.1.3. Tafel Polarization and Linear Diagram
2.1.4. Potentiogravimetric Results
2.2. Approach of Adsorption Isotherms
2.3. Surface Characterization
2.3.1. Optical Microscopy
2.3.2. SEM/EDS Analysis
2.4. Investigation of Interactions at the Copper/KEDG Interface Using the DFT Method
2.5. Atomistic Monte Carlo Simulation
2.6. KEDG Action Mechanism
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Electrochemical Measurements
3.2.2. Surface Characterization
Optical Microscopy
SEM/EDS Analysis
3.3. Computational Study
3.3.1. Computational Details Regarding DFT Calculations
3.3.2. Computational Details of Atomistic Monte Carlo Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
KEDG | testagen tetrapeptide |
OCP | open circuit potential |
icorr | corrosion current density |
Ecorr | corrosion potential |
Rp | polarization resistance |
η | overvoltage |
CR | corrosion rate |
ba and bc | anodic and cathodic Tafel slopes |
IE% | inhibition efficiency |
K | adsorption–desorption constant |
standard free adsorption energy | |
θ | surface coverage degree |
DFT | Density Functional Theory |
χ | electronegativity |
ε | chemical potential |
η | hardness |
σ | softness |
ω | electrophilicity index |
ω | electrodonating power |
ω+ | electroaccepting power |
ΔN | fraction of the transferred electron |
References
- Hamadi, L.; Mansouri, S.; Oulmi, K.; Kareche, A. The use of amino acids as corrosion inhibitors for metals: A review. Egypt. J. Pet. 2018, 27, 1157–1165. [Google Scholar] [CrossRef]
- Samide, A.; Dobritescu, A.; Tigae, C.; Spinu, C.I.; Oprea, B. Experimental and computational study on inhibitory effect and adsorption properties of N-acetylcysteine amino acid in acid environment. Molecules 2023, 28, 6799. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, N.; Jain, V.; Rai, B. Amino acids as copper corrosion inhibitors: A density functional theory approach. Appl. Surf. Sci. 2020, 514, 145905. [Google Scholar] [CrossRef]
- Loto, R.T. Corrosion inhibition effect of non-toxic α-amino acid compound on high carbon steel in low molar concentration of hydrochloric acid. J. Mater. Res. Technol. 2019, 8, 484–493. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Li, Y.Y.; Lei, Y.; Wang, X.; Liu, H.F.; Zhang, G.A. Comparison of the synergistic inhibition mechanism of two eco-friendly amino acids combined corrosion inhibitors for carbon steel pipelines in oil and gas production. Appl. Surf. Sci. 2022, 583, 152559. [Google Scholar] [CrossRef]
- Habibullah, M.I.; Veawab, A. Cysteine as an Alternative Eco-Friendly Corrosion Inhibitor for Absorption-Based Carbon Capture Plants. Materials 2023, 16, 3496. [Google Scholar] [CrossRef]
- Rasul, H.H.; Mamad, D.M.; Azeez, Y.H.; Omer, R.A.; Omer, K.A. Theoretical investigation on corrosion inhibition efficiency of some amino acid compounds. Comput. Theor. Chem. 2023, 1225, 114177. [Google Scholar] [CrossRef]
- Purnima; Goyal, S.; Luxami, V. Exploring the corrosion inhibition mechanism of Serine (Ser) and Cysteine (Cys) in alkaline concrete pore solution simulating carbonated environment. Constr. Build. Mater. 2023, 384, 131433. [Google Scholar] [CrossRef]
- Hussein, A.M.; Abbas, Z.S.; Kadhim, M.M.; Rheima, A.M.; Barzan, M.; Al-Attia, L.H.; Elameer, A.S.; Hachim, S.K.; Hadi, M.A. Inhibitory behavior and adsorption of asparagine dipeptide amino acid on the Fe(111) surface. J. Mol. Model. 2023, 29, 162. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, Q.; Wang, Y.; Tang, J.; Wang, Y.; Wang, H. Molecular dynamic simulation and experimental investigation on the synergistic mechanism and synergistic effect of oleic acid imidazoline and l-cysteine corrosion inhibitors. Corros. Sci. 2021, 185, 109414. [Google Scholar] [CrossRef]
- Farahati, R.; Mousavi-Khoshdel, S.M.; Ghaffarinejad, A.; Behzadi, H. Experimental and computational study of penicillamine drug and cysteine as water-soluble green corrosion inhibitors of mild steel. Prog. Org. Coat. 2020, 142, 105567. [Google Scholar] [CrossRef]
- Mobin, M.; Zehra, S.; Parveen, M. L-Cysteine as corrosion inhibitor for mild steel in 1M HCl and synergistic effect of anionic, cationic and non-ionic surfactants. J. Mol. Liq. 2016, 216, 598–607. [Google Scholar] [CrossRef]
- Oubaaqa, M.; Ouakki, M.; Rbaa, M.; Abousalem, A.S.; Maatallah, M.; Benhiba, F.; Jarid, A.; Ebn Touhami, M.; Zarrouk, A. Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations. J. Mol. Liq. 2021, 334, 116520. [Google Scholar] [CrossRef]
- Radovanović, M.; Petrović Mihajlović, M.; Tasić, Ž.; Simonović, A.; Antonijević, M. Inhibitory effect of L-Threonine and L-Lysine and influence of surfactant on stainless steel corrosion in artificial body solution. J. Mol. Liq. 2021, 342, 116939. [Google Scholar] [CrossRef]
- Abdel-Fatah, H.T.M.; Abdel-Samad, H.S.; Hassan, A.A.M.; El-Sehiety, H.E.E. Effect of variation of the structure of amino acids on inhibition of the corrosion of low-alloy steel in ammoniated citric acid solutions. Res. Chem. Intermed. 2014, 40, 1675–1690. [Google Scholar] [CrossRef]
- Dehdab, M.; Shahraki, M.; Habibi-Khorassani, S.M. Theoretical study of inhibition efficiencies of some amino acids on corrosion of carbon steel in acidic media: Green corrosion inhibitors. Amino Acids 2016, 48, 291–306. [Google Scholar] [CrossRef]
- Mendonça, G.L.F.; Costa, S.N.; Freire, V.N.; Casciano, P.N.S.; Correia, A.N.; de Lima-Neto, P. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods. Corros. Sci. 2017, 115, 41–55. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, W.; Zhang, W.; Huang, X.; Ruan, L.; Wu, L. Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies of methionine and valine as corrosion inhibitors on carbon steel in phase change materials (PCMs) solution. J. Mol. Liq. 2018, 272, 528–538. [Google Scholar] [CrossRef]
- El Ibrahimi, B.; Jmiai, A.; Bazzi, L.; El Issami, S. Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab. J. Chem. 2020, 13, 740–771. [Google Scholar] [CrossRef]
- Kasprzhitskii, A.; Lazorenko, G.; Nazdracheva, T.; Yavna, V. Comparative Computational Study of L-Amino Acids as Green Corrosion Inhibitors for Mild Steel. Computation 2021, 9, 1. [Google Scholar] [CrossRef]
- Samide, A.; Iacobescu, G.E.; Tutunaru, B.; Tigae, C.; Spinu, C.I.; Oprea, B. New Inhibitor Based on Hydrolyzed Keratin Peptides for Stainless Steel Corrosion in Physiological Serum: An Electrochemical and Thermodynamic Study. Polymers 2024, 16, 669. [Google Scholar] [CrossRef]
- Kasprzhitskii, A.; Lazorenko, G. Corrosion inhibition properties of small peptides: DFT and Monte Carlo simulation studies, Corrosion inhibition properties of small peptides: DFT and Monte Carlo simulation studies. J. Mol. Liq. 2021, 331, 115782. [Google Scholar] [CrossRef]
- Kasprzhitskii, A.; Lazorenko, G.; Nazdracheva, T.; Kukharskii, A.; Yavna, V.; Kochur, A. Theoretical evaluation of the corrosion inhibition performance of aliphatic dipeptides. New J. Chem. 2021, 45, 3610–3629. [Google Scholar] [CrossRef]
- Simović, A.; Stevanović, S.; Milovanović, B.; Etinski, M.; Bajat, J.B. Green corrosion inhibitors of steel based on peptides and their constituents: A combination of experimental and computational approach. J. Solid State Electrochem. 2023, 27, 1821–1834. [Google Scholar] [CrossRef]
- Ma, Y.; Talha, M.; Wang, Q.; Li, Z.; Lin, Y. Evaluation of the corrosion behavior of AZ31 magnesium alloy with different protein concentrations. Anti-Corros. Methods Mater. 2021, 69, 47–54. [Google Scholar] [CrossRef]
- Zhang, Z.; Ba, H.; Wu, Z. Sustainable corrosion inhibitor for steel in simulated concrete pore solution by maize gluten meal extract: Electrochemical and adsorption behavior studies. Constr. Build. Mater. 2019, 227, 117080. [Google Scholar] [CrossRef]
- Qiang, Y.; Yang, H.; Huo, S.; Dong, X.; Ramakrishna, S.; Li, X. Polydopamine encapsulates Uio66 loaded with 2-mercaptobenzimidazole composite as intelligent and controllable nanoreservoirs to establish superior active/passive anticorrosion coating. Chem. Eng. J. 2025, 503, 158559. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Popovich, I.G.; Linkova, N.S.; Mironova, E.S.; Ilina, A.R. Peptide Regulation of Gene Expression: A Systematic Review. Molecules 2021, 26, 7053. [Google Scholar] [CrossRef]
- Khavinson, V.; Linkova, N.; Diatlova, A.; Trofimova, S. Peptide Regulation of Cell Differentiation. Stem Cell Rev. Rep. 2020, 16, 118–125. [Google Scholar] [CrossRef]
- Samide, A.; Merisanu, C.; Tutunaru, B.; Iacobescu, G.E. Poly (Vinyl Butyral-Co-Vinyl Alcohol-Co-Vinyl Acetate) Coating Performance on Copper Corrosion in Saline Environment. Molecules 2020, 25, 439. [Google Scholar] [CrossRef]
- Rosenberg, M.; Vija, H.; Kahru, A.; Keevil, C.W.; Ivask, A. Rapid in situ assessment of Cu-ion mediated effects and antibacterial efficacy of copper surfaces. Sci. Rep. 2018, 8, 8172. [Google Scholar] [CrossRef]
- Huo, S.; Zhang, W.; Qiang, Y.; Zhang, Y.; Sundarrajan, S.; Guo, L.; Liu, T.; Ramakrishna, S. An improved green high-efficiency strategy using an amino acid derivative as electrolyte additives for corrosion inhibition in alkaline Al-air battery. J. Power Sources 2025, 629, 236064. [Google Scholar] [CrossRef]
- Samide, A.; Stoean, C.; Stoean, R. Surface study of inhibitor films formed by polyvinyl alcohol and silver, nanoparticles on stainless steel in hydrochloric using convolutional neural networks. Appl. Surf. Sci. 2019, 475, 1–5. [Google Scholar] [CrossRef]
- Ituen, E.B.; Akaranta, O.; Umoren, S.A. N-acetyl cysteine based corrosion inhibitor formulations for steel protection in 15% HCl solution. J. Mol. Liq. 2017, 246, 112–118. [Google Scholar] [CrossRef]
- Rabizadeh, T.; Asl, S.K. Casein as a natural protein to inhibit the corrosion of mild steel in HCl solution. J. Mol. Liq. 2019, 276, 694–704. [Google Scholar] [CrossRef]
- Ran, B.; Qiang, Y.; Liu, X.; Guo, L.; Ritacca, A.G.; Ritacco, I.; Li, X. Excellent performance of amoxicillin and potassium iodide as hybrid corrosion inhibitor for mild steel in HCl environment: Adsorption characteristics and mechanism insight. J. Mater. Res. Technol. 2024, 29, 5402–5411. [Google Scholar] [CrossRef]
- Zhang, D.-Q.; Cai, Q.-R.; He, X.-M.; Gao, L.-X.; Kim, G.S. The corrosion inhibition of copper in hydrochloric acid solutions by a tripeptide compound. Corros. Sci. 2009, 51, 2349–2354. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, A.; Zhou, Z.; Wang, O.; Wang, X.; Ma, H.; Zhou, C. Study of okra pectin prepared by sweeping frequency ultrasound/freeze-thaw pretreatment on corrosion inhibition of ANSI 304 stainless steel in acidic environment. Int. J. Biol. Macromol. 2023, 253 Pt 1, 126587. [Google Scholar] [CrossRef]
- Akinbulumo, O.A.; Odejobi, O.J.; Odekanle, E.L. Thermodynamics and adsorption study of the corrosion inhibition of mild steel by Euphorbia heterophylla L. extract in 1.5 M HCl. Results Mater. 2020, 5, 100074. [Google Scholar] [CrossRef]
- Obi-Egbedi, N.O.; Obot, I.B. Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4. Corros. Sci. 2011, 53, 263–275. [Google Scholar] [CrossRef]
- Gobara, M.; Saleh, A.; Naeem, I. Synthesis, characterization and application of acrylate-based poly ionic liquid for corrosion protection of C1020 steel in hydrochloric acid solution. Mater. Res. Express 2020, 7, 016517. [Google Scholar] [CrossRef]
- Greluk, M.; Hubicki, Z. Sorption of SPADNS azo dye on polystyrene anion exchangers: Equilibrium and kinetic studies. J. Hazard. Mater. 2009, 172, 289–297. [Google Scholar] [CrossRef]
- Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V.K. Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci. 2010, 343, 463–473. [Google Scholar] [CrossRef]
- El-Hafez, G.M.A.; Badawy, W.A. The use of cysteine, N-acetyl cysteine and methionine as environmentally friendly corrosion inhibitors for Cu–10Al–5Ni alloy in neutral chloride solutions. Electrochim. Acta 2013, 108, 860–866. [Google Scholar] [CrossRef]
- Vashishth, P.; Bairagi, H.; Narang, R.; Shukla, S.K.; Olasunkanmi, L.O.; Ebenso, E.E.; Mangla, B. Experimental investigation of sustainable Corrosion Inhibitor Albumin on low-carbon steel in 1N HCl and 1N H2SO4. Results Surf. Interfaces 2023, 13, 100155. [Google Scholar] [CrossRef]
- Samide, A.; Tutunaru, B.; Varut, R.M.; Oprea, B.; Iordache, S. Interactions of Some Chemotherapeutic Agents as Epirubicin, Gemcitabine and Paclitaxel in Multicomponent Systems Based on Orange Essential Oil. Pharmaceuticals 2021, 14, 619. [Google Scholar] [CrossRef]
- Mobin, M.; Basik, M.; Aslam, J. Boswellia serrata gum as highly efficient and sustainable corrosion inhibitor for low carbon steel in 1 M HCl solution: Experimental and DFT studies. J. Mol. Liq. 2018, 263, 174–186. [Google Scholar] [CrossRef]
- Zhao, R.; Yu, Q.; Niu, L. Corrosion inhibition of amino acids for 316L stainless steel and synergistic effect of I− ions: Experimental and theoretical studies. Mater Corros. 2022, 73, 31–44. [Google Scholar] [CrossRef]
- Fawzi Nassar, M.; Zedan Taban, T.; Fadhel Obaid, R.; Hatem Shadhar, M.; Abdulkareem Almashhadani, H.; Kadhim, M.M.; Liu, P. Study to amino acid-based inhibitors as an effective anti-corrosion material. J. Mol Liq. 2022, 360, 119449. [Google Scholar] [CrossRef]
- Winkler, D.A.; Hughes, A.E.; Özkan, C.; Mol, A.; Würger, T.; Feiler, C.; Zhang, D.; Sviatlana, V.; Lamaka, S.V. Impact of inhibition mechanisms, automation, and computational models on the discovery of organic corrosion inhibitors. Prog. Mater. Sci. 2025, 149, 101392. [Google Scholar] [CrossRef]
- Kovačević, N.; Kokalj, A. Chemistry of the interaction between azole type corrosion inhibitor molecules and metal surfaces. Mater. Chem. Phys. 2012, 137, 331–339. [Google Scholar] [CrossRef]
C-KEDG (mg L−1) | OCP ± SD (mV vs. Ag/AgCl) | irp ± SD (mA cm−2) |
---|---|---|
0 | −180.3 ± 4.3 | 7.81 ± 0.4 |
5 | −169.4 ± 1.5 | 7.25 ± 0.4 |
10 | −168.8 ± 1.1 | 6.98 ± 0.2 |
15 | −168.1 ± 1.0 | 6.67 ± 0.5 |
20 | −159.9 ± 1.0 | 5.81 ± 0.6 |
C-KEDG (mg L−1) | Ecorr (mV vs. Ag/AgCl) ± SD * | icorr (μA cm−2) ± SD | ba (mV dec−1) | |bc| (mV dec−1) | Rp (kΩ cm2) ± SD | IE (%) | |
---|---|---|---|---|---|---|---|
from Equation (8) ± SD | from Equation (9) ± SD | ||||||
0 | −198.5 ± 2.5 | 5.96 ± 1.14 | 57.4 | 96.8 | 2.15 ± 0.15 | - | - |
5 | −194.5 ± 2.8 | 2.99 ± 1.07 | 56.1 | 95.4 | 4.23 ± 0.35 | 49.8 ± 4.2 | 49.2 ± 4.6 |
10 | −185.4 ± 2.0 | 2.46 ± 0.36 | 52.3 | 86.8 | 5.2 ± 0.6 | 58.7 ± 1.8 | 58.6 ± 1.4 |
15 | −174.5 ± 2.0 | 1.86 ± 0.32 | 49.2 | 80.1 | 7.03 ± 1 | 69.1 ± 3.9 | 69.4 ± 2.4 |
20 | −176.2 ± 2.0 | 0.85 ± 0.21 | 48.8 | 79.8 | 15.1 ± 0.4 | 85.7 ± 0.9 | 85.8 ± 0.6 |
Potentiogravimetric results | |||||||
C-KEDG (mg L−1) | CR ± SD (μm Year−1) | IE (%) ± SD | θ ± SD | ||||
0 | 69.57 ± 10.33 | - | - | ||||
5 | 35.08 ± 8.27 | 49.6 ± 4.5 | 0.496 ± 0.045 | ||||
10 | 28.56 ± 5.83 | 58.9 ± 2.2 | 0.589 ± 0.022 | ||||
15 | 19.61 ± 5.13 | 71.8 ± 3.7 | 0.718 ± 0.037 | ||||
20 | 9.97 ± 2.13 | 85.7 ± 1.0 | 0.857 ± 0.01 |
Adsorption Isotherm | Linearized Form | Linearization Functions | Slope | Intercept | R2 |
---|---|---|---|---|---|
Langmuir [37] | C/θ = f (C) | 1 | 1/K | ||
0.8738 | 6.9 | 0.9496 | |||
[θ/(1 − θ)] = f(C) | K | 0 | |||
0.3228 | −1.2955 | 0.8452 | |||
Freundlich [38] | lnθ = f(lnC) | 1/n | lnK | R2 | |
0.3863 | −1.3537 | 0.9628 | |||
Flory–Huggins [39] | ln(θ/C) = f[ln(1 − θ)] | b | lnK | R2 | |
0.5645 | −2.1572 | 0.7043 | |||
Temkin [40] | θ = f(lnC) | 1/f | R2 | ||
0.2505 | 0.0628 | 0.9199 | |||
0.5645 | −2.1572 | 0.7043 | |||
El-Awady’s model [41] | = f(lnC) | y | lnK | R2 | |
1.2164 | −2.1573 | 0.8665 | |||
Frumkin [39] | 2α | lnK | R2 | ||
NA |
Freundlich Adsorption Parameters | 1/n | n | lnK | K (L mg−1) | (kJ mol−1) |
---|---|---|---|---|---|
0.3863 | 2.58 | −1.3537 | 0.2583 | −30.86 |
Amino Acid/ Peptide | EHOMO (eV) | ELUMO (eV) | ΔE (eV) | I (eV) | A (eV) | χ (eV) | ε (eV) | η (eV) | σ (eV)−1 | ΔN | ω (eV) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
KEDG/Cu(1 1 1) | 6.61 | −1.14 | 5.47 | 6.61 | 1.14 | 4.025 | −4.025 | 2.885 | 0.347 | 0.159 | 2.808 | This study |
Glutathione/Cu(1 1 1) | 6.84 | −1.24 | 5.61 | 6.84 | 1.24 | 4.04 | - | 2.80 | 0.36 | 0.14 | 2.91 | [3] |
Glutamic acid/Cu(1 1 1) | 7.32 | −1.05 | 6.27 | 7.32 | 1.05 | 4.18 | - | 3.13 | 0.32 | 0.1 | 2.79 | [3] |
Glycine/Cu(1 1 1) | 7.39 | −0.92 | 6.47 | 7.39 | 0.92 | 4.15 | - | 3.24 | 0.31 | 0.1 | 2.66 | [3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobriţescu, A.; Samide, A.; Cioateră, N.; Mic, O.C.; Ionescu, C.; Dăbuleanu, I.; Tigae, C.; Spînu, C.I.; Oprea, B. The Inhibitory Effect and Adsorption Properties of Testagen Peptide on Copper Surfaces in Saline Environments: An Experimental and Computational Study. Molecules 2025, 30, 3141. https://doi.org/10.3390/molecules30153141
Dobriţescu A, Samide A, Cioateră N, Mic OC, Ionescu C, Dăbuleanu I, Tigae C, Spînu CI, Oprea B. The Inhibitory Effect and Adsorption Properties of Testagen Peptide on Copper Surfaces in Saline Environments: An Experimental and Computational Study. Molecules. 2025; 30(15):3141. https://doi.org/10.3390/molecules30153141
Chicago/Turabian StyleDobriţescu, Aurelian, Adriana Samide, Nicoleta Cioateră, Oana Camelia Mic, Cătălina Ionescu, Irina Dăbuleanu, Cristian Tigae, Cezar Ionuţ Spînu, and Bogdan Oprea. 2025. "The Inhibitory Effect and Adsorption Properties of Testagen Peptide on Copper Surfaces in Saline Environments: An Experimental and Computational Study" Molecules 30, no. 15: 3141. https://doi.org/10.3390/molecules30153141
APA StyleDobriţescu, A., Samide, A., Cioateră, N., Mic, O. C., Ionescu, C., Dăbuleanu, I., Tigae, C., Spînu, C. I., & Oprea, B. (2025). The Inhibitory Effect and Adsorption Properties of Testagen Peptide on Copper Surfaces in Saline Environments: An Experimental and Computational Study. Molecules, 30(15), 3141. https://doi.org/10.3390/molecules30153141