Graphene-Based Grid Patterns Fabricated via Direct Ink Writing for Flexible Transparent Electrodes
Abstract
1. Introduction
2. Experimental Details
2.1. Materials
2.2. Preparation of Graphene Films by DIW
2.3. Characterizations and Testing Methods
3. Results and Discussions
3.1. Characterization of Graphene Film Fabricated by DIW
3.2. Formation Mechanism of Well-Aligned Graphene Flakes in DIW Films
3.3. Fabrication and Performance Evaluation of Grid-Patterned Graphene Electrodes
4. Conclusions
- A high electrical conductivity of 5.22 × 105 S/m with 15 layers of graphene conductive ink deposited on a graphene thin film can be achieved due to the orderly packed and well-connected nature of graphene flakes in the film.
- An optimized microstructure of graphene films is obtained by manipulating the formulation of the ink solution, i.e., adding SDS and ethanol to the solvent to inhibit the coffee ring effect and improve formability during hot-pressing.
- Grid-patterned graphene electrodes with different aperture sizes were fabricated by DIW using the modified graphene conductive ink. A sheet resistance of 21.3 Ω/sq and a transmittance of 68.5% were achieved by G-4 × 4-15.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Cai, J.; Liang, C.; Khan, A.; Li, W. Scalable Fabrication of Metallic Nanofiber Network via Templated Electrodeposition for Flexible Electronics. Adv. Funct. Mater. 2019, 29, 1903123. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Ramakrishna, S.; Aberle, A.G. Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743. [Google Scholar] [CrossRef]
- Kim, C.-C.; Lee, H.-H.; Oh, K.H.; Sun, J.-Y. Highly stretchable, transparent ionic touch panel. Science 2016, 353, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tao, Q.; Chen, Y.; Kong, L.; Shu, Z.; Duan, H.; Liao, L.; Liu, Y. Low voltage and robust InSe memristor using van der Waals electrodes integration. Int. J. Extreme Manuf. 2021, 3, 045103. [Google Scholar] [CrossRef]
- Jeong, J.-A.; Kim, H.-K. Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1801–1809. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Tian, Y.; Wen, J.; Hang, C.; Zheng, Z.; Huang, Y.; Ding, S.; Wang, C. High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes. Nano Mater. Sci. 2020, 2, 164–171. [Google Scholar] [CrossRef]
- Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K.H.; Lee, D.; Lee, S.S.; Ko, S.H. Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network. Adv. Mater. 2012, 24, 3326–3332. [Google Scholar] [CrossRef]
- Yun, Y.J.; Ah, C.S.; Hong, W.G.; Kim, H.J.; Shin, J.-H.; Jun, Y. Highly conductive and environmentally stable gold/graphene yarns for flexible and wearable electronics. Nanoscale 2017, 9, 11439–11445. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef]
- Kuma, A.; Zhou, C. The race to replace tin-doped indium oxide: Which material will win? ACS Nano 2010, 4, 11–14. [Google Scholar] [CrossRef]
- Iwan, A.; Chuchmała, A. Perspectives of applied graphene: Polymer solar cells. Prog. Polym. Sci. 2012, 37, 1805–1828. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Choe, M.; Lee, B.H.; Jo, G.; Park, J.; Park, W.; Lee, S.; Hong, W.-K.; Seong, M.-J.; Kahng, Y.H.; Lee, K.; et al. Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org. Electron. 2010, 11, 1864–1869. [Google Scholar] [CrossRef]
- Kim, K.K.; Reina, A.; Shi, Y.; Park, H.; Li, L.-J.; Lee, Y.H.; Kong, J. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 2010, 21, 285205. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Ma, H.; Shen, Z. CuCl2-doped graphene-based screen printing conductive inks. Sci. China Mater. 2022, 65, 1890–1901. [Google Scholar] [CrossRef]
- Cruz, R.; Alfredo, D.; Tanaka, P.; Mendes, A. Reduced graphene oxide films as transparent counter-electrodes for dye-sensitized solar cells. Sol. Energy 2012, 86, 716–724. [Google Scholar] [CrossRef]
- Sa, K.; Mahanandia, P. Conducting reduced graphene oxide film as transparent electrode. Thin Solid Films 2019, 692, 137594. [Google Scholar] [CrossRef]
- Tang, D.; Wang, Q.; Wang, Z.; Liu, Q.; Zhang, B.; He, D.; Wu, Z.; Mu, S. Highly sensitive wearable sensor based on a flexible multi-layer graphene film antenna. Sci. Bull. 2018, 63, 574–579. [Google Scholar] [CrossRef]
- Chen, T.; Li, H.; Li, J.; Hu, S.; Ye, P.; Yan, Y. Direct writing of silver microfiber with precise control on patterning for robust and flexible ultrahigh-performance transparent conductor. J. Mater. Sci. Technol. 2020, 47, 103–112. [Google Scholar] [CrossRef]
- Yu, P.; Qi, L.; Guo, Z.; Lin, S.; Liu, Y.; Zhao, J. Arbitrary-shape-adaptable strain sensor array with optimized circuit layout via direct-ink-writing: Scalable design and hierarchical printing. Mater. Des. 2022, 214, 110388. [Google Scholar] [CrossRef]
- Ajdary, R.; Reyes, G.; Kuula, J.; Raussi-Lehto, E.; Mikkola, T.S.; Kankuri, E.; Rojas, O.J. Direct Ink Writing of Biocompatible Nanocellulose and Chitosan Hydrogels for Implant Mesh Matrices. ACS Polym. Au 2021, 2, 97–107. [Google Scholar] [CrossRef]
- Restrepo, J.J.; Colorado, H.A. Additive manufacturing of composites made of epoxy resin with magnetite particles fabricated with the direct ink writing technique. J. Compos. Mater. 2019, 54, 647–657. [Google Scholar] [CrossRef]
- Lewis, J.A. Direct Ink Writing of 3D Functional Materials. Adv. Funct. Mater. 2006, 16, 2193–2204. [Google Scholar] [CrossRef]
- Su, Y.; Jia, S.; Du, J.; Yuan, J.; Liu, C.; Ren, W.; Cheng, H. Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction. Nano Res. 2015, 8, 3954–3962. [Google Scholar] [CrossRef]
- Castilho, C.J.; Li, D.; Xie, Y.; Gao, H.; Hurt, R.H. Shear Failure in Supported Two-Dimensional Nanosheet Van der Waals Thin Films. Carbon 2021, 173, 410–418. [Google Scholar] [CrossRef]
- Still, T.; Yunker, P.J.; Yodh, A.G. Surfactant-Induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops. Langmuir 2012, 28, 4984–4988. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, L.; An, B.; Li, F.; Ding, D.; Liu, R.; Song, Y. Fabrication and patterning of graphene oxide ink with direct ink writing. Sci. Technol. Rev. 2018, 36, 88–94. [Google Scholar]
- Yun, X.; Lu, B.; Xiong, Z.; Jia, B.; Tang, B.; Mao, H.; Zhang, T.; Wang, X. Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor. RSC Adv. 2019, 9, 29384–29395. [Google Scholar] [CrossRef]
- Chen, T.L.; Ghosh, D.S.; Mkhitaryan, V.; Pruneri, V. Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh. ACS Appl. Mater. Interfaces 2013, 5, 11756–11761. [Google Scholar] [CrossRef]
- Chang, S.L.; Kueh, T.C.; Ai, K.S.; Yew, M.H. Engineered superhydrophilicity and superhydrophobicity of graphene-nanoplatelet coatings via thermal treatment. Powder Technol. 2020, 364, 88–97. [Google Scholar]
- Tong, W.L.; Hung, Y.M.; Yu, H.; Tan, M.K.; Ng, B.T.; Tan, B.T.; Wu, H.A.; Soh, A.K. Ultrafast Water Permeation in Graphene Nanostructures Anomalously Enhances Two-Phase Heat Transfer. Adv. Mater. Interfaces 2018, 5, 1800286. [Google Scholar] [CrossRef]
- Saharudin, M.S.; Hasbi, S. The Processing of Epoxy/1 wt%-graphene Nanocomposites: Effects of Ethanol on Flexural Properties. IJITEE 2019, 9, 5440–5444. [Google Scholar]
- Akbari, A.; Meragawi, S.E.; Martin, S.T.; Corry, B.; Shamsaei, E.; Easton, C.D.; Bhattacharyya, D.; Majumder, M. Solvent Transport Behavior of Shear Aligned Graphene Oxide Membranes and Implications in Organic Solvent Nanofiltration. ACS Appl. Mater. Interfaces 2018, 10, 2067–2074. [Google Scholar] [CrossRef]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829. [Google Scholar] [CrossRef]
- Robert, D.D.; Olgica, B.; Todd, F.D.; Greg, H.; Sidney, R.N.; Thomas, A.W. Contact line deposits in an evaporating drop. Phys. Rev. E 2000, 62, 756. [Google Scholar]
- Nikolov, A.D.; Wasan, D.T.; Wu, P. Marangoni flow alters wetting: Coffee ring and superspreading. Curr. Opin. Colloid Interface Sci. 2021, 51, 101387. [Google Scholar] [CrossRef]
- Scriven, L.E.; Sternling, C.V. The Marangoni Effects. Nature 1960, 187, 186–188. [Google Scholar] [CrossRef]
- Hu, H.; Larson, R.G. Marangoni Effect Reverses Coffee-Ring Depositions. J. Phys. Chem. B 2006, 110, 7090–7094. [Google Scholar] [CrossRef]
- Lim, E.; Hong, X.; Tan, M.K.; Yu, H.; Wu, H.; Hung, Y.M. Distinctive evaporation characteristics of water and ethanol on graphene nanostructured surfaces. Int. J. Heat Mass Transf. 2022, 183, 122174. [Google Scholar] [CrossRef]
- Pan, K.; Fan, Y.; Leng, T.; Li, J.; Xin, Z.; Zhang, J.; Hao, L.; Gallop, J.; Novoselov, K.S.; Hu, Z. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nat. Commun. 2018, 9, 5197. [Google Scholar] [CrossRef]
- van Hazendonk, L.S.; Vonk, C.F.; van Grondelle, W.; Vonk, N.H.; Friedrich, H. Towards a predictive understanding of direct ink writing of graphene-based inks. Appl. Mater. Today 2023, 36, 102014. [Google Scholar] [CrossRef]
- Li, H.; Zi, D.; Zhu, X.; Zhang, H.; Tai, Y.; Wang, R.; Sun, L.; Zhang, Y.; Ge, W.; Huang, Y.; et al. Electric field driven printing of repeatable random metal meshes for flexible transparent electrodes. Opt. Laser Technol. 2022, 157, 108730. [Google Scholar] [CrossRef]
- Ye, D.-M.; Li, G.-Z.; Wang, G.-G.; Lin, Z.-Q.; Zhou, H.-L.; Han, M.; Liu, Y.-L.; Han, J.-C. One-pot synthesis of copper nanowire decorated by reduced graphene oxide with excellent oxidation resistance and stability. Appl. Surf. Sci. 2019, 158–167. [Google Scholar] [CrossRef]
- Lee, P.; Ham, J.; Lee, J.; Hong, S.; Han, S.; Suh, Y.D.; Lee, S.E.; Yeo, J.; Lee, S.S.; Lee, D.; et al. Highly Stretchable or Transparent Conductor Fabrication by a Hierarchical Multiscale Hybrid Nanocomposite. Adv. Funct. Mater. 2014, 24, 5671–5678. [Google Scholar] [CrossRef]
- Lin, S.; Bai, X.; Wang, H.; Wang, H.; Song, J.; Huang, K.; Wang, C.; Wang, N.; Li, B.; Lei, M.; et al. Roll-to-Roll Production of Transparent Silver-Nanofiber-Network Electrodes for Flexible Electrochromic Smart Windows. Adv. Mater. 2017, 29, 1703238. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Song, R.; Fu, H.; Zhao, X.; Zhang, C.; He, D.; Wu, Z.P. Passive UHF RFID tags made with graphene assembly film-based antennas. Carbon 2021, 178, 803–809. [Google Scholar] [CrossRef]
- Wang, X.; Zhi, L.; Müllen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2007, 8, 323–327. [Google Scholar] [CrossRef]
Number of Layers | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | |
G-0 | 0.98 ± 0.05 | 1.25 ± 0.10 | 1.57 ± 0.10 | 3.39 ± 0.10 | 5.82 ± 0.15 | 6.96 ± 0.15 | 8.19 ± 0.15 | 10.30 ± 0.20 | 11.52 ± 0.20 | 12.83 ± 0.20 |
G-10 | 0.52 ± 0.05 | 1.02 ± 0.05 | 1.36 ± 0.10 | 1.82 ± 0.10 | 2.34 ± 0.10 | 2.86 ± 0.10 | 3.38 ± 0.10 | 4.00 ± 0.10 | 4.52 ± 0.15 | 4.96 ± 0.15 |
G-20 | 0.63 ± 0.05 | 0.92 ± 0.05 | 1.33 ± 0.10 | 1.87 ± 0.10 | 2.67 ± 0.10 | 2.94 ± 0.10 | 3.47 ± 0.10 | 3.83 ± 0.10 | 4.23 ± 0.15 | 4.87 ± 0.15 |
G-30 | 0.62 ± 0.05 | 0.92 ± 0.05 | 1.33 ± 0.10 | 1.82 ± 0.10 | 2.60 ± 0.10 | 2.86 ± 0.10 | 3.38 ± 0.10 | 3.60 ± 0.10 | 4.02 ± 0.15 | 4.38 ± 0.15 |
Number of Layers | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | |
G-0 | 129 ± 15 | 48.4 ± 10 | 15.0 ± 5 | 8.9 ± 1 | 2.1 ± 0.5 | 1.4 ± 0.5 | 0.93 ± 0.2 | 0.43 ± 0.1 | 0.35 ± 0.1 | 0.33 ± 0.1 |
G-10 | 153 ± 15 | 35.2 ± 10 | 20.0 ± 5 | 10.1 ± 1 | 7.1 ± 1 | 3.5 ± 0.5 | 2.01 ± 0.5 | 1.24 ± 0.1 | 1.12 ± 0.1 | 1.06 ± 0.1 |
G-20 | 85.1 ± 10 | 36.4 ± 10 | 10.0 ± 5 | 4.0 ± 1 | 2.0 ± 0.5 | 1.3 ± 0.5 | 1.03 ± 0.2 | 0.56 ± 0.1 | 0.46 ± 0.1 | 0.41 ± 0.1 |
G-30 | 108 ± 15 | 41.9 ± 10 | 17.0 ± 5 | 8.0 ± 1 | 4.1 ± 1 | 2.6 ± 0.5 | 1.85 ± 0.2 | 1.07 ± 0.1 | 0.91 ± 0.1 | 0.86 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Zi, H.; Wang, S.; Yin, S.; Shen, X. Graphene-Based Grid Patterns Fabricated via Direct Ink Writing for Flexible Transparent Electrodes. Appl. Sci. 2025, 15, 8553. https://doi.org/10.3390/app15158553
Zheng Y, Zi H, Wang S, Yin S, Shen X. Graphene-Based Grid Patterns Fabricated via Direct Ink Writing for Flexible Transparent Electrodes. Applied Sciences. 2025; 15(15):8553. https://doi.org/10.3390/app15158553
Chicago/Turabian StyleZheng, Yongcheng, Hai Zi, Shuqi Wang, Shengming Yin, and Xu Shen. 2025. "Graphene-Based Grid Patterns Fabricated via Direct Ink Writing for Flexible Transparent Electrodes" Applied Sciences 15, no. 15: 8553. https://doi.org/10.3390/app15158553
APA StyleZheng, Y., Zi, H., Wang, S., Yin, S., & Shen, X. (2025). Graphene-Based Grid Patterns Fabricated via Direct Ink Writing for Flexible Transparent Electrodes. Applied Sciences, 15(15), 8553. https://doi.org/10.3390/app15158553