Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,105)

Search Parameters:
Keywords = small farms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 646 KiB  
Review
The Role of Sensor Technologies in Estrus Detection in Beef Cattle: A Review of Current Applications
by Inga Merkelytė, Artūras Šiukščius and Rasa Nainienė
Animals 2025, 15(15), 2313; https://doi.org/10.3390/ani15152313 (registering DOI) - 7 Aug 2025
Abstract
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each [...] Read more.
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each cow produces one calf per year, maintaining a calving interval of 365 days. However, this goal is difficult to achieve, as the gestation period in beef cows lasts approximately 280 days, leaving only 80–85 days for successful conception. Traditional methods, such as visual estrus detection, are becoming increasingly unreliable due to expanding herd sizes and the subjectivity of visual observation. Additionally, silent estrus—where ovulation occurs without noticeable behavioral changes—further complicates the accurate estrous-based identification of the optimal insemination period. To enhance reproductive efficiency, advanced technologies are increasingly being integrated into cattle management. Sensor-based monitoring systems, including accelerometers, pedometers, and ruminoreticular boluses, enable the precise tracking of activity changes associated with the estrous cycle. Furthermore, infrared thermography offers a non-invasive method for detecting body temperature fluctuations, allowing for more accurate estrus identification and optimized timing of insemination. The use of these innovative technologies has the potential to significantly improve reproductive efficiency in beef cattle herds and contribute to overall farm productivity and sustainability. The objective of this review is to examine advancements in smart technologies applied to beef cattle reproductive management, presenting commercially available technologies and recent scientific studies on innovative systems. The focus is on sensor-based monitoring systems and infrared thermography for optimizing reproduction. Additionally, the challenges associated with these technologies and their potential to enhance reproductive efficiency and sustainability in the beef cattle industry are discussed. Despite the benefits of advanced technologies, their implementation in cattle farms is hindered by financial and technical challenges. High initial investment costs and the complexity of data analysis may limit their adoption, particularly in small and medium-sized farms. However, the continuous development of these technologies and their adaptation to farmers’ needs may significantly contribute to more efficient and sustainable reproductive management in beef cattle production. Full article
(This article belongs to the Special Issue Reproductive Management Strategies for Dairy and Beef Cows)
Show Figures

Figure 1

21 pages, 1788 KiB  
Article
Investigation, Prospects, and Economic Scenarios for the Use of Biochar in Small-Scale Agriculture in Tropical
by Vinicius John, Ana Rita de Oliveira Braga, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Newton Paulo de Souza Falcão, João Guerra, Dimas José Lasmar and Cláudia S. C. Marques-dos-Santos
Agriculture 2025, 15(15), 1700; https://doi.org/10.3390/agriculture15151700 - 6 Aug 2025
Abstract
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from [...] Read more.
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from acai (Euterpe oleracea Mart.) agro-industrial residues as feedstock. The biochar produced was characterised in terms of its liming capacity (calcium carbonate equivalence, CaCO3eq), nutrient content via organic fertilisation methods, and ash analysis by ICP-OES. Field trials with cowpea assessed economic outcomes, as well scenarios of fractional biochar application and cost comparison between biochar production in the prototype kiln and a traditional earth-brick kiln. The prototype kiln showed production costs of USD 0.87–2.06 kg−1, whereas traditional kiln significantly reduced costs (USD 0.03–0.08 kg−1). Biochar application alone increased cowpea revenue by 34%, while combining biochar and lime raised cowpea revenues by up to 84.6%. Owing to high input costs and the low value of the crop, the control treatment generated greater net revenue compared to treatments using lime alone. Moreover, biochar produced in traditional kilns provided a 94% increase in net revenue compared to liming. The estimated externalities indicated that carbon credits represented the most significant potential source of income (USD 2217 ha−1). Finally, fractional biochar application in ten years can retain over 97% of soil carbon content, demonstrating potential for sustainable agriculture and carbon sequestration and a potential further motivation for farmers if integrated into carbon markets. Public policies and technological adaptations are essential for facilitating biochar adoption by small-scale tropical farmers. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

24 pages, 8197 KiB  
Article
Reuse of Decommissioned Tubular Steel Wind Turbine Towers: General Considerations and Two Case Studies
by Sokratis Sideris, Charis J. Gantes, Stefanos Gkatzogiannis and Bo Li
Designs 2025, 9(4), 92; https://doi.org/10.3390/designs9040092 (registering DOI) - 6 Aug 2025
Abstract
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach [...] Read more.
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach is deemed far more efficient than ordinary steel recycling, due to the fact that it contributes towards reducing both the cost of the new project and the associated carbon emissions. Along these lines, the feasibility of utilizing steel wind turbine towers (WTTs) as part of a new structure is investigated herein, considering that wind turbines are decommissioned after a nominal life of approximately 25 years due to fatigue limitations. General principles of structural steel reuse are first presented in a systematic manner, followed by two case studies. Realistic data about the geometry and cross-sections of previous generation models of WTTs were obtained from the Greek Center for Renewable Energy Sources and Savings (CRES), including drawings and photographic material from their demonstrative wind farm in the area of Keratea. A specific wind turbine was selected that is about to exceed its life expectancy and will soon be decommissioned. Two alternative applications for the reuse of the tower were proposed and analyzed, with emphasis on the structural aspects. One deals with the use of parts of the tower as a small-span pedestrian bridge, while the second addresses the transformation of a tower section into a water storage tank. Several decision factors have contributed to the selection of these two reuse scenarios, including, amongst others, the geometric compatibility of the decommissioned wind turbine tower with the proposed applications, engineering intuition about the tower having adequate strength for its new role, the potential to minimize fatigue loads in the reused state, the minimization of cutting and joining processes as much as possible to restrain further CO2 emissions, reduction in waste material, the societal contribution of the potential reuse applications, etc. The two examples are briefly presented, aiming to demonstrate the concept and feasibility at the preliminary design level, highlighting the potential of decommissioned WTTs to find proper use for their future life. Full article
Show Figures

Figure 1

17 pages, 12216 KiB  
Article
Green/Blue Initiatives as a Proposed Intermediate Step to Achieve Nature-Based Solutions for Wildfire Risk Management
by Stella Schroeder and Carolina Ojeda Leal
Fire 2025, 8(8), 307; https://doi.org/10.3390/fire8080307 - 5 Aug 2025
Viewed by 154
Abstract
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To [...] Read more.
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To address these challenges, this exploratory study proposes a new concept: green/blue initiatives. These initiatives represent intermediate steps, encompassing small-scale, community-driven activities that can evolve into recognized NbSs over time. To explore this concept, experiences related to wildfire prevention in the Biobío region of Chile were analyzed through primary and secondary source reviews. The analysis identified three initiatives qualifying as green/blue initiatives: (1) goat grazing in Santa Juana to reduce fuel loads, (2) a restoration prevention farm model in Florida called Faro de Restauración Mahuidanche and (3) the Conservation Landscape Strategy in Nonguén. They were examined in detail using data collected from site visits and interviews. In contrast to Chile’s prevailing wildfire policies, which focus on costly, large-scale fire suppression efforts, these initiatives emphasize the importance of reframing wildfire as a manageable ecological process. Lastly, the challenges and enabling factors for adopting green/blue initiatives are discussed, highlighting their potential to pave the way for future NbS implementation in central Chile. Full article
(This article belongs to the Special Issue Nature-Based Solutions to Extreme Wildfires)
Show Figures

Figure 1

17 pages, 4689 KiB  
Article
Oscillation Mechanism of SRF-PLL in Wind Power Systems Under Voltage Sags and Improper Control Parameters
by Guoqing Wang, Zhiyong Dai, Qitao Sun, Shuaishuai Lv, Nana Lu and Jinke Ma
Electronics 2025, 14(15), 3100; https://doi.org/10.3390/electronics14153100 - 3 Aug 2025
Viewed by 169
Abstract
The synchronous reference frame phase-locked loop (SRF-PLL) is widely employed for grid synchronization in wind farms. However, it may exhibit oscillations under voltage sags or improper parameter settings. These oscillations may compromise the secure integration of large-scale wind power. Therefore, mitigating the oscillations [...] Read more.
The synchronous reference frame phase-locked loop (SRF-PLL) is widely employed for grid synchronization in wind farms. However, it may exhibit oscillations under voltage sags or improper parameter settings. These oscillations may compromise the secure integration of large-scale wind power. Therefore, mitigating the oscillations of the SRF-PLL is crucial for ensuring stable and reliable operation. To this end, this paper investigates the underlying oscillation mechanism of the SRF-PLL from local and global perspectives. By taking into account the grid voltage and control parameters, it is revealed that oscillations of the SRF-PLL can be triggered by grid voltage sags and/or the improper control parameters. More specifically, from the local perspective, the SRF-PLL exhibits distinct qualitative behaviors around its stable equilibrium points under different grid voltage amplitudes. As a result, when grid voltage sags occur, the SRF-PLL may exhibit multiple oscillation modes and experience a prolonged transient response. Furthermore, from the global viewpoint, the large-signal analysis reveals that the SRF-PLL has infinitely many asymmetrical convergence regions. However, the sizes of these asymmetrical convergence regions shrink significantly under low grid voltage amplitude and/or small control parameters. In this case, even if the parameters in the small-signal model of the SRF-PLL are well-designed, a small disturbance can shift the operating point into other regions, resulting in undesirable oscillations and a sluggish dynamic response. The validity of the theoretical analysis is further supported by experimental verification. Full article
Show Figures

Figure 1

19 pages, 5733 KiB  
Article
The Production Optimization of a Thermostable Phytase from Bacillus subtilis SP11 Utilizing Mustard Meal as a Substrate
by Md. Al Muid Khan, Sabina Akhter, Tanjil Arif, Md. Mahmuduzzaman Mian, Md. Arafat Al Mamun, Muhammad Manjurul Karim and Shakila Nargis Khan
Fermentation 2025, 11(8), 452; https://doi.org/10.3390/fermentation11080452 - 3 Aug 2025
Viewed by 228
Abstract
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a [...] Read more.
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a thermostable phytase from an indigenous strain of Bacillus subtilis SP11 that was isolated from a broiler farm in Dhaka. SP11 was identified using 16s rDNA and the fermentation of phytase was optimized using a Plackett–Burman design and response surface methodology, revealing that three substrates, including the raw material mustard meal (2.21% w/v), caused a maximum phytase production of 436 U/L at 37 °C and 120 rpm for 72 h, resulting in a 3.7-fold increase compared to unoptimized media. The crude enzyme showed thermostability up to 80 °C (may withstand the feed pelleting process) with an optimum pH of 6 (near pH of poultry small-intestine), while retaining 96% activity at 41 °C (the body temperature of the chicken). In vitro dephytinization demonstrated its applicability, releasing 978 µg of inorganic phosphate per g of wheat bran per hour. This phytase has the potential to reduce the burden of phytase importation in Bangladesh by making local production and application possible, contributing to sustainable poultry nutrition. Full article
Show Figures

Figure 1

12 pages, 284 KiB  
Communication
Raw Sheep Milk as a Reservoir of Multidrug-Resistant Staphylococcus aureus: Evidence from Traditional Farming Systems in Romania
by Răzvan-Dragoș Roșu, Adriana Morar, Alexandra Ban-Cucerzan, Mirela Imre, Sebastian Alexandru Popa, Răzvan-Tudor Pătrînjan, Alexandra Pocinoc and Kálmán Imre
Antibiotics 2025, 14(8), 787; https://doi.org/10.3390/antibiotics14080787 - 2 Aug 2025
Viewed by 177
Abstract
Background/Objectives: Staphylococcus aureus is a major pathogen of concern in raw milk due to its potential to cause foodborne illness and its increasing antimicrobial resistance (AMR). In Romania, data on the occurrence and resistance patterns of S. aureus in raw sheep milk [...] Read more.
Background/Objectives: Staphylococcus aureus is a major pathogen of concern in raw milk due to its potential to cause foodborne illness and its increasing antimicrobial resistance (AMR). In Romania, data on the occurrence and resistance patterns of S. aureus in raw sheep milk from traditional farming systems remain limited. This study investigated the presence and antimicrobial resistance of S. aureus in 106 raw sheep milk samples collected from traditional farms in the Banat region of western Romania. Methods: Coagulase-positive staphylococci (CPS) were enumerated using ISO 6888-1:2021 protocols. Isolates were identified at the species level using the Vitek 2 system and molecularly confirmed via PCR targeting the 16S rDNA and nuc genes. Methicillin resistance was assessed by detecting the mecA gene. Antimicrobial susceptibility was determined using the Vitek 2 AST-GP79 card. Results: CPS were detected in 69 samples, with S. aureus confirmed in 34.9%. The mecA gene was identified in 13.5% of S. aureus isolates, indicating the presence of methicillin-resistant S. aureus (MRSA). Resistance to at least two antimicrobials was observed in 97.3% of isolates, and 33 strains (89.2%) met the criteria for multidrug resistance (MDR). The most frequent MDR phenotype involved resistance to lincomycin, macrolides, β-lactams, tetracyclines, and aminoglycosides. Conclusions: The high prevalence of S. aureus, including MRSA and MDR strains, in raw sheep milk from traditional farms represents a potential public health risk, particularly in regions where unpasteurized dairy consumption persists. These findings underscore the need for enhanced hygiene practices, prudent antimicrobial use, and AMR monitoring in small-scale dairy systems. Full article
19 pages, 1667 KiB  
Article
Carbon Footprint and Economic Trade-Offs in Traditional Greek Silvopastoral Systems: An Integrated Life Cycle Assessment Approach
by Emmanouil Tziolas, Andreas Papadopoulos, Vasiliki Lappa, Georgios Bakogiorgos, Stavroula Galanopoulou, María Rosa Mosquera-Losada and Anastasia Pantera
Forests 2025, 16(8), 1262; https://doi.org/10.3390/f16081262 - 2 Aug 2025
Viewed by 242
Abstract
Silvopastoral systems, though ecologically beneficial, remain underrepresented in the European Union’s Common Agricultural Policy and are seldom studied in Mediterranean contexts. The current study assesses both the environmental and economic aspects of five typical silvopastoral systems in central Greece, encompassing cattle, sheep, and [...] Read more.
Silvopastoral systems, though ecologically beneficial, remain underrepresented in the European Union’s Common Agricultural Policy and are seldom studied in Mediterranean contexts. The current study assesses both the environmental and economic aspects of five typical silvopastoral systems in central Greece, encompassing cattle, sheep, and goat farming. A Life Cycle Assessment approach was implemented to quantify greenhouse gas emissions using economic allocation, distributing impacts between milk and meat outputs. Enteric fermentation was the major emission source, accounting for up to 65.14% of total emissions in beef-based systems, while feeding and soil emissions were more prominent in mixed and small ruminant systems. Total farm-level emissions ranged from 60,609 to 273,579 kg CO2eq per year. Economically, only beef-integrated systems achieved an average annual profitability above EUR 20,000 per farm, based on financial data averaged over the last five years (2020–2024) from selected case studies in central Greece, while the remaining systems fell below the national poverty threshold for an average household, underscoring concerns about their economic viability. The findings underline the dual challenges of economic viability and policy neglect, stressing the need for targeted support if these multifunctional systems are to add value to EU climate goals and rural sustainability. Full article
(This article belongs to the Special Issue Forestry in the Contemporary Bioeconomy)
Show Figures

Figure 1

21 pages, 2608 KiB  
Article
Quality and Quantity Losses of Tomatoes Grown by Small-Scale Farmers Under Different Production Systems
by Tintswalo Molelekoa, Edwin M. Karoney, Nazareth Siyoum, Jarishma K. Gokul and Lise Korsten
Horticulturae 2025, 11(8), 884; https://doi.org/10.3390/horticulturae11080884 (registering DOI) - 1 Aug 2025
Viewed by 209
Abstract
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess [...] Read more.
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess postharvest tomato losses under different production systems within the small-scale supply chain using the indirect assessment (questionnaires and interviews) and direct quantification of losses. Farmers reported tomato losses due to insects (82.35%), cracks, bruises, and deformities (70.58%), and diseases (64.71%). Chemical sprays were the main form of pest and disease control reported by all farmers. The direct quantification sampling data revealed that 73.07% of the tomatoes were substandard at the farm level, with 47.92% and 25.15% categorized as medium-quality and poor-quality, respectively. The primary contributors to the losses were decay (39.92%), mechanical damage (31.32%), and blotchiness (27.99%). Postharvest losses were significantly higher under open-field production systems compared to closed tunnels. The fungi associated with decay were mainly Geotrichum, Fusarium spp., and Alternaria spp. These findings demonstrate the main drivers behind postharvest losses, which in turn highlight the critical need for intervention through training and support, including the use of postharvest loss reduction technologies to enhance food security. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

21 pages, 28885 KiB  
Article
Assessment of Yellow Rust (Puccinia striiformis) Infestations in Wheat Using UAV-Based RGB Imaging and Deep Learning
by Atanas Z. Atanasov, Boris I. Evstatiev, Asparuh I. Atanasov and Plamena D. Nikolova
Appl. Sci. 2025, 15(15), 8512; https://doi.org/10.3390/app15158512 (registering DOI) - 31 Jul 2025
Viewed by 218
Abstract
Yellow rust (Puccinia striiformis) is a common wheat disease that significantly reduces yields, particularly in seasons with cooler temperatures and frequent rainfall. Early detection is essential for effective control, especially in key wheat-producing regions such as Southern Dobrudja, Bulgaria. This study [...] Read more.
Yellow rust (Puccinia striiformis) is a common wheat disease that significantly reduces yields, particularly in seasons with cooler temperatures and frequent rainfall. Early detection is essential for effective control, especially in key wheat-producing regions such as Southern Dobrudja, Bulgaria. This study presents a UAV-based approach for detecting yellow rust using only RGB imagery and deep learning for pixel-based classification. The methodology involves data acquisition, preprocessing through histogram equalization, model training, and evaluation. Among the tested models, a UnetClassifier with ResNet34 backbone achieved the highest accuracy and reliability, enabling clear differentiation between healthy and infected wheat zones. Field experiments confirmed the approach’s potential for identifying infection patterns suitable for precision fungicide application. The model also showed signs of detecting early-stage infections, although further validation is needed due to limited ground-truth data. The proposed solution offers a low-cost, accessible tool for small and medium-sized farms, reducing pesticide use while improving disease monitoring. Future work will aim to refine detection accuracy in low-infection areas and extend the model’s application to other cereal diseases. Full article
(This article belongs to the Special Issue Advanced Computational Techniques for Plant Disease Detection)
Show Figures

Figure 1

19 pages, 901 KiB  
Article
Scale and Determinants of Non-Agricultural Business Activity Among Farmers in Poland
by Ryszard Kata, Małgorzata Wosiek and Agnieszka Brelik
Sustainability 2025, 17(15), 6956; https://doi.org/10.3390/su17156956 - 31 Jul 2025
Viewed by 109
Abstract
Non-agricultural business activity of farmers is crucial not only for stabilizing farm income but also for the multifunctional development of rural areas. Capturing changes in the level and nature of this activity supports the development of sustainable agricultural and rural policy. In this [...] Read more.
Non-agricultural business activity of farmers is crucial not only for stabilizing farm income but also for the multifunctional development of rural areas. Capturing changes in the level and nature of this activity supports the development of sustainable agricultural and rural policy. In this context, this study aimed to identify the scale and types of non-agricultural business activity and to recognize the main determinants of such business activities undertaken by farmers in Poland between 2002 and 2022. Sectoral-level data from the Agricultural Censuses and cyclical studies of the structure of farms and household budgets were used to approximate underlying motivations for running non-agricultural business (opportunity vs. necessity entrepreneurship). The findings indicate that, in Poland, the impact of regressive factors remains strong, pushing farmers to take on additional business activity due to the large share of small and very small farms. However, during the 21st century, a gradual spread of opportunity entrepreneurship among Polish farmers has been observed. This study highlights the rationale for supporting non-agriculture business activity motivated by progressive factors to increase the income resilience of farmer households and the sustainable development of agriculture. The article indicates the need for further research on the motives for undertaking non-agricultural economic activities by farmers and the impact of this activity on the allocation of farm resources. Full article
Show Figures

Figure 1

15 pages, 847 KiB  
Article
Structural Analysis of Farming Systems in Western Macedonia: A Cluster-Based Approach
by Theodoros Siogkas, Katerina Melfou, Georgia Koutouzidou, Efstratios Loizou and Athanasios Ragkos
Agriculture 2025, 15(15), 1650; https://doi.org/10.3390/agriculture15151650 - 31 Jul 2025
Viewed by 201
Abstract
This paper examines the farming systems and operational structures in the Region of Western Macedonia (RWM), Greece and constructs a typology of farms based on structural, operational, and socio-economic characteristics. Agriculture remains a vital pillar of the regional economy, particularly in the context [...] Read more.
This paper examines the farming systems and operational structures in the Region of Western Macedonia (RWM), Greece and constructs a typology of farms based on structural, operational, and socio-economic characteristics. Agriculture remains a vital pillar of the regional economy, particularly in the context of RWM’s ongoing transition to a post-lignite development model. Using farm-level data from the 2018 Farm Accountancy Data Network (FADN), Principal Component Analysis (PCA) identified four latent dimensions of farm heterogeneity—income and productivity, asset base, land size, and labour structure. Hierarchical and K-means cluster analysis revealed three distinct farm types: (1) medium-sized, high-efficiency farms with moderate reliance on subsidies (30% of the sample); (2) small-scale, family farms with modest productivity and limited capitalisation (48%); and (3) large, asset-rich farms exhibiting structural inefficiencies and lower output per hectare (22%). These findings highlight structural vulnerabilities, particularly the predominance of undercapitalised smallholdings, and provide a data-driven foundation for Thdesigning differentiated policies that support farm resilience, generational renewal, and sustainable rural development. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

19 pages, 5713 KiB  
Article
Diversity and Seasonal Abundance of Culicoides (Diptera: Ceratopogonidae) in Tengchong County of Yunnan, China
by Yi-Nan Wang, Ying-Liang Duan, Zhan-Hong Li, Jia-Ming Deng, Xing-Nan Sun, Xue-Ying Shen, An-Xi Yang and Shi-Long Li
Insects 2025, 16(8), 780; https://doi.org/10.3390/insects16080780 - 30 Jul 2025
Viewed by 203
Abstract
Culicoides (Diptera, Ceratopogonidae) are small biting midges and are known as vectors for many arboviruses, including bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV). Tengchong County of Yunnan Province, China, which borders Myanmar, has many private farms with goats, sheep, and cattle. [...] Read more.
Culicoides (Diptera, Ceratopogonidae) are small biting midges and are known as vectors for many arboviruses, including bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV). Tengchong County of Yunnan Province, China, which borders Myanmar, has many private farms with goats, sheep, and cattle. To estimate the risk of Culicoides-borne viral diseases such as bluetongue (BT) and epizootic hemorrhagic disease (EHD) in this area, an investigation of the diversity and abundance of Culicoides in Tengchong between May 2024 and April 2025 was performed. As a result, 70 collections totaling approximately 93,000 Culicoides were carried out at five farms (cattle + Asian buffaloes, goats, and sheep, respectively). Nineteen species were identified, and eight potential cryptic species were found. A total of 13 cox1 sequences and 4 28S sequences for 13 specimens were generated. The most dominant species were Obsoletus (44.1%), C. homotomus (23.3%), and C. arakawae (12.9%) at the bovine farm; C. tainanus (68.0%), C. orientalis (12.6%), and C. newsteadi (Asia) (6.3%) at the goat farm; and C. tainanus (73.6%), C. fenggangensis (7.3%), and C. sp. nr palpifer (6.3%) at the sheep farm. In this investigation, C. tainanus, Obsoletus, and C. orientalis were the most dominant potential BTV vectors, and the period between July and October may be the main period for epidemics of Culicoides-borne viruses in Tengchong. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

29 pages, 697 KiB  
Article
Economic Performance of the Producers of Biomass for Energy Generation in the Context of National and European Policies—A Case Study of Poland
by Aneta Bełdycka-Bórawska, Rafał Wyszomierski, Piotr Bórawski and Paulina Trębska
Energies 2025, 18(15), 4042; https://doi.org/10.3390/en18154042 - 29 Jul 2025
Viewed by 374
Abstract
Solid biomass (agro-residue) is the most important source of renewable energy. The accelerating impacts of climate change and global population growth contribute to air pollution through the use of fossil fuels. These processes increase the demand for energy. The European Union has adopted [...] Read more.
Solid biomass (agro-residue) is the most important source of renewable energy. The accelerating impacts of climate change and global population growth contribute to air pollution through the use of fossil fuels. These processes increase the demand for energy. The European Union has adopted a climate action plan to address the above challenges. The main aim of this study was to assess the economic performance of the producers of biomass for energy generation in Poland. The detailed objectives were to determine land resources in the studied agricultural farms and to determine the value of fixed and current assets in the analyzed farms. We used questionnaires as the main method to collect data. Purposive sampling was used to choose the farms. We conducted various tests to analyze the revenues from biomass sales and their normality, such as the Dornik–Hansen test, the Shapiro–Wilk test, the Liliefors test, and the Jargue–Berra statistical test. Moreover, we conducted regression analysis to find factors that are the basis for the economic performance (incomes) of farms that sell biomass. Results: This study demonstrated that biomass sales had a minor impact on the performance of agricultural farms, but they enabled farmers to maintain their position on the market. The economic analysis was carried out on a representative group of Polish agricultural farms, taking into account fixed and current assets, land use, production structure, and employment. The findings indicate that a higher income from biomass sales was generally associated with better economic results per farm and per employee, although not always per hectare of land. This suggests that capital intensity and strategic resource management play a crucial role in the profitability of bioenergy-oriented agricultural production. Conclusions: We concluded that biomass sales had a negligible influence on farm income. But a small income from biomass sales could affect a farm’s economic viability. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

13 pages, 239 KiB  
Article
In Vitro Detection of Acaricide Resistance in Hyalomma Species Ticks with Emphasis on Farm Management Practices Associated with Acaricide Resistance in Abu Dhabi, United Arab Emirates
by Shameem Habeeba, Yasser Mahmmod, Hany Mohammed, Hashel Amer, Mohamed Moustafa, Assem Sobhi, Mohamed El-Sokary, Mahmoud Hussein, Ameer Tolba, Zulaikha Al Hammadi, Mohd Al Breiki and Asma Mohamed Shah
Vet. Sci. 2025, 12(8), 712; https://doi.org/10.3390/vetsci12080712 - 29 Jul 2025
Viewed by 311
Abstract
Acaricide usage has led to the growing problem of resistance in ticks. A heavy tick burden and the presence of ticks on animals throughout the year, despite the monthly application of acaricides, in farms in the United Arab Emirates formed the motivation for [...] Read more.
Acaricide usage has led to the growing problem of resistance in ticks. A heavy tick burden and the presence of ticks on animals throughout the year, despite the monthly application of acaricides, in farms in the United Arab Emirates formed the motivation for this study. The objectives of this research were as follows: (a) to assess the acaricide resistance status of the most prevalent tick Hyalomma spp. to widely used acaricides Cypermethrin and Deltamethrin; (b) to identify the association of farm management practices and farm-level risk factors with the failure of tick treatment (acaracide resistance). A total of 1600 ticks were collected from 20 farms located in three different regions of Abu Dhabi Emirate including Al Ain (n = 10), Al Dhafra (n = 5), and Abu Dhabi (n = 5). The ticks were subjected to an in vitro bioassay adult immersion test (AIT) modified with a discriminating dose (AIT-DD) against commercial preparations of Cypermethrin and Deltamethrin. A questionnaire was designed to collect metadata and information on farm management and the farm-level risk factors associated with routine farm practices relating to the treatment and control of tick and blood parasite infections in camels and small ruminant populations. Hyalomma anatolicum and Hyalomma dromedarii were identified among the collected ticks, with H. anatolicum being the most prevalent tick species (70%) in the present study. The test results of the in vitro bioassay revealed varied emerging resistance to both of the acaricides in the majority of the three regions; fully susceptible tick isolates with zero resistance to Deltamethrin were recorded in one farm at Al Ain and two farms in the Abu Dhabi region. A questionnaire analysis showed that the failure of tick treatment in farms varied with the presence or absence of vegetation areas, types of animal breeds, and management practices. This study reports the emergence of resistance in ticks to Cypermethrin and Deltamethrin across the Abu Dhabi Emirate, indicating a strict warning for the cautious use of acaricides. There is also a need to improve awareness about sound tick management and control practices among farm owners through a multidisciplinary approach adopting integrated pest management strategies that engage farmers, veterinarians, and policy makers. Full article
(This article belongs to the Topic Ticks and Tick-Borne Pathogens)
Back to TopTop