Carbon Footprint and Economic Trade-Offs in Traditional Greek Silvopastoral Systems: An Integrated Life Cycle Assessment Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Systems
- Mixed Beef–Sheep Meat and Dairy System (GBS)
- Extensive Beef Meat and Grazing Sheep Dairy System (EBGS)
- Grazing Meat and Milk Sheep System (GS)
- Extensive Dairy Goat System (EGo)
- Extensive Meat and Dairy Goat System (EGo+)
2.2. Goal and Scope Definition
2.3. Inventory Analysis
2.4. Impact Assessment Calculations
2.5. Allocation Method
3. Results
3.1. Economic Assessment
3.2. Environmental Assessment
3.3. Economic and Environmental Trade-Offs
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pantera, A.; Mosquera-Losada, M.R.; Herzog, F.; den Herder, M. Agroforestry and the Environment. Agrofor. Syst. 2021, 95, 767–774. [Google Scholar] [CrossRef]
- Moreno, G.; Aviron, S.; Berg, S.; Crous-Duran, J.; Franca, A.; de Jalón, S.G.; Hartel, T.; Mirck, J.; Pantera, A.; Palma, J.H.N.; et al. Agroforestry Systems of High Nature and Cultural Value in Europe: Provision of Commercial Goods and Other Ecosystem Services. Agrofor. Syst. 2018, 92, 877–891. [Google Scholar] [CrossRef]
- Tsiakiris, R.; Mantzanas, K.; Kazoglou, Y.; Kakouros, P.; Papanastasis, V. (Eds.) Reviving Agroforestry Landscapes in the Era of Climate Change: For People, Nature and Local Economy; European Network of Political Foundations—EnoP, Green Institute Greece; European Network of Political Foundations: Bruxelles, Belgium, 2023. [Google Scholar]
- EURAF EURAF Policy Briefing 8. Agroforestry for Carbon Farming. EURAF Policy Briefing No 8 V3. Available online: https://euraf.isa.utl.pt/news/policybriefing8 (accessed on 2 May 2025).
- Martineau, H.; Wiltshire, J.; Hart, K.; Keenleyside, C.; Baldock, D.; Bell, H.; Watterson, J. Effective Performance of Tools for Climate Action Policy—Meta-Review of Common Agricultural Policy (CAP); European Commission DG Climate Action, Ricardo-AEA Ltd., Gemini Building: Harwell, UK, 2016. [Google Scholar]
- Batcheler, M.; Smith, M.M.; Swanson, M.E.; Ostrom, M.; Carpenter-Boggs, L. Assessing Silvopasture Management as a Strategy to Reduce Fuel Loads and Mitigate Wildfire Risk. Sci. Rep. 2024, 14, 5954. [Google Scholar] [CrossRef]
- Lecegui, A.; Olaizola, A.M.; Varela, E. Disentangling the Role of Management Practices on Ecosystem Services Delivery in Mediterranean Silvopastoral Systems: Synergies and Trade-Offs through Expert-Based Assessment. For. Ecol. Manag. 2022, 517, 120273. [Google Scholar] [CrossRef]
- Ripamonti, A.; Finocchi, M.; Pulina, A.; Franca, A.; Seddaiu, G.; Turini, L.; Mele, M.; Mantino, A. Effects of Tree Presence on Forage Yield and Nutritive Value in Agroforestry Livestock Systems: A Global Systematic Review. Agrofor. Syst. 2025, 99, 110. [Google Scholar] [CrossRef]
- den Herder, M.; Moreno, G.; Mosquera-Losada, R.M.; Palma, J.H.N.; Sidiropoulou, A.; Santiago Freijanes, J.J.; Crous-Duran, J.; Paulo, J.A.; Tomé, M.; Pantera, A.; et al. Current Extent and Stratification of Agroforestry in the European Union. Agric. Ecosyst. Environ. 2017, 241, 121–132. [Google Scholar] [CrossRef]
- Lawson, G.; Huska, J.; Rolo, V.; Gosme, M. Agroforestry & Adaptation to Climate Change. EURAF Policy Briefing #27. 2023. Available online: https://euraf.net/2023/07/31/policybriefing27/ (accessed on 3 July 2025).
- Mosquera-Losada, M.R.; Santiago-Freijanes, J.J.; Pisanelli, A.; Rois-Díaz, M.; Smith, J.; den Herder, M.; Moreno, G.; Ferreiro-Domínguez, N.; Malignier, N.; Lamersdorf, N.; et al. Agroforestry in the European Common Agricultural Policy. Agrofor. Syst. 2018, 92, 1117–1127. [Google Scholar] [CrossRef]
- Mosquera-Losada, M.R.; Santos, M.G.S.; Gonçalves, B.; Ferreiro-Domínguez, N.; Castro, M.; Rigueiro-Rodríguez, A.; González-Hernández, M.P.; Fernández-Lorenzo, J.L.; Romero-Franco, R.; Aldrey-Vázquez, J.A.; et al. Policy Challenges for Agroforestry Implementation in Europe. Front. For. Glob. Change 2023, 6, 1127601. [Google Scholar] [CrossRef]
- Tsiakiris, R.; Stara, K.; Kazoglou, Y.; Kakouros, P.; Bousbouras, D.; Dimalexis, A.; Dimopoulos, P.; Fotiadis, G.; Gianniris, I.; Kokkoris, I.P.; et al. Agroforestry and the Climate Crisis: Prioritizing Biodiversity Restoration for Resilient and Productive Mediterranean Landscapes. Forests 2024, 15, 1648. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for Ecosystem Services and Environmental Benefits: An Overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Tranchina, M.; Reubens, B.; Frey, M.; Mele, M.; Mantino, A. What Challenges Impede the Adoption of Agroforestry Practices? A Global Perspective through a Systematic Literature Review. Agrofor. Syst. 2024, 98, 1817–1837. [Google Scholar] [CrossRef]
- Sollen-Norrlin, M.; Ghaley, B.B.; Rintoul, N.L.J. Agroforestry Benefits and Challenges for Adoption in Europe and Beyond. Sustainability 2020, 12, 7001. [Google Scholar] [CrossRef]
- Sagastuy, M.; Krause, T. Agroforestry as a Biodiversity Conservation Tool in the Atlantic Forest? Motivations and Limitations for Small-Scale Farmers to Implement Agroforestry Systems in North-Eastern Brazil. Sustainability 2019, 11, 6932. [Google Scholar] [CrossRef]
- Ollinaho, O.I.; Kröger, M. Agroforestry Transitions: The Good, the Bad and the Ugly. J. Rural Stud. 2021, 82, 210–221. [Google Scholar] [CrossRef]
- Lyons, K.; Westoby, P. Carbon Colonialism and the New Land Grab: Plantation Forestry in Uganda and Its Livelihood Impacts. J. Rural Stud. 2014, 36, 13–21. [Google Scholar] [CrossRef]
- Baah-Acheamfour, M.; Chang, S.X.; Carlyle, C.N.; Bork, E.W. Carbon Pool Size and Stability Are Affected by Trees and Grassland Cover Types within Agroforestry Systems of Western Canada. Agric. Ecosyst. Environ. 2015, 213, 105–113. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Biochar Application to Soil for Climate Change Mitigation by Soil Organic Carbon Sequestration. J. Plant Nutr. Soil Sci. 2014, 177, 651–670. [Google Scholar] [CrossRef]
- De Stefano, A.; Jacobson, M.G. Soil Carbon Sequestration in Agroforestry Systems: A Meta-Analysis. Agrofor. Syst. 2018, 92, 285–299. [Google Scholar] [CrossRef]
- Paustian, K.; Andrén, O.; Janzen, H.H.; Lal, R.; Smith, P.; Tian, G.; Tiessen, H.; Van Noordwijk, M.; Woomer, P.L. Agricultural Soils as a Sink to Mitigate CO2 Emissions. Soil Use Manag. 1997, 13, 230–244. [Google Scholar] [CrossRef]
- Tziolas, E.; Ispikoudis, S.; Mantzanas, K.; Koutsoulis, D.; Pantera, A. Economic and Environmental Assessment of Olive Agroforestry Practices in Northern Greece. Agriculture 2022, 12, 851. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Agroforestry as a Strategy for Carbon Sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Fan, J.; Liu, C.; Xie, J.; Han, L.; Zhang, C.; Guo, D.; Niu, J.; Jin, H.; McConkey, B.G. Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. Int. J. Environ. Res. Public Health 2022, 19, 9817. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Takahashi, T.; Lee, M.R.F. Framework for Life Cycle Assessment of Livestock Production Systems to Account for the Nutritional Quality of Final Products. Food Energy Secur. 2018, 7, e00143. [Google Scholar] [CrossRef]
- Quevedo-Cascante, M.; Mogensen, L.; Kongsted, A.G.; Knudsen, M.T. How Does Life Cycle Assessment Capture the Environmental Impacts of Agroforestry? A Systematic Review. Sci. Total Environ. 2023, 890, 164094. [Google Scholar] [CrossRef]
- Torres-Miralles, M.; Kyttä, V.; Jeanneret, P.; Lamminen, M.; Manzano, P.; Tuomisto, H.L.; Herzon, I. Applying Life Cycle Assessment to European High Nature Value Farming Systems: Environmental Impacts and Biodiversity. Agric. Syst. 2024, 220, 104096. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European Agroforestry Systems Enhance Biodiversity and Ecosystem Services? A Meta-Analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef]
- Papanastasis, V.; Mantzanas, K.; Dini-Papanastasi, O.; Ispikoudis, I. Traditional Agroforestry Systems and Their Evolution in Greece. In Advances in Agroforestry; Springer: Dordrecht, The Netherlands, 2008; Volume 6, pp. 89–109. ISBN 978-1-4020-8271-9. [Google Scholar]
- Pantera, A.; Papadopoulos, A.; Papanastasis, V.P. Valonia Oak Agroforestry Systems in Greece: An Overview. Agrofor. Syst. 2018, 92, 921–931. [Google Scholar] [CrossRef]
- García de Jalón, S.; Burgess, P.J.; Graves, A.; Moreno, G.; McAdam, J.; Pottier, E.; Novak, S.; Bondesan, V.; Mosquera-Losada, R.; Crous-Durán, J.; et al. How Is Agroforestry Perceived in Europe? An Assessment of Positive and Negative Aspects by Stakeholders. Agrofor. Syst. 2018, 92, 829–848. [Google Scholar] [CrossRef]
- Gakis, S.F.; Orfanoudakis, M.Z.; Papaioannou, A.G.; Mantzanas, K.T.; Papanastasis, V.P.; Alifragis, D.A.; Seilopoulos, D.G.; Kostakis, S.N. Long Term Evolution of Tree Growth, Understorey Vegetation and Soil Properties in a Silvopastoral System of Northern Greece. Ann. For. Res. 2014, 57, 247–265. [Google Scholar] [CrossRef]
- Peri, P.L.; Chará, J.; Viñoles, C.; Bussoni, A.; Cubbage, F. Current Trends in Silvopastoral Systems. Agrofor. Syst. 2024, 98, 1945–1953. [Google Scholar] [CrossRef]
- Andrade, H.J.; Vega, A.; Martínez-Salinas, A.; Villanueva, C.; Jiménez-Trujillo, J.A.; Betanzos-Simon, J.E.; Pérez, E.; Ibrahim, M.; Sepúlveda, L.C.J. The Carbon Footprint of Livestock Farms under Conventional Management and Silvopastoral Systems in Jalisco, Chiapas, and Campeche (Mexico). Front. Sustain. Food Syst. 2024, 8, 1363994. [Google Scholar] [CrossRef]
- Athanasiadis, Ν. Forest Botany (Trees and Shrubs of the Greek Forests), Part ΙΙ; Giahoudis—Giapoudis: Thessaloniki, Greece, 1986; 309p. (In Greek) [Google Scholar]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.-P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life Cycle Assessment: Part 1: Framework, Goal and Scope Definition, Inventory Analysis, and Applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef]
- Costa, D.; Quinteiro, P.; Dias, A.C. A Systematic Review of Life Cycle Sustainability Assessment: Current State, Methodological Challenges, and Implementation Issues. Sci. Total Environ. 2019, 686, 774–787. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. In Intergovernmental Panel of Climate Change (IPCC), National Greenhouse Gas Inventories Programme; IPCC: Geneva, Switzerland, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 9 April 2025).
- Hellenic Ministry of Environment and Energy Climate Change Emissions Inventory. National Inventory Report of Greece for Greenhouse and Other Gases for the Years 1990–2022. Available online: https://ypen.gov.gr/wp-content/uploads/2025/01/2024_NID_Greece.pdf (accessed on 9 April 2025).
- IPCC. IPCC Global Warming Potential Values. Available online: https://ghgprotocol.org/sites/default/files/2024-08/Global-Warming-Potential-Values%20%28August%202024%29.pdf (accessed on 10 April 2025).
- IPCC. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 10: Emissions from Livestock and Manure Management. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf (accessed on 15 April 2025).
- IPCC. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Applicatio. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch11_Soils_N2O_CO2.pdf (accessed on 15 April 2025).
- Bochu, J.-L.; Metayer, N.; Bordet, C.; Gimaret, M. Development of Carbon Calculator to Promote Low Carbon Farming Practices Methodological Guidelines (Methods and Formula), Deliverable to EC-JRC-IES by Solagro. Available online: https://solagro.org/medias/publications/f60_methdology-guidelines-final-final.pdf (accessed on 20 April 2025).
- EEA Greenhouse Gas Emission Intensity of Electricity Generation in Europe. Greenhouse Gas Emission Intensity of Electricity Generation, Country Level. Available online: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emission-intensity-of-1?activeAccordion=309c5ef9-de09-4759-bc02-802370dfa366 (accessed on 10 May 2025).
- Eurostat Electricity Price Statistics—Electricity Prices for Non-Household Consumers. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics#Electricity_prices_for_non-household_consumers (accessed on 15 April 2022).
- European Commission Weekly Oil Bulletin—Price Developments 2005 Onwards (for All EU Countries). Available online: https://energy.ec.europa.eu/data-and-analysis/weekly-oil-bulletin_en (accessed on 10 May 2025).
- World Resources Institute GHG Protocol Agricultural Guidance Interpreting the Corporate Accounting and Reporting Standard for the Agricultural Sector. Available online: https://ghgprotocol.org/sites/default/files/2022-12/GHG%20Protocol%20Agricultural%20Guidance%20%28April%2026%29_0.pdf (accessed on 15 April 2024).
- Eldesouky, A.; Mesias, F.J.; Elghannam, A.; Escribano, M. Can Extensification Compensate Livestock Greenhouse Gas Emissions? A Study of the Carbon Footprint in Spanish Agroforestry Systems. J. Clean. Prod. 2018, 200, 28–38. [Google Scholar] [CrossRef]
- Horrillo, A.; Gaspar, P.; Escribano, M. Organic Farming as a Strategy to Reduce Carbon Footprint in Dehesa Agroecosystems: A Case Study Comparing Different Livestock Products. Animals 2020, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Horrillo, A.; Gaspar, P.; Díaz-Caro, C.; Escribano, M. A Scenario-Based Analysis of the Effect of Carbon Pricing on Organic Livestock Farm Performance: A Case Study of Spanish Dehesas and Rangelands. Sci. Total Environ. 2021, 751, 141675. [Google Scholar] [CrossRef]
- Tziolas, E.; Karapatzak, E.; Kalathas, I.; Karampatea, A.; Grigoropoulos, A.; Bajoub, A.; Pachidis, T.; Kaburlasos, V.G. Assessing the Economic Performance of Multipurpose Collaborative Robots toward Skillful and Sustainable Viticultural Practices. Sustainability 2023, 15, 3866. [Google Scholar] [CrossRef]
- Kaske, K.J.; de Jalón, S.G.; Williams, A.G.; Graves, A.R. Assessing the Impact of Greenhouse Gas Emissions on Economic Profitability of Arable, Forestry, and Silvoarable Systems. Sustainability 2021, 13, 3637. [Google Scholar] [CrossRef]
- García de Jalón, S.; Graves, A.; Palma, J.; Crous-Duran, J.; Giannitsopoulos, M.; Burgess, P.J. Modelling the Economics of Agroforestry at Field- and Farm-Scale—Deliverable 6.18: Modelling the Economics of Agroforestry at Field- and Farmscale. Available online: https://www.agforward.eu/documents/Deliverable%206.18%20Modelling%20the%20economics%20of%20agroforestry%202.pdf (accessed on 1 July 2025).
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Dominguez Aldama, D.; Grassauer, F.; Zhu, Y.; Ardestani-Jaafari, A.; Pelletier, N. Allocation Methods in Life Cycle Assessments (LCAs) of Agri-Food Co-Products and Food Waste Valorization Systems: Systematic Review and Recommendations. J. Clean. Prod. 2023, 421, 138488. [Google Scholar] [CrossRef]
- Kyttä, V.; Roitto, M.; Astaptsev, A.; Saarinen, M.; Tuomisto, H.L. Review and Expert Survey of Allocation Methods Used in Life Cycle Assessment of Milk and Beef. Int. J. Life Cycle Assess. 2022, 27, 191–204. [Google Scholar] [CrossRef]
- Pereyra-Goday, F.; Jebari, A.; Takahashi, T.; Rovira, P.; Ayala, W.; Lee, M.R.F.; Rivero, M.J.; McAuliffe, G.A. Carbon Footprint of Mixed Farming Crop-Livestock Rotational-Based Grazing Beef Systems Using Long Term Experimental Data. Agron. Sustain. Dev. 2024, 44, 41. [Google Scholar] [CrossRef]
- Weiler, V.; Udo, H.M.J.; Viets, T.; Crane, T.A.; De Boer, I.J.M. Handling Multi-Functionality of Livestock in a Life Cycle Assessment: The Case of Smallholder Dairying in Kenya. Curr. Opin. Environ. Sustain. 2014, 8, 29–38. [Google Scholar] [CrossRef]
- Pelletier, N.; Ardente, F.; Brandão, M.; De Camillis, C.; Pennington, D. Rationales for and Limitations of Preferred Solutions for Multi-Functionality Problems in LCA: Is Increased Consistency Possible? Int. J. Life Cycle Assess. 2015, 20, 74–86. [Google Scholar] [CrossRef]
- Rice, P.; O’Brien, D.; Shalloo, L.; Holden, N.M. Evaluation of Allocation Methods for Calculation of Carbon Footprint of Grass-Based Dairy Production. J. Environ. Manag. 2017, 202, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, S.; McGahan, E.; Murphy, C.; Yan, M.J.; Henry, B.; Thoma, G.; Ledgard, S. Environmental Impacts and Resource Use of Australian Beef and Lamb Exported to the USA Determined Using Life Cycle Assessment. J. Clean. Prod. 2015, 94, 67–75. [Google Scholar] [CrossRef]
- Bhatt, A.; Abbassi, B. Review of Environmental Performance of Sheep Farming Using Life Cycle Assessment. J. Clean. Prod. 2021, 293, 126192. [Google Scholar] [CrossRef]
- European Commission Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32021R1119 (accessed on 3 July 2025).
- EU CAP Network Analytical Work—Supporting the Establishment of Agroforestry Systems. An Analysis of Different Approaches in Selected EU Member States—Working Document. Available online: https://eu-cap-network.ec.europa.eu/publications/analytical-work-supporting-establishment-agroforestry-systems_en (accessed on 30 April 2025).
- Mazzetto, A.M.; Falconer, S.; Ledgard, S. Carbon Footprint of New Zealand Beef and Sheep Meat Exported to Different Markets. Environ. Impact Assess. Rev. 2023, 98, 106946. [Google Scholar] [CrossRef]
- Escribano, M.; Horrillo, A.; Mesías, F.J. Greenhouse Gas Emissions and Carbon Sequestration in Organic Dehesa Livestock Farms. Does Technical-Economic Management Matters? J. Clean. Prod. 2022, 372, 133779. [Google Scholar] [CrossRef]
- de Figueiredo, E.B.; Jayasundara, S.; de Oliveira Bordonal, R.; Berchielli, T.T.; Reis, R.A.; Wagner-Riddle, C.; La Scala, N. Greenhouse Gas Balance and Carbon Footprint of Beef Cattle in Three Contrasting Pasture-Management Systems in Brazil. J. Clean. Prod. 2017, 142, 420–431. [Google Scholar] [CrossRef]
- Caicedo-Vargas, C.; Pérez-Neira, D.; Abad-González, J.; Gallar, D. Assessment of the Environmental Impact and Economic Performance of Cacao Agroforestry Systems in the Ecuadorian Amazon Region: An LCA Approach. Sci. Total Environ. 2022, 849, 157795. [Google Scholar] [CrossRef] [PubMed]
- Thiesmeier, A.; Zander, P. Can Agroforestry Compete? A Scoping Review of the Economic Performance of Agroforestry Practices in Europe and North America. For. Policy Econ. 2023, 150, 102939. [Google Scholar] [CrossRef]
- Hellenic Statistical Authority RISK OF POVERTY OR SOCIAL EXCLUSION. 2024 Survey on Income and Living Conditions (Income Reference Period: 2023). Available online: https://www.statistics.gr/documents/20181/042d41d4-d995-48e4-5bf3-50d7d320acef (accessed on 25 June 2025).
- Diana Rade, L.; Álvaro Cañadas, L.; Carlos Zambrano, Z.; Carlos Molina, H.; Alexandra Ormaza, M.; Wehenkel, C. Silvopastoral System Economical and Financial Feasibility with Jatropha curcas L. in Manabí, Ecuador. Rev. MVZ Cordoba 2017, 22, 6241–6255. [Google Scholar] [CrossRef]
- Opdenbosch, H.; Hansson, H. Farmers’ Willingness to Adopt Silvopastoral Systems: Investigating Cattle Producers’ Compensation Claims and Attitudes Using a Contingent Valuation Approach. Agrofor. Syst. 2023, 97, 133–149. [Google Scholar] [CrossRef]
- Sintori, A.; Tzouramani, I.; Liontakis, A. Greenhouse Gas Emissions in Dairy Goat Farming Systems: Abatement Potential and Cost. Animals 2019, 9, 945. [Google Scholar] [CrossRef]
- Yu, G.; Beauchemin, K.A.; Dong, R. A Review of 3-Nitrooxypropanol for Enteric Methane Mitigation from Ruminant Livestock. Animals 2021, 11, 3540. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Du, C.; Guo, X.; Xiong, B.; Yang, L.; Zhao, X. Crop Byproducts Supplemented in Livestock Feeds Reduced Greenhouse Gas Emissions. J. Environ. Manag. 2024, 355, 120469. [Google Scholar] [CrossRef] [PubMed]
- Tziolas, E.; Karampatea, A.; Karapatzak, E.; Banias, G.F. Balancing Efficiency and Environmental Impacts in Greek Viticultural Management Systems: An Integrated Life Cycle and Data Envelopment Approach. Sustainability 2024, 16, 9043. [Google Scholar] [CrossRef]
- Pupo, M.R.; Ferraretto, L.F.; Nicholson, C.F. Effects of Feeding 3-Nitrooxypropanol for Methane Emissions Reduction on Income over Feed Costs in the United States. J. Dairy Sci. 2025, 108, 5061–5075. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Sacarrão-Birrento, L.; Almeida, M.; Ribeiro, D.M.; Guedes, C.; Montaña, J.R.G.; Pereira, A.F.; Zaralis, K.; Geraldo, A.; Tzamaloukas, O.; et al. Extensive Sheep and Goat Production: The Role of Novel Technologies towards Sustainability and Animal Welfare. Animals 2022, 12, 885. [Google Scholar] [CrossRef]
- Timpanaro, G.; Foti, V.T. The Sustainability of Small-Scale Sheep and Goat Farming in a Semi-Arid Mediterranean Environment. J. Sustain. Agric. Environ. 2024, 3, e12111. [Google Scholar] [CrossRef]
Emission types | GHG | Emission factors | Unit | Reference |
---|---|---|---|---|
Enteric fermentation | ||||
Dairy Cattle | CH4 | 99 | kgCO2eq/head | [41,43] |
Other Cattle | CH4 | 58 | kgCO2eq/head | [41,43] |
Goats | CH4 | 5 | kgCO2eq/head | [41,43] |
Sheep | CH4 | 8 | kgCO2eq/head | [41,43] |
Manure management | ||||
Dairy Cattle | CH4 | 1.03 | kgCO2eq/head | [41] |
Other Cattle | CH4 | 0.2 | kgCO2eq/head | [41] |
Goats | CH4 | 12.72 | kgCO2eq/head | [41] |
Sheep | CH4 | 3.6 | kgCO2eq/head | [41] |
Direct N2O | N2O | 0.005 | kg N2O eN/kg N Solid storage system | [41,43] |
Indirect N2O | N2O | 0.01 | kg N2O eN/volatilized | [41,43] |
Soil management | ||||
N from urine and dung inputs to grazed soils in Sheep/Goat | N2O | 0.01 | kg N2O eN per kg N input | [41,44] |
N from urine and dung inputs to grazed soils in Cow | N2O | 0.02 | kg N2O eN per kg N input | [41,44] |
Indirect Emissions | N2O | 0.01 | kg N2O eN per kg % N volatilized/leaching | [41,44] |
Off-farm | ||||
Concentrates Meat Cow | CO2 | 0.655 | kg CO2eq/kg | [45] |
Concentrates Dairy Sheep | CO2 | 0.512 | kg CO2eq/kg | [45] |
Concentrates Meat Sheep | CO2 | 0.513 | kg CO2eq/kg | [45] |
Concentrates Goat | CO2 | 0.753 | kg CO2eq/kg | [45] |
Fodder corn | CO2 | 0.296 | kg CO2eq/kg | [45] |
Fodder triticale | CO2 | 0.353 | kg CO2eq/kg | [45] |
Fodder barley | CO2 | 0.321 | kg CO2eq/kg | [45] |
Energy | ||||
Electricity | CO2 | 0.258 | kg CO2eq/kWh | [46] |
Fuel diesel combustion | CO2 | 2.664 | kg CO2eq/liter-combustion | [45] |
Fuel diesel upstream | CO2 | 0.32 | kg CO2eq/liter-upstream | [45] |
Indicators | GBS | EGBS | GS | EGo | EGo+ |
---|---|---|---|---|---|
Farm | |||||
System type | Mixed | Extensive beef/grazing sheep | Grazing | Extensive | Extensive |
No. of reproductive sheep and/or cows (average population) | 200 | 90 | 160 | 180 | 170 |
Lambs born per sheep | 1.25 | 1.36 | 1.33 | - | - |
Calves born per cow | 0.86 | 0.91 | - | - | - |
Kids born per goat | - | - | - | 1.29 | 1.21 |
% Grazing time/year | Cows 50%/Sheep 60% | Cows 100%/Sheep 60% | 60% | 100% | 100% |
Inputs | |||||
AWUs | 1 | 1 | 1 | 1 | 1 |
Family AWUs | 0.31 | 0.19 | 0.11 | 0.17 | 0.11 |
Fuel (l) | 2000 | 1200 | 2500 | 1500 | 1700 |
Electricity (kWh) | 6000 | 1500 | 5000 | 0 | 0 |
Water (m3) | 1100 | 800 | 310 | 0 | 0 |
Fodder bought (t) | 40 | 3 | 25 | 4 | 17 |
Concentrates bought (t) | 20 | 8 | 32 | 4 | - |
Outputs | |||||
Goat/Sheep Milk (l) | 9990.00 | 4138.00 | 13,886.00 | 20,632.00 | 14,804.00 |
Goat/Sheep Meat (kg) | 608.00 | - | 1484.00 | - | 1634.00 |
Beef Meat (kg) | 9986.00 | 6970.00 | - | - | - |
Farm ID | GBS | EGBS | GS | EGo | EGo+ |
---|---|---|---|---|---|
Cost | |||||
Feeding (EUR) | 28,100.00 | 15,480.00 | 15,240.00 | 7040.00 | 6000.00 |
Energy (EUR) | 2423.48 | 1387.74 | 3305.80 | 1320.00 | 1496.00 |
Labor (EUR) | 3300.00 | 2100.00 | 1200.00 | 1800.00 | 1200.00 |
Vet/Pharma (EUR) | 3750.00 | 1250.00 | 1500.00 | 1500.00 | 1000.00 |
Water (EUR) | 1922.91 | 961.45 | 411.58 | - | - |
Revenue | |||||
Milk Revenue (EUR) | 12,012.00 | 4965.60 | 16,663.20 | 17,743.52 | 15,544.20 |
Goat/Sheep Meat Revenue (EUR) | 3648.00 | - | 12,820.00 | - | 14,040.00 |
Beef Meat Revenue (EUR) | 49,950.00 | 38,335.00 | - | - | - |
Total Revenue (EUR) | 65,610.00 | 43,300.60 | 29,483.20 | 17,743.52 | 29,584.20 |
Economic/Area Allocation | |||||
% from Milk | 18.31% | 11.47% | 56.52% | 100.00% | 52.54% |
% from Meat | 81.69% | 88.53% | 43.48% | 0.00% | 47.46% |
Total Area (ha) | 250 | 125 | 200 | 155 | 110 |
Revenue per ha (EUR) | 262.44 | 346.40 | 147.42 | 114.47 | 268.95 |
Cost per ha (EUR) | 157.99 | 169.43 | 108.29 | 75.23 | 88.15 |
Emission Source | Unit | GBS | EGBS | GS | EGo | EGo+ |
---|---|---|---|---|---|---|
Enteric fermentation CH4 | ||||||
Cows | kg CO2eq/kg meat | 15.68 | 8.95 | - | - | - |
Goat/Sheep (meat) | kg CO2eq/kg meat | 8.28 | - | 10.13 | - | 6.67 |
Goat/Sheep (milk) | kg CO2eq/L milk | 1.66 | 2.70 | 1.41 | 1.22 | 0.81 |
Manure management | ||||||
Cows | kg CO2eq/kg meat | 2.18 | 1.26 | - | - | - |
Goat/Sheep (meat) | kg CO2eq/kg meat | 2.83 | - | 3.46 | - | 3.29 |
Goat/Sheep (milk) | kg CO2eq/L milk | 0.57 | 0.92 | 0.48 | 0.44 | 0.40 |
Soil management | ||||||
N from urine and dung inputs to grazed soils (Cows) | kg CO2eq/kg meat | 3.13 | 2.98 | - | - | - |
N from urine and dung inputs to grazed soils (Goat/Sheep meat) | kg CO2eq/kg meat | 1.48 | - | 2.18 | - | 4.61 |
N from urine and dung inputs to grazed soils (Goat/Sheep milk) | kg CO2eq/L milk | 0.30 | 0.48 | 0.30 | 0.84 | 0.56 |
Energy | ||||||
Electricity (Cows) | kg CO2eq/kg meat | 0.12 | 0.05 | - | - | - |
Electricity (Goat/Sheep meat) | kg CO2eq/kg meat | 0.14 | - | 0.38 | - | - |
Electricity (Goat/Sheep milk) | kg CO2eq/L milk | 0.03 | 0.01 | 0.05 | - | - |
Fuel combustion (Cows) | kg CO2eq/kg meat | 0.41 | 0.41 | - | - | - |
Fuel combustion (Goat/Sheep meat) | kg CO2eq/kg meat | 0.49 | - | 1.95 | 0.20 | 1.32 |
Fuel combustion (Goat/Sheep milk) | kg CO2eq/L milk | 0.10 | 0.09 | 0.27 | - | 0.16 |
Fuel upstream (Cows) | kg CO2eq/kg meat | 0.05 | 0.05 | - | - | - |
Fuel upstream (Goat/Sheep meat) | kg CO2eq/kg meat | 0.06 | 0.23 | 0.02 | 0.16 | |
Fuel upstream (Goat/Sheep milk) | kg CO2eq/L milk | 0.01 | 0.01 | 0.03 | - | 0.02 |
Feeding | ||||||
Concentrates for Cows | kg CO2eq/kg meat | 1.03 | 0.59 | - | - | - |
Concentrates for dairy Sheep | kg CO2eq/L milk | - | - | 0.85 | - | - |
Concentrates for meat Sheep | kg CO2eq/kg meat | - | - | 6.14 | - | - |
Concentrates for dairy Goats | kg CO2eq/L milk | - | - | - | 0.15 | - |
Fodder corn for meat production | kg CO2eq/kg meat | 1.70 | - | - | - | 0.86 |
Fodder corn for milk production | kg CO2eq/L milk | 0.34 | 0.11 | |||
Fodder triticale for dairy Goat/Sheep | kg CO2eq/L milk | 0.68 | 0.26 | 0.36 | 0.07 | 0.06 |
Fodder triticale for meat Goat/Sheep | kg CO2eq/kg meat | 3.38 | - | 2.59 | - | 0.51 |
Fodder barley for milk production | kg CO2eq/L milk | - | - | - | - | 0.02 |
Fodder barley for meat production | kg CO2eq/kg meat | - | - | - | - | 0.19 |
Totals | ||||||
Cows | kg CO2eq/kg meat | 22.59 | 14.28 | - | - | - |
Goat/Sheep (meat) | kg CO2eq/kg meat | 18.36 | - | 27.05 | - | 17.60 |
Goat/Sheep (milk) | kg CO2eq/L milk | 3.68 | 4.48 | 3.75 | 2.94 | 2.15 |
Total kgCO2 per year | kg CO2eq/farm | 273,579.14 | 117,868.57 | 92,333.36 | 62,021.24 | 60,609.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tziolas, E.; Papadopoulos, A.; Lappa, V.; Bakogiorgos, G.; Galanopoulou, S.; Mosquera-Losada, M.R.; Pantera, A. Carbon Footprint and Economic Trade-Offs in Traditional Greek Silvopastoral Systems: An Integrated Life Cycle Assessment Approach. Forests 2025, 16, 1262. https://doi.org/10.3390/f16081262
Tziolas E, Papadopoulos A, Lappa V, Bakogiorgos G, Galanopoulou S, Mosquera-Losada MR, Pantera A. Carbon Footprint and Economic Trade-Offs in Traditional Greek Silvopastoral Systems: An Integrated Life Cycle Assessment Approach. Forests. 2025; 16(8):1262. https://doi.org/10.3390/f16081262
Chicago/Turabian StyleTziolas, Emmanouil, Andreas Papadopoulos, Vasiliki Lappa, Georgios Bakogiorgos, Stavroula Galanopoulou, María Rosa Mosquera-Losada, and Anastasia Pantera. 2025. "Carbon Footprint and Economic Trade-Offs in Traditional Greek Silvopastoral Systems: An Integrated Life Cycle Assessment Approach" Forests 16, no. 8: 1262. https://doi.org/10.3390/f16081262
APA StyleTziolas, E., Papadopoulos, A., Lappa, V., Bakogiorgos, G., Galanopoulou, S., Mosquera-Losada, M. R., & Pantera, A. (2025). Carbon Footprint and Economic Trade-Offs in Traditional Greek Silvopastoral Systems: An Integrated Life Cycle Assessment Approach. Forests, 16(8), 1262. https://doi.org/10.3390/f16081262