Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (145)

Search Parameters:
Keywords = size fractionation procedure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5054 KiB  
Article
Technology for the Production of Energy Briquettes from Bean Stalks
by Krzysztof Mudryk, Jarosław Frączek, Joanna Leszczyńska and Mateusz Krotowski
Energies 2025, 18(15), 4009; https://doi.org/10.3390/en18154009 - 28 Jul 2025
Viewed by 211
Abstract
Biomass is gaining increasing importance as a renewable energy source in the global energy mix, offering a viable alternative to fossil fuels and contributing to the decarbonization of the energy sector. Among various types of biomass, agricultural residues such as bean stalks represent [...] Read more.
Biomass is gaining increasing importance as a renewable energy source in the global energy mix, offering a viable alternative to fossil fuels and contributing to the decarbonization of the energy sector. Among various types of biomass, agricultural residues such as bean stalks represent a promising feedstock for the production of solid biofuels. This study analyzes the impact of particle size and selected briquetting parameters (pressure and temperature) on the physical quality of briquettes made from bean stalks. The experimental procedure included milling the raw material using #8, #12, and #16 mesh screens, followed by compaction under pressures of 27, 37, and 47 MPa. Additionally, the briquetting die was heated to 90 °C to improve the mechanical durability of the briquettes. The results showed that both particle size and die temperature significantly influenced the quality of the produced briquettes. Briquettes made from the 16 mm fraction, compacted at 60 °C and 27 MPa, exhibited a durability of 55.76%, which increased to 82.02% when the die temperature was raised to 90 °C. Further improvements were achieved by removing particles smaller than 1 mm. However, these measures did not enable achieving a net calorific value above 14.5 MJ·kg−1. Therefore, additional work was undertaken, involving the addition of biomass with higher calorific value to the bean stalk feedstock. In the study, maize straw and miscanthus straw were used as supplementary substrates. The results allowed for determining their minimum proportions required to exceed the 14.5 MJ·kg−1 threshold. In conclusion, bean stalks can serve as a viable feedstock for the production of solid biofuels, especially when combined with other biomass types possessing more favorable energy parameters. Their utilization aligns with the concept of managing local agricultural residues within decentralized energy systems and supports the development of sustainable bioenergy solutions. Full article
Show Figures

Figure 1

20 pages, 3356 KiB  
Review
Tricuspid Regurgitation in the Era of Transcatheter Interventions: The Pivotal Role of Multimodality Imaging
by Valeria Maria De Luca, Stefano Censi, Rita Conti, Roberto Nerla, Sara Bombace, Tobias Friedrich Ruf, Ralph Stephan von Bardeleben, Philipp Lurz, Fausto Castriota and Angelo Squeri
J. Clin. Med. 2025, 14(14), 5011; https://doi.org/10.3390/jcm14145011 - 15 Jul 2025
Viewed by 288
Abstract
Over the last ten years, transcatheter tricuspid valve interventions (TTVIs) have emerged as effective options for symptomatic patients with moderate-to-severe tricuspid regurgitation (TR) who are at prohibitive surgical risk. Successful application of these therapies depends on a patient-tailored, multimodal imaging workflow. Transthoracic and [...] Read more.
Over the last ten years, transcatheter tricuspid valve interventions (TTVIs) have emerged as effective options for symptomatic patients with moderate-to-severe tricuspid regurgitation (TR) who are at prohibitive surgical risk. Successful application of these therapies depends on a patient-tailored, multimodal imaging workflow. Transthoracic and transesophageal echocardiography remain the first-line diagnostic tools, rapidly stratifying TR severity, mechanism, and right ventricular function, and identifying cases requiring further evaluation. Cardiac computed tomography (CT) then provides anatomical detail—quantifying tricuspid annular dimension, leaflet tethering, coronary artery course, and venous access anatomy—to refine candidacy and simulate optimal device sizing and implantation angles. In patients with suboptimal echocardiographic windows or equivocal functional data, cardiovascular magnetic resonance (CMR) offers gold-standard quantification of RV volumes, ejection fraction, regurgitant volume, and tissue characterization to detect fibrosis. Integration of echo-derived parameters, CT anatomical notes, and CMR functional assessment enables the heart team to better select patients, plan procedures, and determine the optimal timing, thereby maximizing procedural success and minimizing complications. This review describes the current strengths, limitations, and future directions of multimodality imaging in comprehensive evaluations of TTVI candidates. Full article
Show Figures

Figure 1

25 pages, 2127 KiB  
Article
Isolation, Preliminary Structural Insights, Characterization, and Antioxidant Potential of a New High-Molecular Weight Complex Phenolic Polymer Developed from Olive Mill Wastewater
by Antonio Lama-Muñoz, Alejandra Bermúdez-Oria, Fátima Rubio-Senent, Guillermo Rodríguez-Gutiérrez, África Fernández-Prior and Juan Fernández-Bolaños
Antioxidants 2025, 14(7), 791; https://doi.org/10.3390/antiox14070791 - 27 Jun 2025
Viewed by 480
Abstract
Olive mill wastewater (OMW), a byproduct of the olive oil industry, is a potential source of natural bioactive phenolic polymers. In this work, a column chromatography technique was used for the isolation of a new complex polymer (named OMW-2000XAD) from OMW via fractionation [...] Read more.
Olive mill wastewater (OMW), a byproduct of the olive oil industry, is a potential source of natural bioactive phenolic polymers. In this work, a column chromatography technique was used for the isolation of a new complex polymer (named OMW-2000XAD) from OMW via fractionation on Amberlite® XAD16 resin. The developed procedure was simple and proved to be reproducible using OMW from two different sources. OMW-2000XAD was further characterized by elemental, glycosidic, and amino acid composition analysis, as well as spectroscopic techniques. The polymer’s molecular size, which was estimated via gel filtration chromatography, was 1960 kDa, which is significantly larger than other high-molecular weight fractions previously isolated from OMW or other agro-industrial wastes. OMW-2000XAD was mainly composed of phenolic compounds (89.8%). It also contained polysaccharides (16.1%) and proteins (10.3%), with glucose (12.25%) and cysteine (1.71%) being the most abundant sugar and amino acid, respectively, as well as metals (1.29%, primarily potassium). However, due to its low solubility, complexity, and heterogeneous composition, it was not possible to identify all phenolic compounds or elucidate a definitive structure via MS, FTIR, and NMR. OMW-2000XAD exhibited strong radical scavenging antioxidant capacity (ABTS•+, DPPH and peroxyl radicals), with results up to 7415 µmol Trolox equivalent/mol (ORAC method), but showed no antiproliferative effects, highlighting the need for further research. Full article
Show Figures

Figure 1

21 pages, 4456 KiB  
Article
Refined Procedure to Purify and Sequence Circulating Cell-Free DNA in Prostate Cancer
by Samira Rahimirad, Seta Derderian, Lucie Hamel, Eleonora Scarlata, Ginette McKercher, Fadi Brimo, Raghu Rajan, Alexis Rompre-Brodeur, Wassim Kassouf, Rafael Sanchez-Salas, Armen Aprikian and Simone Chevalier
Int. J. Mol. Sci. 2025, 26(12), 5839; https://doi.org/10.3390/ijms26125839 - 18 Jun 2025
Viewed by 575
Abstract
Cell-free DNA (cfDNA), a fragmented DNA circulating in blood, is a promising biomarker for cancer diagnosis and monitoring. Standardization of cfDNA isolation to enhance the sensitivity of molecular analyses in prostate cancer (PCa) is required. Towards this goal, we optimized existing methods to [...] Read more.
Cell-free DNA (cfDNA), a fragmented DNA circulating in blood, is a promising biomarker for cancer diagnosis and monitoring. Standardization of cfDNA isolation to enhance the sensitivity of molecular analyses in prostate cancer (PCa) is required. Towards this goal, we optimized existing methods to obtain a high quantity and quality of cfDNA from low volumes of plasma. The protocol was applied to samples from healthy males and three patient categories: radical prostatectomy (RP), disease-free (>6 years post-RP), and metastatic castration-resistant PCa (mCRPC). The yield was significantly higher in mCRPC cases, and the size of fragments was shorter. We compared for the first time library preparation using two cfDNA inputs and low vs. high sequencing depth. Clonal events were observed irrespective of input and depth, but lower input showed more subclonal events. The clinical application of the refined protocols to cfDNA samples from an mCRPC patient showed no tumor fraction before RP, while it increased to 25% at the advanced stage. Among chromosomal changes and mutations, the androgen receptor gene amplification was detected. Altogether, this comprehensive study on improved cfDNA procedures is highly promising to enhance the quality of liquid biopsy-based research for discoveries and much-needed clinical applications. Full article
Show Figures

Figure 1

24 pages, 6692 KiB  
Article
Application of Flotation Tailings as a Substitute for Cement in Concrete Structures for Environmental Protection and Sustainable Development—Part I: Sulfide Neutralization
by Vanja Đurđevac, Novica Staletović, Lidija Đurđevac Ignjatović, Violeta Jovanović, Nikola Vuković and Vesna Krstić
Materials 2025, 18(12), 2804; https://doi.org/10.3390/ma18122804 - 14 Jun 2025
Viewed by 435
Abstract
Flotation tailings (FT), as a product of the exploitation and processing of copper ore, represent a significant environmental and health risk due to the high content of heavy metals and sulfide compounds. Contemporary concepts of sustainable development and circular economy increasingly emphasize the [...] Read more.
Flotation tailings (FT), as a product of the exploitation and processing of copper ore, represent a significant environmental and health risk due to the high content of heavy metals and sulfide compounds. Contemporary concepts of sustainable development and circular economy increasingly emphasize the need for rational use of resources and minimization of all types of waste, including mining waste. In this context, the reuse of flotation tailings in the construction industry represents a significant step towards closing the material flow in the mining and construction sectors. In order to reduce the negative impact of FT on the environment, the possibility of its application as a substitute for a portion of cement in the production of concrete was investigated. The main challenge is to reduce the negative impact of sulfides, originating from sulfide compounds, in order to achieve the desired concrete quality. Limestone aggregates of different size fractions (0/4, 4/8, 8/16 mm) were used for sulfide neutralization. Pyrite concentrate was used as a sulfide source, which together with FT provides the mixtures FT-7, FT-14, FT-25, and FT-40, with sulfur contents of 7.56, 13.84, 25.02, and 39.82%, respectively. FT mixtures were used as a substitute for Portland cement (PC) in the preparation of concrete. Test methods included XRD (X-ray diffraction), XRF (X-ray fluorescence), SEM (scanning electron microscopy), LP (leaching procedure), TCLP (toxicity characterization leaching procedure), assessment of acid eluate generation potential (AP—acid potential, NP—neutralization potential, and NNP—net neutralization potential), NEN (determination of heavy metals in cured concrete eluate), and UCS (uniaxial compressive strength of cured concrete). The results showed that the chemical characteristics of FT, as well as the chemical and mechanical properties of hardened concrete, allow the efficient use of these tailings in concrete mixes, which significantly utilizes FT, reduces the generation of mining waste, and contributes to the reduction of the negative impact on the environment and achieving sustainable development in mining. Full article
Show Figures

Figure 1

11 pages, 1468 KiB  
Article
Initial Experience with Single-Session Resin-Based Transarterial Radioembolization Mapping and Treatment of Small Hepatocellular Carcinomas
by Michael Mohnasky, Sandra Gad, Marco Fanous, Johannes L. Du Pisanie, Marija Ivanovic, David M. Mauro, Hyeon Yu, Alex Villalobos, Andrew M. Moon, Hanna K. Sanoff, Jingquan Jia and Nima Kokabi
Cancers 2025, 17(8), 1265; https://doi.org/10.3390/cancers17081265 - 9 Apr 2025
Viewed by 943
Abstract
Background/Objectives: Studies have indicated that forgoing lung shunt fraction measurement in select patients undergoing Yttrium 90 (Y90) transarterial radioembolization (TARE) may be safe without sacrificing efficacy. This study evaluated the safety and efficacy of a streamlined treatment in patients with small hepatocellular carcinoma [...] Read more.
Background/Objectives: Studies have indicated that forgoing lung shunt fraction measurement in select patients undergoing Yttrium 90 (Y90) transarterial radioembolization (TARE) may be safe without sacrificing efficacy. This study evaluated the safety and efficacy of a streamlined treatment in patients with small hepatocellular carcinoma (HCC) receiving resin-based TARE. Methods: Patients who received single-session Y90 TARE between September 2023 and May 2024 were retrospectively evaluated. Treatment response was evaluated at the 3-month follow-up using the modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria. Adverse events (AEs) ≥ Grade 3 were recorded post-procedurally at 3 months. The time from the interventional radiology clinic visit to the procedure date was compared to patients receiving the conventional TARE treatment. Results: Ten consecutive patients were treated with 12 treatments. Each treatment targeted an isolated lesion with median size of 2.5 cm (IQR: 2.1, 2.9). Two patients received two treatments (one for treatment of a separate lesion and the other for the initial incomplete targeting of the tumor). The median delivered tumor dose was 377.7 Gy (IQR: 246.5, 570.1). No patients developed ≥ Grade 3 AEs post-TARE. Complete response was achieved in 11/12 patients (92%). The conventional cohort consisted of 60 patients, all OPTN T2 treated with radiation segmentectomy with glass microspheres. Patients undergoing SSMT had a median time from clinic visit to treatment of 26.5 days (IQR: 15.3, 39) vs. 61 days (IQR: 48, 88.8) in the conventional TARE group (p < 0.001). Conclusions: Streamlined single-session resin-based Y90-TARE in patients with OPTN T2 stage HCC is feasible, efficacious, safe, and associated with reduced time to treatment. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 6209 KiB  
Article
Non-Isothermal Crystallization Behavior of a Zr-Based Amorphous Alloy Composite Prepared by Selective Laser Melting
by Qi An, Rui Li, Yalin Hu, Yun Luo, Anhui Cai, Yixian Li, Hong Mao and Sheng Li
Materials 2025, 18(7), 1631; https://doi.org/10.3390/ma18071631 - 3 Apr 2025
Viewed by 361
Abstract
Zr48Cu47.5Al4Co0.5 bulk amorphous alloy composites were prepared by selective laser melting (SLM) technology under different processing conditions and their non-isothermal crystallization behaviors were systematically investigated. The results show that the crystallization phases are Cu10Zr [...] Read more.
Zr48Cu47.5Al4Co0.5 bulk amorphous alloy composites were prepared by selective laser melting (SLM) technology under different processing conditions and their non-isothermal crystallization behaviors were systematically investigated. The results show that the crystallization phases are Cu10Zr7 and CuZr2 for both gas-atomized powder and SLMed samples. The dependence of volume fraction of Cu10Zr7 and CuZr2 on laser energy density can be fitted by an exponential function. The crystalline sizes of Cu10Zr7 and CuZr2 linearly increase with increasing energy density. The thermal stability is larger for the gas-atomized powders than for the SLMed bulk samples. It is interestingly found that there is an exponential relationship between the crystallization enthalpy ΔHx and the amorphous content. In addition, the glass transition is more difficult for the gas-atomized powders than for the SLMed bulk samples. The crystallization procedure is more difficult for the SLMed bulk samples than for the gas-atomized powders. The local activation energy Eα decreases with increasing α for the gas-atomized powder and the SLMed bulk samples. In addition, the Eα is larger for the SLMed bulk samples than for the gas-atomized powder at the corresponding crystallization fraction α. The dependence of the local Avrami exponent n(α) on the α is similar for both the gas-atomized powders and the SLMed bulk samples at studied heating rates. The crystallization mechanism is also discussed. Full article
Show Figures

Figure 1

8 pages, 1282 KiB  
Proceeding Paper
Optimized Purification Processes for Isolation and Modification of Oligosaccharides from Rathi Cow’s Milk
by Desh Deepak A. P. Singh Chauhan, Sana Akhtar Usmani, Sarita Chauhan, Ashutosh Singh and Desh Deepak
Biol. Life Sci. Forum 2024, 40(1), 21; https://doi.org/10.3390/blsf2024040021 - 5 Feb 2025
Viewed by 634
Abstract
Purification and characterization of milk oligosaccharides is a challenging process due to the complexity of the constituent oligosaccharides, which behave differently under various chemical treatment procedures and often lose their structural properties in the process. Rathi cow’s milk is widely used in the [...] Read more.
Purification and characterization of milk oligosaccharides is a challenging process due to the complexity of the constituent oligosaccharides, which behave differently under various chemical treatment procedures and often lose their structural properties in the process. Rathi cow’s milk is widely used in the Rajasthan region of India for its nutritional and medicinal benefits. Here, we aim to present an optimized method for the purification and analysis of oligosaccharides present in Rathi cow milk. Contrary to the freeze transport methods used earlier, we treated the collected milk with ethanol for preservation, followed by microfiltration, lyophilization, and fractionation on silica gel (60–120 mesh size) column chromatography (CC) coupled with chloroform/methanol-mediated gradient elution. Fractions 31–45 (1.78 g), 71–80 (470 mg), and 106–120 (498 mg) from CC-1 and fractions 26–49 (1.14 g) from CC-2 were analysed for sugar content via the phenol–sulfuric acid method. Fraction homogeneity was confirmed using high-performance liquid chromatography. Isolated analytes were treated with acetic anhydride/pyridine (1:1, v/v) to form less polar oligosaccharide derivatives, which could then be easily visualized and semi-quantitated using partition chromatography (thin later and paper) with chloroform/methanol. Structural identities of the purified oligosaccharides were determined using a combination of mass spectrometry and NMR (1H, 13C, HSQC, TOCSY, COSY, HMBC) techniques. Our results clearly demonstrate that the ethanol-based preservation, transport, and purification of oligosaccharides is a simple and robust method for the analysis of Rathi cow’s milk oligosaccharides. Furthermore, using the acetylation, purified oligosaccharides allow for rapid analysis on thin-layer chromatography, which is quite cost effective compared with other analytical methods. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
Show Figures

Figure 1

21 pages, 2759 KiB  
Article
Microplastic Aerosol Contamination in Porto (Portugal)
by Yuliya Logvina, Diogo Silva Moreira, Rui Pedro Moreira Santos, Inês Filipa Neves, Helena Ribeiro, Luís Pinto da Silva and Joaquim Esteves da Silva
Microplastics 2024, 3(4), 696-716; https://doi.org/10.3390/microplastics3040043 - 20 Nov 2024
Viewed by 1424
Abstract
Microplastic pollution, particularly particles smaller than 5 mm, poses significant environmental and health risks due to their potential for inhalation and long-range transport. This study provides the first long-term assessment of airborne microplastics and fibers in Porto, Portugal, over 18 months (September 2022 [...] Read more.
Microplastic pollution, particularly particles smaller than 5 mm, poses significant environmental and health risks due to their potential for inhalation and long-range transport. This study provides the first long-term assessment of airborne microplastics and fibers in Porto, Portugal, over 18 months (September 2022 to March 2024). Bi-weekly samples were collected using a Microplastic Collector NILU, which were size-fractionated into five categories (>125 μm, 125–63 μm, 63–25 μm, 25–12 μm, and 12–1.2 μm) and quantified via optical microscopy. Microplastic concentrations ranged from 26 to 1484 MPs/day/m2, while fiber concentrations varied from 14 to 646 fibers/day/m2. With a focus on the 12–1.2 μm size range due to their classifications as PM10 and PM2.5, the highest microplastic concentrations were 164 MPs/day/m2 (12–1.2 μm) and 534 MPs/day/m2 (25–12 μm). Recovery rates varied among polymers, with PP, PE-HD, and ABS showing high accuracy (75.9%) and PES significantly lower (26.5%). This study highlights the significant temporal variability in airborne microplastic and fiber pollution, correlations with meteorological parameters, and the need for ongoing monitoring and targeted mitigation strategies to address associated health risks. Full article
Show Figures

Figure 1

19 pages, 1523 KiB  
Article
Effect of Grinding and Successive Sieving on the Distribution of Active Biological Compounds in the Obtained Fractions of Blackthorn Berries
by Alina-Daiana Ionescu, Mariana Ferdeș, Gheorghe Voicu, George Ipate, Gabriel-Alexandru Constantin, Elena-Mădălina Ștefan and Mihaela Begea
Appl. Sci. 2024, 14(16), 7133; https://doi.org/10.3390/app14167133 - 14 Aug 2024
Cited by 1 | Viewed by 2009
Abstract
The current study evaluated the effect of powder fractionation based on particle size on the chemical composition of macronutrients such as proteins and sugars, on the phytochemical properties (total content of polyphenolic compounds, vitamin C, and antioxidant activity), on preservation capacity (water activity), [...] Read more.
The current study evaluated the effect of powder fractionation based on particle size on the chemical composition of macronutrients such as proteins and sugars, on the phytochemical properties (total content of polyphenolic compounds, vitamin C, and antioxidant activity), on preservation capacity (water activity), powder functional properties (water absorption capacity and water solubility index), and physicochemical properties (particle size distribution and moisture content) of blackthorn berry (Prunus spinosa) powders. The fruits were separated from the plant material and seeds, dried, and then ground using an universal mill for dry materials. Eight fractions were obtained after sieving on sieves with different mesh sizes, such as 1 mm, 0.8 mm, 0.630 mm, 0.450 mm, 0.315 mm, 0.200 mm, and 0.125 mm. The grinding/sieving procedure was effective in separating Prunus spinosa powder into sufficiently different size classes. The maximal moisture content and water activity were 5.61% and 0.250, respectively, showed good preservation from a microbiological point of view, and ensured the prevention of oxidation of biologically active compounds of blackthorn berry powders. For samples with reduced particle sizes, the powder functional properties were greatly improved. The total phenolic content, carbohydrates, and antioxidant activity showed significantly different values for some particle size classes compared to the un-sieved sample. A considerable content of vitamin C was presented in the fraction with large particle sizes, precisely because they did not undergo intense degradation processes. Therefore, the technique of grinding and successive sieving proved effective in enhancing the physicochemical and functional characteristics of powdered blackthorn berries, particularly for smaller particles. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

16 pages, 3690 KiB  
Article
Design and Performance Analysis of Compact Printed Ridge Gap Waveguide Phase Shifters for Millimeter-Wave Systems
by Moath Alathbah, Mohamed S. El-Gendy, Mahmoud Gadelrab and Mohamed Mamdouh M. Ali
Sensors 2024, 24(14), 4702; https://doi.org/10.3390/s24144702 - 20 Jul 2024
Viewed by 1586
Abstract
This paper introduces compact Printed Ridge Gap Waveguide (PRGW) phase shifters tailored for millimeter-wave applications, with a focus on achieving wide operating bandwidth, and improved matching and phase balance compared to single-layer technology. This study proposes a unique approach to achieve the required [...] Read more.
This paper introduces compact Printed Ridge Gap Waveguide (PRGW) phase shifters tailored for millimeter-wave applications, with a focus on achieving wide operating bandwidth, and improved matching and phase balance compared to single-layer technology. This study proposes a unique approach to achieve the required phase shift in PRGW technology, which has not been previously explored. This study also introduces a novel analytical approach to calculate the cutoff frequency and propagation constant of the PRGW structure, a method not previously addressed. Furthermore, the utilization of multi-layer PRGW technology enables the realization of multi-layer beamforming networks without crossing, thereby supporting wideband operation in a compact size. The proposed design procedure enables the realization of various phase shift values ranging from 0 to 135 over a broad frequency bandwidth centered at 30 GHz. A 45-degree phase shifter is fabricated and tested, demonstrating a 10 GHz bandwidth (approximately 33% fractional bandwidth) from 25 GHz to 35 GHz. Throughout the operating bandwidth, the phase balance remains within 45 ± 5, with a deep matching level of −20 dB. The proposed phase shifter exhibits desirable characteristics, such as compactness, low loss, and low dispersion, making it a suitable choice for millimeter-wave applications, including beyond 5G (B5G) and 6G wireless communications. Full article
(This article belongs to the Special Issue Millimeter-Wave Antennas for 5G)
Show Figures

Figure 1

19 pages, 2853 KiB  
Article
The Microstructural Reconstruction of Variously Sintered Ni-SDC Cermets Using Focused Ion Beam Scanning Electron Microscopy Nanotomography
by Gregor Kapun, Endre Majorovits, Sašo Šturm, Marjan Marinšek and Tina Skalar
Materials 2024, 17(13), 3068; https://doi.org/10.3390/ma17133068 - 21 Jun 2024
Cited by 1 | Viewed by 1171
Abstract
This work focuses in-depth on the quantitative relationships between primary first-order microstructural parameters (i.e., volume fractions of various phases and particle size distribution) with the more complex second-order topological features (i.e., connectivity of phases, three-phase boundary length (TPBL), interfacial areas, or [...] Read more.
This work focuses in-depth on the quantitative relationships between primary first-order microstructural parameters (i.e., volume fractions of various phases and particle size distribution) with the more complex second-order topological features (i.e., connectivity of phases, three-phase boundary length (TPBL), interfacial areas, or tortuosity). As a suitable model material, a cermet nickel/samaria-doped ceria (Ni-SDC) is used as an anode in a solid oxide fuel cell (SOFC). A microstructure description of nano-sized Ni-SDC cermets, fabricated at various sintering conditions from 1100 °C to 1400 °C, was performed using FIB-SEM nanotomography. The samples were serially sectioned employing a fully automated slicing procedure with active drift correction algorithms and an auto-focusing routine to obtain a series of low-loss BSE images. Advanced image processing algorithms were developed and applied directly to image data volume. The microstructural–topological relationships are crucial for the microstructure optimisation and, thus, the improvement of the corresponding electrode performance. Since all grains of individual phases (Ni, SDC, or pores) did not percolate, special attention was given to the visualisation of the so-called active TPBL. Based on the determined microstructure characteristics of the prepared Ni-SDC cermets, including simulations of gas flow and pressure drop, thermal treatment at 1200 °C was recognised as the most appropriate sintering temperature. Full article
(This article belongs to the Special Issue Advances in the Characterization of Materials)
Show Figures

Figure 1

27 pages, 4943 KiB  
Article
Thorough Validation of Optimized Size Exclusion Chromatography-Total Organic Carbon Analysis for Natural Organic Matter in Fresh Waters
by Elien Laforce, Karlien Dejaeger, Marjolein Vanoppen, Emile Cornelissen, Jeriffa De Clercq and Pieter Vermeir
Molecules 2024, 29(9), 2075; https://doi.org/10.3390/molecules29092075 - 30 Apr 2024
Cited by 5 | Viewed by 1927
Abstract
Size exclusion chromatography with total organic carbon detection (HPSEC-TOC) is a widely employed technique for characterizing aquatic natural organic matter (NOM) into high, medium, and low molecular weight fractions. This study validates the suitability of HPSEC-TOC for a simplified yet efficient routine analysis [...] Read more.
Size exclusion chromatography with total organic carbon detection (HPSEC-TOC) is a widely employed technique for characterizing aquatic natural organic matter (NOM) into high, medium, and low molecular weight fractions. This study validates the suitability of HPSEC-TOC for a simplified yet efficient routine analysis of freshwater and its application within drinking water treatment plants. The investigation highlights key procedural considerations for optimal results and shows the importance of sample preservation by refrigeration with a maximum storage duration of two weeks. Prior to analysis, the removal of inorganic carbon is essential, which is achieved without altering the NOM composition through sample acidification to pH 6 and subsequent N2-purging. The chromatographic separation employs a preparative TSK HW-50S column to achieve a limit of detection of 19.0 µgC dm−3 with an injection volume of 1350 mm−3. The method demonstrates linearity up to 10,000 µgC dm−3. Precision, trueness and recovery assessments are conducted using certified reference materials, model compounds, and real water samples. The relative measurement uncertainty in routine analysis ranges from 3.22% to 5.17%, while the measurement uncertainty on the bias is 8.73%. Overall, the HPSEC-TOC represents a reliable tool for NOM fractions analysis in both treated and untreated ground and surface water. Full article
(This article belongs to the Special Issue Analytical Techniques in Environmental Chemistry)
Show Figures

Graphical abstract

11 pages, 283 KiB  
Article
A Generalized Residual-Based Test for Fractional Cointegration in Panel Data with Fixed Effects
by Saidat Fehintola Olaniran, Oyebayo Ridwan Olaniran, Jeza Allohibi, Abdulmajeed Atiah Alharbi and Mohd Tahir Ismail
Mathematics 2024, 12(8), 1172; https://doi.org/10.3390/math12081172 - 13 Apr 2024
Cited by 2 | Viewed by 1161
Abstract
Asymptotic theories for fractional cointegrations have been extensively studied in the context of time series data, with numerous empirical studies and tests having been developed. However, most previously developed testing procedures for fractional cointegration are primarily designed for time series data. This paper [...] Read more.
Asymptotic theories for fractional cointegrations have been extensively studied in the context of time series data, with numerous empirical studies and tests having been developed. However, most previously developed testing procedures for fractional cointegration are primarily designed for time series data. This paper proposes a generalized residual-based test for fractionally cointegrated panels with fixed effects. The test’s development is based on a bivariate panel series with the regressor assumed to be fixed across cross-sectional units. The proposed test procedure accommodates any integration order between [0,1], and it is asymptotically normal under the null hypothesis. Monte Carlo experiments demonstrate that the test exhibits better size and power compared to a similar residual-based test across varying sample sizes. Full article
(This article belongs to the Section D1: Probability and Statistics)
13 pages, 2279 KiB  
Article
Diagnostic and Prognostic Value of Circulating DNA Fragments in Glioblastoma Multiforme Patients
by Pawel Jarmuzek, Edyta Wawrzyniak-Gramacka, Barbara Morawin, Anna Tylutka and Agnieszka Zembron-Lacny
Int. J. Mol. Sci. 2024, 25(8), 4221; https://doi.org/10.3390/ijms25084221 - 11 Apr 2024
Cited by 3 | Viewed by 1827
Abstract
Novel blood-circulating molecules, as potential biomarkers for glioblastoma multiforme (GBM) diagnosis and monitoring, are attracting particular attention due to limitations of imaging modalities and invasive tissue biopsy procedures. This study aims to assess the diagnostic and prognostic values of circulating cell-free DNA (cfDNA) [...] Read more.
Novel blood-circulating molecules, as potential biomarkers for glioblastoma multiforme (GBM) diagnosis and monitoring, are attracting particular attention due to limitations of imaging modalities and invasive tissue biopsy procedures. This study aims to assess the diagnostic and prognostic values of circulating cell-free DNA (cfDNA) in relation to inflammatory status in GBM patients and to determine the concentration and average size of DNA fragments typical of tumour-derived DNA fractions. Preoperative plasma samples from 40 patients (GBM 65.0 ± 11.3 years) and 40 healthy controls (HC 70.4 ± 5.4 years) were compared. The cfDNA concentrations and lengths were measured using the electrophoresis platform, and inflammatory indices (NLR, PLR, LMR, and SII) were calculated from complete blood cell analysis. More fragmented cfDNA and 4-fold higher 50–700 bp cfDNA concentrations were detected in GBM patients than in healthy controls. The average cfDNA size in the GBM group was significantly longer (median 336 bp) than in the HC group (median 271 bp). Optimal threshold values were 1265 pg/μL for 50–700 bp cfDNA (AUC = 0.857) and 290 bp for average cfDNA size (AUC = 0.814). A Kaplan–Meier survival curves analysis also demonstrated a higher mortality risk in the GBM group with a cut-off >303 bp cfDNA. This study is the first to have revealed glioblastoma association with high levels of cfDNA > 1000 pg/μL of 50–700 bp in length, which can be aggravated by immunoinflammatory reactivity. Full article
Show Figures

Figure 1

Back to TopTop