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Abstract: Size exclusion chromatography with total organic carbon detection (HPSEC-TOC) is a
widely employed technique for characterizing aquatic natural organic matter (NOM) into high,
medium, and low molecular weight fractions. This study validates the suitability of HPSEC-TOC
for a simplified yet efficient routine analysis of freshwater and its application within drinking water
treatment plants. The investigation highlights key procedural considerations for optimal results and
shows the importance of sample preservation by refrigeration with a maximum storage duration of
two weeks. Prior to analysis, the removal of inorganic carbon is essential, which is achieved without
altering the NOM composition through sample acidification to pH 6 and subsequent N2-purging.
The chromatographic separation employs a preparative TSK HW-50S column to achieve a limit of
detection of 19.0 µgC dm−3 with an injection volume of 1350 mm−3. The method demonstrates
linearity up to 10,000 µgC dm−3. Precision, trueness and recovery assessments are conducted using
certified reference materials, model compounds, and real water samples. The relative measurement
uncertainty in routine analysis ranges from 3.22% to 5.17%, while the measurement uncertainty on
the bias is 8.73%. Overall, the HPSEC-TOC represents a reliable tool for NOM fractions analysis in
both treated and untreated ground and surface water.

Keywords: chromatographic fractionation; method validation; precision; trueness; recovery;
sample preservation

1. Introduction

Natural organic matter (NOM) is a very complex mixture of aromatic and aliphatic
compounds ranging from a few hundreds to 100,000 Da in molecular weight (MW) [1].
It is present in all natural water sources causing water quality issues such as taste and
odour problems, bacterial regrowth or disinfection by-product formation in drinking
water [2,3]. Currently, routine analysis in drinking water treatment plants focus on the
assessment of bulk total organic carbon (TOC) or ultraviolet (UV) absorption (usually
254 nm) [4]. However, these parameters often fall short in predicting the influence of
NOM on the water treatment efficiency and/or on potential water quality issues, since
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these processes and/or issues are usually linked to specific NOM fractions [3,5]. As such,
recent research described the correlation between specific NOM fractions and the formation
of disinfection by-products [3]. Consequently, fluctuations in both NOM concentration
and characteristics caused by e.g., seasonal variations introduce additional challenges in
drinking water production to regulate the formation of disinfection by-products and/or
other water quality parameters. Moreover, climate change will cause an increase in NOM
concentration and alterations in NOM composition in the drinking water sources [4,6].
These issues clearly demand for a more detailed NOM monitoring.

Many characterization methods are available to describe the behaviour and fate of
NOM in natural waters. Advances in pyrolysis-gas chromatography-mass spectrometry
(Py-GC-MS), fluorescence spectroscopy, nuclear magnetic resonance (NMR) spectroscopy,
high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-
MS) and high performance size exclusion chromatography (HPSEC) methods have been
explored to provide unique insights into NOM characteristics [3,7]. Significant temporal
and spatial variations in NOM composition have been unravelled using a combination of
these techniques providing high analytical resolution [3]. Moreover, molecular formulae of
a universal NOM component present in both oceans, rivers and lakes have been identified
through FTICR-MS and NMR technology [8]. Most of these techniques, such as py-GC-MS,
NMR and FTICR-MS are, however, not appropriate for routine monitoring due to their cost,
complexity, analysis time and sophisticated analytical instrumentation [2,3]. Furthermore,
some of these methods such as FTICR-MS require desalting and concentration of the sample
with solid phase extraction, which results in partial NOM extraction [3,7].

The remaining characterization method, i.e., HPSEC, is a suitable candidate for routine,
long-term monitoring of NOM in water treatment processes and has been proven useful to
assess removal efficiencies in typical drinking water treatment plants [9–11]. Its efficacy
lies in its capability to separate NOM in different fractions based on molecular size and
shape [7]. A wide range of detectors can be connected to this system such as photodiode
arrays, mass spectrometry or fluorescence detection [7,12–17], however, the most commonly
ones include UV and organic carbon detectors (OCDs). Although UV detectors are simple
and fast, they are limited to detect molecules that absorb light at a specific wavelength
(usually 254 nm). OCDs provide better quantitative information with a low detection
limit [7,12–17]. Nevertheless, the typically low concentration of NOM in natural waters
introduces analytical challenges. Conventionally used concentration methods such as solid
phase extraction may introduce alterations to the complex NOM mixture [18,19]. Hence, it
is preferable to avoid concentration steps and instead opt for a larger injecting volume of
the original sample and a (semi-) preparative column for HPSEC analysis [20].

Liquid chromatography (i.e., HPSEC) coupled to an organic carbon, organic nitrogen
(OND) and UV (254 nm) detector (LC-OCD-OND) is the most widely used method to char-
acterize NOM in fresh water samples. The LC-OCD-OND method divides NOM into six
fractions [21]. The first fraction is referred to as hydrophobic NOM, which is not detected
during the timespan of the analysis because of its relatively strong interactions with the
stationary phase. The other five fractions found in the OCD chromatogram, in order of
elution from the column, are biopolymers, humic substances, building blocks, low molecu-
lar weight (MW) acids and neutrals. The separation between humic substances, building
blocks and low MW acids is done through deconvolution of the OCD chromatogram and
UV absorbance at 254 nm, where the humic substances peak is the most apparent hav-
ing two shoulders for the building blocks and low MW acids respectively [21]. Humic
substances mainly consist of humic and fulvic acids and are therefore more hydrophobic
structures containing phenolic and carboxylic functionalities, of which the latter are anionic
under neutral pH conditions. Building blocks are considered as degradation products of
humic substances, thus having lower MW but similar characteristics. Low MW acids are
defined as relatively small molecules which are negatively charged at neutral pH. Due
to their anionic properties, they are slightly repulsed by the packing material of the SEC
column under the used conditions [22], resulting in shorter elution times than expected
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based on their MW. This has been proven by Ruhl et al. (2012), who investigated the elution
behavior of a large set of low MW acid compounds with LC-OCD-OND and showed that
their elution occurs over the entire humic substances peak and not only in the shoulder,
which is denoted as the low MW acid peak [23,24]. LC-OCD-OND has been applied
in various studies to investigate the performance of drinking water treatment processes
and/or to assess the impact of altering NOM characteristics in the source water on these
processes [25–28], e.g., MacKeown et al. (2021) found a correlation between trihalomethane
formation potential and the concentration of building blocks in the water [26]. A drawback
of LC-OCD-OND is that its implementation and data interpretation are still relatively
complex, which impedes its use in routine analysis. This complexity arises from the use of
deconvolution and the combination of three different detection methods.

When a new HPSEC method is presented or applied in scientific publications, an ex-
tensive validation is very often lacking [2,12]. Nevertheless, validation is of key importance
when applying a new method for routine analysis to ensure the quality, improve process
optimization and to provide good science [29]. Validation should be conducted when using
non-standard methods or after modification of standard methods and results in a level
of confidence because it shows that the performance characteristics are fit for use for a
particular measurement [30]. Common validation parameters that should be determined
when implementing a new method are the trueness, precision, linearity, limit of detection
(LOD), limit of quantification (LOQ) and robustness [29]. Trueness is measured by defining
the percent recovery of the analyte at different concentration levels that are covered in
the analytical method. Precision includes repeatability, intermediate precision and repro-
ducibility and is expressed as variance, standard deviation or coefficient of variation over a
series of samples. With robustness, it is verified if the analytical method stays unaffected
when small variations in the method parameters occur such as the stability of analytical
solutions [29]. (Fresh) water samples are very susceptible to changes which might take
place between sampling and measurement [31] or by freezing and thawing the sample [32].
Therefore, assessing the stability of a sample is also a key practice when validating a method
that analyzes fresh water samples [31,32]. Together, all these validation parameters indicate
the performance of an analytical method for a specific type of sample. Nonetheless, HPSEC-
TOC systems have only been validated in terms of LOD and repeatability by Dulaquais
et al. (2018), who developed a slightly modified LC-OCD-OND system for the analysis of
estuarine and marine water [33]. For fresh water analysis, available validation parameters
for LC-OCD-OND are limited to repeatability data [21]. Hence, an extensive validation
of HPSEC-TOC systems for fresh water samples has not yet been published to the best of
our knowledge.

Therefore, this work proposes an HPSEC-TOC method for routine measurements
of NOM fractions in fresh waters. The system is connected to only one detector which
quantifies all organics, in contrast to UV detection which only measures UV active com-
pounds. The chosen TOC detector uses UV/persulfate oxidation, i.e., it only needs an
acid and oxidant and no carrier gas supply, which makes it compact, simple and easier
to implement. A preparative column is selected based on the set-up and sensitivity of
the detection system and to avoid the necessity of pre-concentration of the sample. This
simplified set-up lowers the maintenance costs and facilitates straightforward and quick
data processing, all key advantages for routine analysis. The method is developed and
validated in terms of sample pretreatment (removal of inorganic carbon (IC)), trueness,
precision, LOD, LOQ, method uncertainty and sample stability by investigating different
storage methods and storage times.

2. Results and Discussion
2.1. Method Development
2.1.1. HPSEC-TOC Calibration

The HPSEC-TOC method was calibrated on an organic carbon basis with potassium
hydrogen phthalate (KHP). The measurements based on concentration showed linearity of
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the calibration in a concentration range of 0.05 to 10.00 mgC dm−3 (R2 = 0.999) for a single
molecule peak (see Figure S1) satisfying the >0.998 criterion for adequate linearity [34].
For the MW calibration, two calibrants were compared to each other. Polyethylene glycol
(PEG) is one of the typically used calibrants for HPSEC-TOC systems [2,15,20,35], while
pullulan has not been reported to the best of our knowledge. Their chemical structures can
be found in Figure S2. Both compounds are hydrophilic, but pullulan, a polysaccharide, is
structurally more similar to the biopolymer or high MW fraction, which mostly consists of
polysaccharides and some proteins [36]. PEG is a linear alcohol and can hence be considered
as a surrogate for the hydrophilic low MW fraction.

Polystyrene sulfonate, a hydrophobic but water soluble polymer, has been widely used
as calibrant [16,20,37–40] since it is UV-active and its structure is similar to hydrophobic
humic substances, which are the most abundant fraction in a NOM mixture (Figure S2) [36].
However, sulfonic acid has a much lower pKa value compared to the acid functionalities
present in humic substances such as carboxylic acid and phenolic groups [41] and will
therefore have a high repulsion with the stationary phase, resulting in a faster elution [15,20].
Hence, it is expected that the elution behaviour of humic substances will match better with
the PEG or pullulan MW calibrants than with the polystyrene sulfonate.

The calibration curves for PEG and pullulan are presented in Figure 1. Figure S3
shows a chromatogram of a water sample where the TOC intensity is plotted against the
elution time and the apparent MW according to the PEG and pullulan calibrations. A
similar elution behaviour (deviation of calculated elution times < 10%) is observed for
both calibrants for moderate MWs (≈0.300–2.00 kDa). This in in accordance with the
findings reported by Agilent concerning the elution behaviour of these two calibrants when
silica particles coated with a hydrophilic layer are used as stationary phase [42]. For MWs
that exceed the upper limit of this interval (>2.00 kDa), it can be noted that a pullulan
standard will elute later compared to a PEG standard with a similar MW. For the lower
MWs (<0.300 kDa), PEG standards will elute later compared to pullulan. This indicates that,
especially for the relatively high or low MWs, the calibrant needs to be selected based on
the fraction of interest. Since the chemical structure of pullulan is most similar to the high
MW biopolymer fraction, pullulan is preferred when targeting compounds with higher
MWs. However, PEG results in a more reliable apparent (a)MW for smaller molecules
having similar structures as this calibrant.
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Figure 1. The apparent molecular weight (MW (Da)) versus elution time for pullulan (red squares,
y = −0.084x + 7.503, R2 = 0.997) and PEG standards (blue dots, y = −0.076x + 7.041, R2 = 0.992).
Average elution times of two independent analyses are presented together with the respective
standard deviations.

The calibration curves can be used for the determination of the (a)MW of a molecule
or the main (a)MW and MW distribution of a mixture. Only MW-ranges are determined in
this work due to the complexity of NOM mixtures. (a)MWs are linked to the elution times
and integration ranges mentioned in this work to enable the interlaboratory comparability



Molecules 2024, 29, 2075 5 of 26

of the used HPSEC-TOC system. Elution times are system-specific since it depends on both
the separation itself as well as on constant but system-related parameters such as the length
of the tubing between the SEC column and the detectors. (a)MWs are not influenced by
these parameters and are hence more relevant when aiming at interlaboratory comparison
or validation. Since the two calibrants show high linearity, it was decided to determine
the (a)MW range for the high MW fraction with pullulan, while the (a)MW range for the
low MW fraction will be based on the PEG calibration curve (Figure 1). It is advised to
perform a MW calibration on regular time-intervals as a quality control for the separation
performance of the SEC-column.

2.1.2. Definition of the Integration Ranges

The main advantage of a (SEC) separation of organic matter in a water sample before
conducting the TOC analysis is the additional information about the characteristics or
composition that can be acquired next to the quantitative information. Defining the number
of fractions, and hence integration ranges in the SEC chromatogram, is important since
more fractions will result in a more complex data set, complicating the interpretation and
increasing the labor time, especially for routine analysis. Therefore, it was decided to
differentiate three NOM fractions with similar characteristics in this method (as indicated
in Figure 2) instead of the five fractions typically reported in LC-OCD-OND [21].
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The Sievers® M9 TOC detector was chosen as online detection system to provide an
accessible and easy to implement tool for HPSEC-TOC analysis. The TOC detector used in
this work is more compact compared to the OCD detector. Moreover, no carrier gasses are
required for its operation, while a N2-gas flow is used in the OCD system. These factors
facilitates its fast, safe and economical beneficial implementation in a laboratory.

a. High MW fraction

Molecules with hydrodynamic volumes that exceed the exclusion limit of the SEC
column (and which do not strongly interact with the stationary phase) elute together in
one peak, ending at 38.0 min in the HPSEC-TOC analysis. This integration range matches
with the biopolymer fraction in LC-OCD-OND analysis which uses the same SEC column
and similar operating conditions [21]. This range corresponds with molecules having
an (a)MW > 20.3 kDa with the pullulan calibration and consists mainly of proteins and
polysaccharides [36].
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b. Medium MW fraction

This integration range (38–59.5 min) includes humic substances, building blocks and
low MW acid fractions as reported in LC-OCD-OND [21]. Distinction between those
fractions is intentionally not made in this HPSEC-TOC system. The conductivity of the
sample is adjusted to the one of the mobile phase to suppress matrix effects which assures
an accurate detection, but results in a decreased resolution of these three fractions. Merging
the three fractions to one combined fraction is however justified by the following reasons;
Firstly, the three fractions have similar chemical structures (e.g., aromatic character of humic
substances and building blocks) and/or functionalities (e.g., presence of carboxylic acid
functionalities). This implies a similar behavior during different water treatment processes
such as their removal via enhanced coagulation [43]. Moreover, the elution time of the
low MW acids can vary largely due to their different charge densities and pKa values [23].
Lastly, the relatively low concentration of low MW acids in fresh water samples results
in a very low repeatability of this fraction in the LC-OCD-OND system (relative standard
deviation (RSD) = 19.8%, see Section 2.2.2.c). Overall, combining the three fractions results
in more straightforward, reproduceable and simplified analysis. It can be noted that
applications where the main targeted compounds are specifically building block or low
MW anionic compounds in the low ppb-level can still benefit from the LC-OCD-OND
analysis. Molecules eluting between 38 min ((a)MW < 20.3 or 14.6 kDa with pullulan or
PEG calibration respectively) and 59.5 min ((a)MW > 0.316 or 0.286 kDa with pullulan or
PEG calibration respectively) are classified as the medium MW fraction in the HPSEC-TOC
method. The lower limit of this interval was defined based on the elution time of salts such
as (sodium) bicarbonate on the one hand and low MW monovalent acids such as fumaric
acid on the other hand (Figure S4).

c. Low MW fraction

All molecules eluting later than 59.5 min ((a)MW < 0.286 kDa with PEG calibration) are
categorized as the low MW fraction. This integration range (>59.5 min) is similar to the low
MW neutral fraction in LC-OCD-OND [21]. Molecules eluting in this range have a small
hydrodynamic volume and are uncharged at neutral pH or are relatively hydrophobic. The
latter causes a certain retention by the stationary phase resulting in later elution times than
expected based on the MW [21,23]. Even though a buffer solution is used as mobile phase
and sample matrices are aligned with the mobile phase of the system, interactions with the
SEC resin used as the stationary phase are not completely suppressed.

2.1.3. HPSEC-TOC Sample Pretreatment

During a HPSEC-TOC analysis, the organic carbon concentration is measured every
4 s and calculated from the difference between total carbon and total IC [44]. A high
concentration of IC will therefore affect the organic carbon measurement. An IC remover is
installed inside the Sievers® M9 detector to remove the IC prior to TOC measurement. A
degassing unit converts IC into CO2 by adding acid to the water which is subsequently
removed by vacuum treatment. However, it was observed that the tube degassing unit of
the Sievers® M9 detector could not sufficiently remove the IC from the samples within the
operating conditions (flowrate = 1 cm3 min−1). In Figure 3, a large peak around 68 min is
seen in the HPSEC-TOC chromatogram of a 40 mgC dm−3 KHCO3 solution, which clearly
shows the incomplete removal of IC. The peak is also observed in a Blankaart water sample
which contained about 50 mgC dm−3 of IC (Figure 3, Table S1).

Therefore, a standard series of different IC concentrations (3–85 mgC dm−3) in milliQ
were analyzed with the HPSEC-TOC to determine the maximum amount of IC that can be
removed by the degassing unit (Figure S5). The removal efficiency was on average 94.6%
with a maximum of 97% for the lowest concentration (3 mgC dm−3). If the removal is not
100%, an interfering peak is detected in the low MW fraction, as shown in Figure 3. This
was also observed in literature [15].
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Figure 3. HPSEC-TOC chromatograms from Blankaart reservoir water (orange) and from a
40 mgC dm−3 KHCO3 solution (blue). The peak at 68 min is assigned to the incomplete removal of
inorganic carbon.

Therefore, acidification coupled to nitrogen purging or sonication in vacuum was
investigated to remove IC from fresh water samples prior to analysis. H3PO4 was chosen
to acidify the samples, because it is compatible with the mobile phase and the organic
carbon detection system of the HPSEC method. Furthermore, the acidification was limited
to pH 5 to avoid possible changes in NOM composition. It is known that e.g., humic acids
(part of the humic substances, eluting in the medium MW fraction) precipitate at pH 2 or
lower [36,45]. Moreover, a pH below the pKa of a molecule results in complete protonation.
Carboxylic acids are the most abundant functionalities in humic substances and have a pKa
around 4.7. A pH modification to pH 2.5 of a water sample therefore results in excessive
protonation of the humic substances. The buffering capacity of the concentrated buffer
used to pretreat the sample before analysis is not sufficient to overcome such a low pH and
consequently, a shift in elution time of the medium MW fraction is observed in Blankaart
water at pH 2.5 (Figure S6). This is also previously observed by Cai et al. (2020) who used
a pH of 3 to remove the IC prior to analysis, which caused a change in the profile of the
building blocks [15].

Figure 4 shows the removal of IC for nitrogen purging and sonication in vacuum treat-
ment in function of pH for Coupure water with an initial IC concentration of ±55 mgC dm−3

(Table S2). Neither nitrogen purge nor sonication in vacuum could remove considerable
amounts of IC at pH 7. On the other hand, water samples acidified to pH 5 and 6 contained
less than 1 mgC dm−3 (98–100% removed) of IC after 30 min of nitrogen purge (Figure 4a),
while sonication in vacuum only removed between 55–75% of IC at pH 6 and between
67–97% at pH 5 over the 60 min of operation (Figure 4b). Equilibrium between H2CO3 and
HCO3

− is reached around pH 6.5 [46]. Therefore, at pH 5 and 6, IC will be mostly present
as H2CO3, promoting the conversion towards H2O and CO2. Moreover, nitrogen purging
clearly acts as a better driving force towards gaseous CO2 compared to sonication with
vacuum. Based on these results, it was decided to remove the IC from the samples by acidi-
fication to pH 6 coupled to nitrogen purging for 30 min. This procedure was repeated with
Blankaart water. The sample was acidified to a pH of 6, purged with nitrogen for 30 min
and subsequently analysed with HPSEC-TOC to verify if (i) all IC was removed and (ii) no
changes in NOM composition occurred during this pretreatment. The chromatograms
of the untreated surface water and the acidified sample are shown in Figure 5 where the
disappearance of the inorganic peak at 68 min is clearly observed without any changes in
terms of NOM composition. The pretreatment with nitrogen at pH 6 will therefore be used
in further analysis.
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Figure 5. HPSEC-TOC chromatograms from Blankaart water with (red) and without (yellow) in-
organic carbon removal prior to analysis. Inorganic carbon (IC) was removed, as observed by
the disappearance of this particular peak at 68 min. No other changes in natural organic matter
composition occurred after acidification and nitrogen purge.

2.2. Method Validation
2.2.1. LOD and LOQ Determination

The LOD and LOQ of the HPSEC-TOC method calculated from the data of the
250 µgC dm−3 KHP standard are respectively 19.0 µgC dm−3 and 63.2 µgC dm−3 which
are adequate values for the analysis of raw and treated surface and ground water sam-
ples. These values are higher than the LC-OCD-OND system where concentrations in the
low µgC dm−3 range are reported [33]. The reason for the lower LOD and LOQ in the
LC-OCD-OND system is due to the different TOC detector system used (see Section 2.2.2c).

2.2.2. Precision and Trueness

a. Certified reference material

The repeatability of the HPSEC-TOC method was first verified using a certified ref-
erence material (KHP). A concentration of 2.50 mgC dm−3 was measured in duplicate
on six different days over a period of 20 weeks (Figure 6). No statistical difference was
found between the six different measurements. The RSD (standard deviation/mean × 100%) over
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all measurements was 1.61% and the recovery of KHP was 101 ± 2%. This is within the
acceptance criterium (RSD < 15%), meaning that the system is precise and accurate in
measuring KHP concentrations over a period of at least 20 weeks [32].

Molecules 2024, 29, 2075 9 of 27 
 

 

dm−3 range are reported [33]. The reason for the lower LOD and LOQ in the LC-OCD-
OND system is due to the different TOC detector system used (see Section 2.2.2c). 

2.2.2. Precision and Trueness 
a. Certified reference material 

The repeatability of the HPSEC-TOC method was first verified using a certified ref-
erence material (KHP). A concentration of 2.50 mgC dm−3 was measured in duplicate on 
six different days over a period of 20 weeks (Figure 6). No statistical difference was found 
between the six different measurements. The RSD (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛ൗ × 100%) 
over all measurements was 1.61% and the recovery of KHP was 101 ± 2%. This is within 
the acceptance criterium (RSD < 15%), meaning that the system is precise and accurate in 
measuring KHP concentrations over a period of at least 20 weeks [32]. 

 
Figure 6. Repeatability of the HPSEC-TOC method using a 2.50 mgC dm−3 potassium hydrogen 
phthalate standard solution over a time span of 20 weeks in 2022. No statistical difference was ob-
served over the different weeks. The relative standard deviation over all measurements was 1.61% 
and the recovery was 101 ± 2%. Error bars show the standard deviation from duplicate analysis of 
independent samples. 

b. Model compounds 
Next to the certified reference material, the repeatability of the analytical method was 

determined by measuring 3 model compounds (sodium alginate, fumaric acid and iso-
propyl alcohol), eluting in respectively the high, medium and low MW fraction, at 0.4 and 
4.0 mgC dm−3. The RSDs at 0.4 mgC dm−3 were 3.73%, 4.39% and 1.53% for sodium algi-
nate, fumaric acid and isopropyl alcohol respectively. The RSDs at 4.0 mgC dm−3 were 
0.56%, 0.26% and 0.51% (19/09 on Figure 7). All RSDs are <15% and within the acceptance 
criterium for precision [32]. 

The intra-repeatability was determined by measuring the same concentrations of the 
three model compounds two days later (21/09 on Figure 7). No significant differences 
could be found (p > 0.05) between measurements executed on different days, confirming 
the reliability of the method. 

Figure 6. Repeatability of the HPSEC-TOC method using a 2.50 mgC dm−3 potassium hydrogen
phthalate standard solution over a time span of 20 weeks in 2022. No statistical difference was
observed over the different weeks. The relative standard deviation over all measurements was 1.61%
and the recovery was 101 ± 2%. Error bars show the standard deviation from duplicate analysis of
independent samples.

b. Model compounds

Next to the certified reference material, the repeatability of the analytical method
was determined by measuring 3 model compounds (sodium alginate, fumaric acid and
isopropyl alcohol), eluting in respectively the high, medium and low MW fraction, at 0.4
and 4.0 mgC dm−3. The RSDs at 0.4 mgC dm−3 were 3.73%, 4.39% and 1.53% for sodium
alginate, fumaric acid and isopropyl alcohol respectively. The RSDs at 4.0 mgC dm−3 were
0.56%, 0.26% and 0.51% (19/09 on Figure 7). All RSDs are <15% and within the acceptance
criterium for precision [32].
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meaning that the main cause of the incomplete recovery (25%) is a low oxidation yield, 
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Figure 7. (Intra-)repeatability test for the HPSEC-TOC method with molecules eluting in the high
(sodium alginate), medium (fumaric acid) and low (isopropyl alcohol) molecular weight (MW) ranges
at a concentration of (a) 0.4 mgC dm−3 and (b) 4.0 mgC dm−3 measured on two different days in
2022 (19/09 = solid, 21/09 = crossed bars). No statistical differences were observed between the days.
Error bars show the standard deviation from triplicate analyses of independent samples.
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The intra-repeatability was determined by measuring the same concentrations of the
three model compounds two days later (21/09 on Figure 7). No significant differences
could be found (p > 0.05) between measurements executed on different days, confirming
the reliability of the method.

However, Figure 7a shows that for all compounds, the measured concentration is
lower than the targeted concentration (0.40 mgC dm−3), while for higher concentrations
(4.0 mgC dm−3), this is specifically the case for sodium alginate. The exact recoveries
of each compound are presented in Table 1. Incomplete recoveries might be caused by
insufficient oxidation, but also by the interactions of a molecule with the stationary phase.
It is expected that a low recovery of a hydrophobic molecule is contributed by strong
interactions with the stationary phase while a poor recovery of a hydrophilic, but larger
and more complex molecule is mainly allocated to a low oxidation yield. In this regard,
larger molecules such as tannic acid have already been reported to have lower oxidation
yields during UV/persulfate oxidation (or wet-chemical oxidation), while small molecules
such as glucose, phenylalanine or isopropyl alcohol reach oxidation efficiencies between
90–100% [47,48]. The observed recoveries in this work are in line with the findings of Li et al.
(2019), who investigated the recovery of 14 nitrogen-containing organic model compounds
such as humic acid, proteins, polysaccharides and amino acids with LC-OCD-OND [46].
These authors found that the majority of these compounds exhibited recoveries between
approximately 70 and 105%. However, compounds with higher MWs deviated from this
range, achieving recoveries of no more than 25–50%. This was primarily attributed to the
lower UV oxidation efficiency in the Gräntzel reactor of the LC-OCD-OND system for these
complex, high molecular weight compounds [49]. To determine if the incomplete recoveries
are due to adsorption or oxidation, a new 4.0 mgC dm−3 solution of sodium alginate,
fumaric acid and isopropyl alcohol was first measured in the HPSEC-TOC set-up where
the column is by-passed, and then compared with a normal HPSEC-TOC measurement
to assess the fraction that is adsorbed on the column (Figure 8). The recovery of sodium
alginate in by-pass reached 75% instead of 65% in normal operation, meaning that the main
cause of the incomplete recovery (25%) is a low oxidation yield, while interactions with
the stationary phase are rather small (10% recovery loss). Although a recovery close to
100% is preferred, it was still higher than 50%, complying with reported guidelines [32].
No difference in organic matter concentration is observed for fumaric acid and isopropyl
alcohol suggesting that these compounds are completely oxidized in the detector and
possible losses in recovery are due to interactions with the stationary phase. Figure S7
shows the absolute losses in recovery (expressed as mgC dm−3) for the different compounds.
Here, the absolute loss of sodium alginate increases almost linearly with concentration
(≈8× more compound loss with a 10× increase in concentration), while the absolute losses
of fumaric acid only doubles with a 10-fold increase in concentration. This implies that
for fumaric acid, a small share of this compound is lost by interaction with the column,
resulting in a higher portion of recovery loss (expressed in %) at lower concentrations.

Table 1. Recovery of sodium alginate, fumaric acid and isopropyl alcohol after passing through the
HPSEC-TOC for 0.4 and 4.0 mgC dm−3 after two different days in 2022.

Recovery (%) Sodium-Alginate Fumaric Acid Isopropyl Alcohol
19/09 21/09 19/09 21/09 19/09 21/09

0.4 mgC dm−3 59 ± 2 58 ± 4 70 ± 3 72 ± 4 90 ± 1 92 ± 1
4.0 mgC dm−3 67 ± 0.4 68 ± 0.8 94 ± 0.2 94 ± 1 100 ± 10 100 ± 1
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c. Real water samples

A final check for the repeatability was done by analysing a Blankaart water sample six
times. The RSDs were 4.63%, 1.59% and 5.42% for the high, medium and low MW fraction.
The RSD of the total DOC was 1.53%, confirming the precision of the method for real
water samples (RSD < 15%) [32]. Huber et al. (2011) also examined the repeatability of the
LC-OCD-OND technique with real water samples and reported RSDs of 1.5%, 3.5%, 1.7%,
4.9%, 19.5% and 7.3% for the total DOC, biopolymers, humic substances, building blocks,
low MW acids and neutrals [21], while Dulaquais et al. (2018) reported RSDs for seawater
of 3%, 9%, 2%, 8%, 5% for total DOC, biopolymers, humic substances, building blocks and
low MW neutrals. The relatively high deviations for LC-OCD-OND for especially the low
MW acid fraction in fresh waters, which is close to the acceptance level of 20% near LOQ,
illustrate that making a reproducible and reliable differentiation between five fractions is
challenging [32].

The recovery of TOC for real water samples was assessed by analysing Blankaart
water at different stages in the drinking water treatment plant and comparing the total TOC
concentration measured with HPSEC-TOC (with the Sievers® M9) with the concentration
obtained with the Shimadzu TOC VCSH which is used as a reference. The recovery was
80 ± 10% (Table S3) and in line with the results for the model compounds. Next, the
performance of the Sievers® M9 in online mode and the performance of the Gräntzel
thin-film reactor in online and offline mode were benchmarked against the total TOC
concentration from the offline Sievers® 900 as a reference for detectors using chemical
oxidation. However, it should be noted that the recoveries obtained for the Sievers®

M9 compared to the Sievers® 900 were similar as compared to the Shimadzu TOC VCSH
(Table S3 and Figure 9). For this, different Blankaart water samples were used which were
obtained via membrane treatment.

The Gräntzel thin-film reactor obtained recoveries between 48–96% in offline mode
(solely due to incomplete oxidation) and between 40–82% in online mode (combination
of oxidation and adsorption) which are consistently lower than the recoveries from the
Sievers® M9 in online mode. Especially in samples with low carbon concentration (i.e., BL,
Figure 9), the yield was ≤50%. This shows that a complete recovery of organic molecules is
difficult to reach. Organic matter can adsorb to the column, but the oxidation efficiency
during online measurements can also be impeded by the limited residence time of the
sample in the detector. Since the same type of SEC column and operating conditions
were used in online mode for the two types of detectors, it is assumed that the percentage
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of organic matter that adsorbed onto the column is similar. The different recoveries are
therefore explained by the fundamental differences in both oxidation and detection between
the two detectors. For oxidation, the Gräntzel thin-film reactor uses UV radiation where,
in the Sievers® M9, ammonium persulfate is dosed in addition to UV radiation which
promotes the oxidation and therefore yields higher recoveries. However, the detection of
CO2 through infra-red in the Gräntzel thin-film reactor is much more sensitive compared to
the detection through conductivity in the Sievers® M9, which probably caused the higher
LOD and LOQ values of the HPSEC-TOC system in this work.
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detector as a reference of 100% for chemical oxidation. Solid bar = Sievers® M9 detector in online
mode. Crossed bar = Gräntzel thin-film reactor in online mode. Lined bar = Gräntzel thin-film
reactor in offline mode. BH= similar Blankaart samples with high carbon concentrations taken during
microfiltration and from the feed of nanofiltration (n = 5). BL = similar Blankaart water samples with
low carbon concentration after nanofiltration treatment (n = 3). Absolute values are found in Table S4.

These observations are confirmed in the work of Lankes et al. (2009) where different
organic carbon detectors are evaluated in their ability to oxidize NOM samples from
aquatic environments [50]. The detector using high-temperature catalytic oxidation with
infrared detection was assumed to yield a 100% oxidation efficiency of all compounds
inside the sample [49,50]. This value was compared on the one hand with a UV-promoted
wet-chemical oxidation using ammonium peroxodisulfate, which is similar to the oxidation
used in this work, and on the other hand with a UV oxidation in a Gräntzel thin-film reactor.
The Gräntzel thin-film reactor was only able to find between 70.9–93.0% of organic carbon
compared to the catalytic oxidation, where it was between 85.3–105.2% for the wet-chemical
oxidation, confirming the importance of persulfate addition to improve the oxidation [50].
This proves that the selected detector in our study is the most accurate one to quantify
NOM in fresh water samples.

2.2.3. Measurement Uncertainty

The results (in duplicate) from ten different real water samples in terms of average
concentration of each defined MW fraction and their respective deviation (d) are presented
in Table 2 (concentrations lower than the LOQ are not reported). Treated samples were
measured after a membrane filtration. The relative measurement uncertainty Urw for the
high, medium and low MW NOM fractions are 3.86%, 3.22% and 5.17% respectively. These
results show that the low MW integration range is the most challenging fraction in terms
of measurement uncertainty. The low MW fraction is a tail rather than a peak, being very
wide and not high which might explain the higher deviations found for this fraction. The
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obtained deviations are in line with the deviations reported for LC-OCD-OND analyses
(see also Section 2.2.2c). Moreover, the concentration of the low MW fraction is relatively
low in untreated surface water compared to e.g., the medium MW fraction. Its increased
Urw can be justified by the Horwitz ratio, which is a measure for the performance of an
analytical method with respect to its trueness [51]. When applying the Horwitz equation
on the concentration measured in e.g., sample D from Table 2, the acceptable coefficients of
variation (CV) for the medium and low MW fraction are 17 and 22% respectively, which is
far above the obtained values from our study. The selected samples for the description of the
measurement uncertainty span a large variety of fresh water sources which were subjected
to different treatment procedures. Since the overall relative measurement uncertainties
do not exceed 4% for the high and medium MW fraction and is below 6% for the low
MW fraction, it can be concluded that the HPSEC-TOC method is reliable and thus widely
applicable for the analysis of fresh water samples having varying characteristics.

Table 2. Average concentration of the high, medium and low MW fraction of routine duplicate
analysis of 10 different (treated) real water samples, with their respective d-values and acceptable
coefficient of variation (CV) according to the Horwitz equation.

Sample Average Concentration (mgC dm−3) d (%) CV (%)

High MW Medium
MW Low MW High

MW
Medium

MW
Low
MW

High
MW

Medium
MW Low MW

A Blankaart 1 0.616 5.170 1.220 2.44 0.43 5.49 17 12 16
B Coupure
microfiltrated 0.597 2.605 1.573 3.69 3.72 2.10 17 14 15

C Blankaart
microfiltrated 0.554 4.407 1.109 6.50 0.41 9.56 17 13 16

D tap water <LOQ a 0.772 0.109 n.a.b 3.24 11.01 n.a. b 17 22
E Essen groundwater <LOQ a 1.365 0.386 n.a. b 0.22 10.12 n.a b 15 18
F Spannenburg
groundwater <LOQ a 6.543 0.723 n.a. b 1.86 4.28 n.a b 12 17

G Mol groundwater <LOQ a 0.524 0.365 n.a. b 1.72 0.55 n.a. b 18 19
H Merksplas
groundwater <LOQ a 1.879 0.326 n.a. b 1.97 4.29 n.a. b 15 19

I Oud-Turnhout
groundwater <LOQ a 2.122 0.443 n.a. b 1.23 8.58 n.a. b 14 18

J Blankaart
nanofiltrated 0.314 0.090 2.056 0.64 6.67 0.63 19 23 14

a Below limit of quantification (LOQ); b not applicable.

Next, Blankaart water was spiked with 2.5 mgC dm−3 isopropyl alcohol. This molecule
was selected since it elutes in the low MW integration zone which is the most challenging.
It is thus expected that the measurement uncertainty on the bias and the expanded mea-
surement uncertainty obtained by spiking isopropyl alcohol in a real water sample will
result in a poorer result compared to those resulting from spiking a molecule in the high
or medium MW integration range. The measurement uncertainty on the bias Ubias was
8.73%, while the Urw for the low MW fraction was 5.17%. The resulting overall expanded
measurement uncertainty U was 20.30%, which is in line with the expectation based on the
previous validation results in this work. These values should be taken into account when
analysing unknown samples but fall within acceptable ranges as indicated in Table 2.

2.3. Sample Stability

Coupure and Blankaart water were pre-filtered with a 6 µm filter and subsequently
filtered with a 0.1 µm microfiltration membrane filter to remove the particulate organic
matter without loss of dissolved organic carbon (Figure S8). Samples were kept in the
fridge (5 ◦C) and freezer (−18 ◦C) for 7 weeks to find the best way to preserve fresh water
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samples. The change in concentration over time for each MW fraction can be found in
Figures 10 and 11.
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The high MW fraction underwent no change in the fridge for at least 4 weeks for
both types of surface water. In week 5 and week 7, a significant change in concentration
occurred compared to week 0 and/or week 1. Although a small decrease in concentration
in Coupure water (in the fridge) is seen from week 2, it only becomes significant from week
5 on. This decrease is also observed in the freezer samples for both waters. The decrease
is only significant in week 3 and week 7 for Blankaart water and in week 5 for Coupure
water. Therefore, when research interest goes to the high MW fraction, samples can be kept
maximum 4 weeks in the fridge or 3 weeks in the freezer to maintain reliable results.

The medium MW fraction appears to stay stable in the fridge over the entire measure-
ment period. However, Coupure water samples measured in week 4 and week 7 show
more intra-variability (apparent from the high standard deviations). On the other hand,
a significant decrease in concentration is observed from week 4 when Coupure water is
kept in the freezer, while Blankaart water showed no changes. Since a higher variability
was seen from week 4 onwards in samples with the same age, it is advised to not keep



Molecules 2024, 29, 2075 15 of 26

the samples for more than 4 weeks in the fridge nor the freezer for stable concentration
measurements of the medium MW fraction in time.

The low MW fraction demonstrated significant variability between fridge samples
measured in the same week (high standard deviations), as well as in different weeks.
Blankaart water samples show one outlier in the first week and a high deviation between
the measured samples in week 5, while the concentration in Coupure water decreased
significantly in week 3 and showed high intra-variability in week 7. In the freezer samples,
a significant decrease occurred in Blankaart water in week 2, 3 and 5 and from week 4 on in
Coupure water. Consequently, analysis for this fraction should be done as soon as possible
with a maximum delay of 2 weeks when the samples are stored in the fridge and a delay of
1 week when they are stored in the freezer. Low MW compounds are known to be easily
consumed by micro-organisms, which might explain the instability of this fraction [52–54].

The TOC concentration (i.e., the sum of the fractions) changed significantly from
the moment one of the individual fractions started to change, which in this case was the
low MW fraction (Figure S9). The concentration in Blankaart samples from the fridge is
significantly different in week 2 and week 3 compared to week 1, which is explained by the
outlier seen for week 1 in the low MW fraction. The total concentration in Coupure samples
from the fridge decreased from week 3, which is also the point where the concentration
of the low MW fraction started decreasing. For the freezer samples, the decrease starts
occurring from week 3 on for Blankaart water and from week 4 on for Coupure which is in
agreement with the change seen in the low MW fraction. Therefore, analysis of TOC should
be performed in the first 2 weeks after collection, both with fridge and freezer storage.

Furthermore, the pH of the samples remained more stable in the fridge than in the
freezer (Figure S10). A very small, but significant decrease in pH is noted after three
(Coupure) or four (Blankaart) weeks in the fridge. In the freezer, the samples tend to have a
higher pH together with a very high variability in samples with the same storage time. Ion
concentrations did not differ substantially from each other when stored in the fridge nor
the freezer (Figures S11 and S12).

Overall, it is preferred to preserve fresh water samples in the fridge, since TOC
concentrations and pH were more stable and less variable than for samples from the freezer.
In week 7, turbidity was measured, because the freezer samples became more cloudy
than the fridge samples. Indeed, the turbidity of Blankaart samples was almost 20 times
higher in the freezer compared to the fridge (0.80 NTU vs. 15 NTU), indicating a change in
water characteristics when freezing the samples. Significant and sometimes unpredictable
changes in the optical properties or aromaticity of NOM by the process of freezing and
thawing was also reported in literature [55–59]. Therefore, keeping samples in the fridge
for two weeks seems the most appropriate method to ensure the stability of the sample.
Sample storage in the fridge was also the preferred method in other studies investigating
fresh water, tropical water or water from peatlands [55–59].

2.4. Application of the HPSEC-TOC Method in a Drinking Water Treatment Plant

The validated HPSEC method was put into practice to monitor the NOM removal in
the drinking water treatment plant of De Blankaart. The treatment consists of a biological
nitrification, coagulation, sand filtration, activated carbon and UV/chlorine disinfection
(Figure 12). The sampling was executed in March 2023 and samples were measured within
2 weeks after sample collection.

The biological nitrification removed approximately 9.65% of the high MW fraction
and 10.9% of the low MW fraction. No significant removal of the medium MW fraction was
observed in this step. Coagulation was the most efficient, since it removed 70.3% of high
MW fraction, 63.1% of the medium MW fraction and 7.20% of the low MW fraction. This
is in accordance with other reported data using HPSEC-OCD having 32–50% biopolymer
removal, 32–50% humic substances removal, 37–57% building blocks removal and 9–21%
low MW neutral removal. The low MW acid fraction was hard to quantify due to the low
concentration in the water [60,61]. The sand filter with intermediate chlorination could
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remove 55.2% of the remaining high MW fraction, 11.4% of the medium and 18.1% of the
low MW fraction. Activated carbon was very efficient in removing the low MW fraction
(33.4%) and part of the medium MW fraction (5.94%), which is in line with the findings
of Gibert et al. (2013) [62], who investigated the removal of NOM fractions with HPSEC-
OCD in a drinking water treatment plant using activated carbon and reported the highest
removal efficiency for the low and intermediate MW NOM fractions. However, after the
activated carbon, the concentration of the high MW fraction increased by 47.7%. This is a
common phenomenon, since the biological activity within the activated carbon can excrete
extracellular polymeric substances, causing a release of high MW molecules in the treated
water [63,64]. Finally, UV/chlorine disinfection degraded 14.5% of the remaining high MW
fraction, 3.6% of medium MW fraction and 8.8% of low MW fraction. This example shows
the effectiveness of the validated HPSEC system to provide a fast and simple view on the
treatment efficiency of the plant for the three fractions.
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3. Materials and Methods
3.1. Chemicals

All solutions were prepared with ultrapure water from a MilliQ Millipore system.
Sodium di-hydrogen phosphate (NaH2PO4, analytical grade) and potassium hydrogen
carbonate (KHCO3, analytical grade) were purchased from VWR chemicals. Di-sodium hy-
drogen phosphate (Na2HPO4) and sodium sulfate (Na2SO4) were purchased from Supelco
in analytical grade. 85% phosphoric acid (H3PO4) as well as sodium carbonate (Na2CO3)
and potassium carbonate (K2CO3) were purchased from Merck. Analytical grade KHP
powder was purchased from Acros organics, a certified reference material (50 mg dm−3

TOC KHP solution) was purchased from Chemlab. Pullulan and PEG were purchased from
the Polymer Standards Service; sodium alginate and isopropylalcohol (HPLC grade) were
obtained from Sigma-Aldrich and fumaric acid (for synthesis) from Merck.

The mobile phase was prepared by dissolving 2 mM NaH2PO4, 16 mM Na2HPO4
and 25 mM Na2SO4 in ultrapure water, the concentrated mobile phase with respectively
40 mM, 320 mM and 500 mM. Dilution series for KHP, Na2CO3 and K2CO3 were prepared
from a stock solution of 200 mgC dm−3, 80 mgC dm−3 and 70 mgC dm−3 respectively in
MilliQ. The 0.4 and 4.0 mgC dm−3 solution of the model compounds were prepared from a
stock solution containing a concentration of 200 mgC dm−3 of each compound. Sodium
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alginate was first dissolved by ultrasonication, followed by dissolution of fumaric acid
with ultrasonication. Isopropyl alcohol was added after stirring the solution overnight.

3.2. Water Sources

Several fresh water sources were used throughout the validation. The most frequently
used water source was reservoir water from De Blankaart, a drinking water treatment plant
from De Watergroep located in Diksmuide, Belgium. The reservoir is filled with water from
the Ijzer river. The second water source, Coupure canal water located in Ghent, Belgium,
was mostly used for IC removal tests (see Section 2.1.3) and for the sample stability tests
(see Section 2.3). For the method measurement uncertainty (see Section 2.2.3), groundwater
from Pidpa (located in Mol, Merksplas, Essen and Oud-Turnhout, Belgium), groundwater
from Vitens (located in Spannenburg, The Netherlands) and tapwater from Farys (collected
in Ghent, Belgium) were used. The main characteristics of the waters used is found in
Table 3, detailed characteristics are found in Tables S1, S2 and S5–S7.

Table 3. Average parameters (pH, conductivity, ultraviolet absorption at 254 nm (UV245), total organic
carbon (DOC) and inorganic carbon (IC)) of the water sources.

pH (−) Conduct. (µS
cm−1) UV245 (m−1)

TOC (mgC
dm−3)

IC (mgC
dm−3)

Blankaart 8.27 ± 0.03 800 ± 100 20 ± 3 7.7 ± 0.5 50 ± 10
Coupure 7.6 ± 0.7 800 ± 100 14 ± 4 8.5 ± 0.8 54 ± 5
Mol b 8.1 219 1.7 0.8 21.77
Merksplas b 7.7 430 7.2 2.7 50.33
Oud-Turnhout b 7.7 314 7.1 2.9 37.01
Essen b 8 344 5.9 2/0 40.74
Spannenburg 6.82 ± 0.08 660 ± 30 n.a. a n.a. a 120 ± 10
Farys 7.8 ± 0.2 500 ± 100 n.a. a 2 ± 1 40 ± 10

a not available; b Pidpa only reported median values for these waters.

3.3. Instruments
3.3.1. TOC Detectors

In this work, different TOC detectors (Table 4) were used for the validation. The
detectors were operated either in online, c.q. they were coupled to an HPSEC-column,
or offline mode, c.q. a bulk TOC measurement of the sample as such or via by-passing
of the HPSEC-column. The Sievers® M9 was used in the HPSEC-TOC configuration
to measure the organic carbon concentration during SEC analysis, but also when the
HPSEC column was by-passed. Here, organic matter is oxidized to CO2 by the addition
of ammonium persulfate and subsequent UV irradiation (185 and 254 nm). This CO2
passes through a gas selective membrane, is dissolved on the other side of the membrane
in demineralized water and subsequently measured through conductivity readings [44,65].
The Sievers® 900 measures CO2 through the same principle, but was only used for offline
measurements [65]. The Shimadzu TOC VCPN/VCSH uses high temperature (680 ◦C)
catalytic (platinum) oxidation for the conversion of organic matter into CO2 which is then
measured with infrared detection [66]. This detector was used for IC analysis as well as
offline TOC measurements. It is assumed that the high-temperature catalytic oxidation
yields a 100% oxidation efficiency. Lastly, the Gräntzel thin-film reactor oxidizes organic
carbon with a low-pressure mercury-vapor lamp and measures the produced CO2 with
infrared. It was used in this work both in online and offline mode.
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Table 4. Overview of the organic carbon detectors used in this work with their main characteristics.

Oxidation Detection Used Mode a

Sievers® M9
photochemical +

ammonium persulfate Conductometric Online/offline

Sievers® 900
photochemical +

ammonium persulfate Conductometric offline

Shimadzu TOC
VCPN/VCSH

High-temperature
catalytic combustion

Non dispersive
infrared offline

Gräntzel thin-film reactor Photochemical Infrared Online/offline
a Online = used in HPSEC-configuration, offline = bulk measurement/SEC column by-passed.

3.3.2. HPSEC-TOC System

The analyses were performed using an Agilent 1260 HPLC system coupled with a
TOC detector (Sievers® M9 portable TOC analyser, Suez, Paris, France). A hydroxylated
polymethylmethacrylate resin (TSK HW-50S, 20 mm × 250 mm, Tosoh Bioscience, South
San Francisco, CA, USA) was used as stationary phase for the chromatographic separation.
The mobile phase is a 4 mM phosphate buffer of pH 6.8 (2 mM NaH2PO4 and 1.6 mM
Na2HPO4) with adapted ionic strength (25 mM Na2SO4) at a flowrate of 1 cm3 min−1. The
choice for this mobile phase was motivated by the findings of Her et al. (2002). All samples
were pretreated with a 20-fold concentrated mobile phase solution to assimilate the ionic
environment of the samples (measured as conductivity) with that of the mobile phase to
suppress matrix effects [20]. A constant level of conductivity of the samples is favorable for
the organic carbon detection of the used system in this work, since the detection is based
on conductometric measurements, even though the selective membrane is designed to
theoretically only let the CO2-gas permeate. Samples were filtered with a 0.45 µm filter
(Chromafil PET, Macherey-Nagel, Düren, Germany) before injection of 1350 mm3 in the
system. This specific injection volume was used to optimize the sensitivity of the HPSEC-
TOC system without overloading the SEC column [20]. The TOC analyser acidifies the
influent (6 M phosphoric acid, 7 mm3 min−1) whereafter the IC, present as CO2 under the
acidic conditions, is removed through a vacuum degasser. The organic carbon is converted
into CO2 by a combination of UV radiation (185 and 254 nm) and ammonium persulfate
addition as oxidizing reagent (15 w/v%, 4 mm3 min−1). In the measuring module of the
TOC analyser, the formed CO2 passes through a selective membrane into the conductivity
measuring cell [67]. In the turbo mode of the analyser, a datapoint is collected every 4 s. It
must be noted that total exclusion of other ions such as Cl− from the measuring module
by the selective membrane cannot be guaranteed, making this detection technique less
reliable for the measurement of samples with high conductivity such as marine waters. A
universal interface box (UIB-II, Agilent, Santa Clara, CA, USA) was used to convert the
current signal of the TOC analyser to a voltage signal, which is processed in the Agilent
Open lab software (version 2.8). Three integration ranges were determined based on the
analysis of surface water samples and will be referred to as the high, medium and low MW
fraction of the sample. These ranges give both qualitative and quantitative information.

3.4. Sample Preparation

All samples measured in this work were subjected to the following procedure before
HPSEC-TOC analysis:

1. The sample (aliquot of minimum 8 cm3 for practical reasons) was transferred into a
TOC vial.

2. The pH (InoLab pH Level 1) of the sample was adjusted to pH 6 using 1 M H3PO4.
3. The sample was purged with N2-gas at 70 cm3 min−1 for at least 30 min.
4. A 20-times concentrated mobile phase solution was gradually added with a mi-

cropipette to the sample to assimilate the conductivity of the sample to the one of the
mobile phase (5.3 mS).
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5. A 0.45 µm filter (Chromafil PET-45/15, Macherey-Nagel) was pre-filtered with 2 mL
sample to remove possible impurities of the filter whereafter another 2 mL was filtered
and transferred into an HPLC vial.

3.5. Method Development
3.5.1. Inorganic Carbon Removal

The Sievers® M9 TOC detector is equipped with a tube degassing unit to remove IC
before TOC measurements. However, in turbo mode, the capacity of this unit is insufficient
to completely remove the IC from the samples during the HPSEC-TOC analysis, resulting
in interference of the remaining IC with the TOC measurements. This was noticed by
comparing the HPSEC-TOC chromatogram of a 40 mgC dm−3 KHCO3 sample prepared in
MilliQ with a chromatogram of Blankaart water (Figure 3).

The efficiency of the degassing unit to remove IC was therefore investigated using IC
standards. The standards ranged between 2.5 and 80 mgC dm−3 and were prepared using
Na2CO3 (5, 15, 25, 40, 60, 80 mgC dm−3) or K2CO3 (2.5, 7.5, 10, 20, 30, 50, 70 mgC dm−3) in
MilliQ. The standards were measured with the Shimadzu TOC VCPN to determine the exact
IC concentration of the prepared standards and with the HPSEC-TOC system to determine
the amount of IC that was not removed by the degassing unit. The removal efficiency was
thereafter calculated as

Removal (%) = (ICShimadzu − ICHPSEC−TOC)/ICShimadzu × 100% (1)

Next, Coupure water was adjusted to different pH values (5, 6, 7) with a 0.1 M
H3PO4 solution. The water sample was either purged with N2-gas (Air Liquide, 99.999%;
flowrate = 70 cm3 min−1) or sonicated in vacuum for 0, 10, 20, 30, 40, 50 or 60 min where-
after IC concentrations were measured (Shimadzu TOC VCPN) to determine which condi-
tions can be used as sample pretreatment to completely remove the IC.

3.5.2. Concentration and Molecular Weight Calibration of the HPSEC-TOC System

The TOC analyser was calibrated using KHP standards of 0.03, 0.04, 0.05, 0.06, 0.16,
0.30, 0.40, 0.80, 1.00, 1.20, 3.00, 4.00, 6.00, 8.00 and 10.00 mgC dm−3 in MilliQ. Pullulan and
PEG standards were used for the MW calibration of the chromatographic system. Pullulan
standards included 0.180, 0.342, 0.504, 1.03, 6.30, 9.80, 22.0 and 47.1 kDa, PEG standards
included 0.238, 0.329, 0.599, 1.03, 1.53, 4.11, 3.45, 5.80, 11.4, 18.6, 25.3 and 44.0 kDa.

3.6. Method Validation

The method validation comprises the complete HPSEC-TOC method, including variations
attributed by the instrument and by the manipulation or preparation of the water samples.

3.6.1. Limit of Detection and Limit of Quantification

The LOD and LOQ of the method were determined by measuring a 250 µgC dm−3

KHP standard 10-fold. The LOD and LOQ were calculated as respectively 3 and 10 times
the standard deviation on the mean value of the 10 measured concentrations [68].

3.6.2. Precision and Trueness

a. Certified reference material

A 2.5 mgC dm−3 KHP standard solution, prepared from a certified reference standard
(50 mg dm−3 TOC) was measured six times over a period of 20 weeks in duplicate. The
RSD and recovery was assessed. A non-parametric Kruskal-Wallis test was used followed
by a Dunn’s multiple comparisons test (p-value = 0.05) to verify if the measurement was
constant over time.
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b. Model compounds

Sodium alginate, fumaric acid and isopropyl alcohol were spiked in MilliQ water at 0.4
mgC dm−3 and 4.0 mgC dm−3 for each compound to represent water samples having a low
and rather high TOC content. The compounds were selected based on their difference in
MW, each eluting in a particular MW fraction. The chemical structure and main properties
of these three molecules are given in Table S8. Sodium alginate has the highest and
isopropyl alcohol the lowest MW. Samples of both concentrations were divided into six
individual vials, prepared and measured on the same day to determine the repeatability of
the method in terms of RSD and recovery. By preparing and measuring three extra vials
of each spiked concentration on a second day, the intra-repeatability was verified with a
non-parametric Mann-Whitney U test to compare the two days (p-value = 0.05).

Adsorption of the compounds onto the HPSEC column was assessed only with the
sample of high TOC content (4.0 mgC dm−3 spiked solution of each individual compound).
The solution was first analysed with HPSEC-TOC and next with the Sievers® M9 in offline
mode, meaning that the column is by-passed. The difference in the concentration of each
compound via both analysis is the part that is adsorbed onto the column.

c. Real water samples

Blankaart water was divided into six individual vials, prepared and measured to
determine the repeatability of a real water sample in terms of RSD for each fraction.
Furthermore, the total recovery of TOC with the HPSEC-TOC method was verified. For
this, different samples of Blankaart water during drinking water treatment were taken
and analysed with the Shimadzu TOC VCSH and compared with the TOC concentration
measured during a HPSEC-TOC analysis. The recovery was calculated as:

Recovery (%) = TOCHPSEC−TOC/TOCShimadzu (2)

Next, a comparison was made between the Sievers® M9 in online mode with the
Gräntzel thin-film reactor both in online and offline mode. For this, samples were taken
during a membrane treatment of Blankaart water. The treatment consisted of a filtration
with a 6 µm filter (Whatmann filter paper, grade 3) followed by a 0.1 µm microfiltration
(Synder Filtration MV0.1, flatsheet, Vacaville, CA, USA) and nanofiltration (Synder Filtra-
tion NFX, flatsheet) in a cross-flow filtration. Total TOC concentrations were measured
with the Sievers® 900 offline detector. It was assumed that this detector oxidized and thus
recovered all organic carbon with chemical oxidation (see Section 2.2.2c). The recoveries in
TOC concentration of these three systems were calculated based on the measurement with
the Sievers® 900.

3.6.3. Method Measurement Uncertainty

The expanded measurement uncertainty of the method was determined by combining
the in-lab reproducibility and the relative measurement uncertainty. First, ten different
real water samples were analyzed, representing typical HPSEC-TOC routine analysis.
The samples include Blankaart water (including microfiltered and nanofiltered samples),
microfiltered Coupure water, groundwater from Pidpa (located in Mol, Merksplas, Essen
and Oud-Turnhout, Belgium), groundwater from Vitens and tapwater from Farys.

The concentration for the high, medium and low MW fraction was determined in
duplicate for each sample. The deviation (d) on the average value of the duplicate analysis
was used in this case instead of the standard deviation which is typically used to express
the variation of the average value for bigger data sets having a normal distribution:

d (%) = |value1 − value2|/(value1 + value2)/2 × 100% (3)

The relative mean range (%Rmean) was calculated as the average of d for the ten
samples. The in-lab reproducibility of routine samples could be determined based on this
data by calculating the RSD for each fraction, based on the relative differences of each
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fraction for every set of duplicates (RSDr = %Rmean/1.128) [69]. An additional deviation factor
(RSDrb, value has been set at 2.5%) was added to the RSDr to overcome differences related
to analysis results gathered over a longer period of time and in this specific case to account
for different types of water samples [69]. The overall relative measurement uncertainty on
the in-lab HPSEC-TOC method is defined as Urw:

Urw(%) =

√(
RSD2

r + RSD2
rb

)
(4)

This value is compared to the coefficient of variation (CV) determined by the Horwitz
equation which is a measure for the performance of an analytical method with respect to
its trueness [51]:

CV = 0.02 × Concentration−0.1505 (5)

On the other hand, the relative measurement uncertainty on the bias (Ubias) from recov-
ery experiments is calculated by analyzing a real water sample spiked with 2.5 mgC dm−3

isopropyl alcohol (IPA) in 10-fold and determining the bias (bi) of each sample [69]:

Ubias (%) =
√

∑(b2
i /10) (6)

With bi = [IPA]measured,sample i − [IPA]added (7)

The expanded measurement uncertainty (U) of the HSPEC-TOC method is calculated
based on both the Urw and the Ubias [69]:

U(%) = 2
√(

U2
rw + U2

bias
)

(8)

3.7. Sample Stability

The optimal conditions to preserve surface water samples for HPSEC-TOC analysis
were determined by comparing two preservation conditions for two different surface
waters, Blankaart and Coupure water respectively. Both waters were sampled on the
same day, pre-filtered with a 6 µm filter (Whatmann filter paper, grade 3) and subsequently
filtered with a 0.1 µm microfiltration membrane (Synder Filtration V0.1, cross-flow filtration)
to remove the suspended and particulate organic matter. Filtration of the water within 24 h
of sample collection impedes chemical and biological driven changes of the water [58]. The
waters were stored in separate amber glass TOC vials in the fridge (5 ◦C) or freezer (−18 ◦C).
The vials were pre-washed with 0.01 M HCl acid to prevent organic contamination [45].
HPSEC-TOC and pH analysis of each water were performed in duplicate on two different
vials from both the fridge and freezer after 1, 2, 3, 4, 5 and 7 weeks. Ion analyses were
conducted in week 1, 4 and 7 for both fridge and freezer samples in duplicate, using a
Dionex Aquion Ion Chromatography System (ICP, Thermo Fisher, Waltham, MA, USA)
equipped with a Dionex IonPac AS22 column for the anions and an ICP IRIS Intrepid II XSP
(Thermo Fisher) system for the cations. Turbidity of the samples was measured in week
7 (Hanna Instruments, Washington, DC, USA, HI98703). All the results were compared
through a permutation test which takes into account the exchangeability of the samples.
The null hypothesis (H0) assumed for a certain parameter that no change occurred between
two weeks, meaning:

H0 : Mx = My (9)

With Mx the median for week x and My the median for week y. The observed data
from all weeks were randomly rearranged and the absolute difference in medians between
two weeks was calculated for each rearrangement (100,000 iterations for HPSEC-TOC and
pH results, 90 iterations for ion results). The p-value obtained from the permutation test
represents the probability of obtaining the observed values assuming H0 is true. This
p-value is compared to a significance level of 0.05. If the p-value is lower than this, H0 is
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rejected, meaning the two weeks under investigation differed significantly for a certain
parameter. The permutation test was executed using Rstudio.

4. Conclusions

This work validated an optimized HPSEC-TOC method with the following outcome:

1. Both PEG and pullulan standards have been found suitable for the calibration of the
system and as quality control for the separation performance of the SEC column.

2. Removal of IC by acidification of the sample to pH 6 (H3PO4) and subsequent purging
prior to analysis avoids IC interference during the HPSEC-TOC method and does not
modify the organic matter composition.

3. The LOD of the system is 19.0 µgC dm−3. The RSDs and recoveries for model
compounds are respectively between 0.26–5.4% and 60–100%. For real water samples,
the recovery was in general about 80%.

4. The relative measurement uncertainty Urw on routine analysis of real water samples is
between 3.22–5.17%, while the measurement uncertainty on the bias Ubias, determined
using a surface water sample spiked with isopropyl alcohol is 8.73%.

5. Analysis of a sample should be done after a maximum preservation of two weeks in
the fridge to maintain the initial composition and characteristics of the water sample.
Preservation in the freezer should be avoided.

The validated HPSEC-TOC method is an accessible, comprehensive and efficient tool
for the characterization and quantification of NOM fractions in (treated) ground and surface
water. The use of a single detector reduces the equipment cost and data-processing time
extensively, while still providing a valuable addition to the more commonly used bulk
techniques, such as UV and offline TOC. It allows an efficient monitoring of the water
quality, and change thereof, in both research and industrial environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29092075/s1. Table S1. General water parameters from
Blankaart water measured over the course of 2 years (2022–2023). Table S2. General water parameters
from Coupure river water measured over the course of 2 years (2020–2021). Table S3. Analysis of
Blankaart water during drinking water treatment from two different sampling rounds (March &
October 2023) with catalytic oxidation (Shimadzu TOC VCSH) and an HPSEC-TOC analysis using
Sievers® M9 detector in online mode. The catalytic oxidation is assumed to reach 100% oxidation
yield. The recovery of the HPSEC-TOC analysis is calculated based on the results of the catalytic
oxidation. Standard deviations arise from technical replicates (n = 3). Table S4. Organic carbon
concentration (mgC dm−3) of different reservoir samples during pre-filtration with a 6 µm and 0.1 µm
filter followed by a nanofiltration. The samples were measured through different TOC detectors.
Table S5. General ground water characteristics from Pidpa water measured in 2022 (reported values
are median). Table S6. General water parameters from Spannenburg taken over the course of
3 years (2021–2023). Table S7. General tapwater characteristics from Farys water measured in 2022 in
Ghent city. Table S8. Chemical structure and main properties of used model compounds. Figure S1.
Calibration of the HPSEC-TOC system with potassium hydrogen phthalate standards between 0.03
and 10.0 mgC dm−3. Fit: y = 1617 x with R2 = 0.999. Figure S2. Chemical structure of pullulan
(a), polyethylene glycol (b) and polystyrene sulfonate (c). Figure S3. HPSEC-TOC chromatogram
of a reservoir water sample with indication of apparent molecular weight according to calibration
on PEG and pullulan standards for the medium molecular weight fraction (see molecular weights
indicated at 50 and 60 min). The difference in apparent molecular weight between the two calibrants
does not exceed 10%, while for the high (40 min) and low (70 min) molecular weight fractions, the
differences are more pronounced. Figure S4. Visualisation of the integration limit separating the
medium MW zone from the low MW zone (vertical green line) on the chromatogram of a monovalent
low molecular weight acid (fumaric acid). Figure S5. Removal (%) of inorganic carbon in function
of inorganic carbon concentration (mgC dm−3) measured through HPSEC-TOC. The TOC detector
removes between 94–98% of inorganic carbon. Figure S6. HPSEC-TOC chromatogram of Blankaart
water, acidified to pH 6 (red), pH 4 (blue) and pH 2.5 (yellow) with subsequent N2-purging. Figure S7.
Absolute loss of sodium alginate, fumaric acid and isopropyl alcohol standards after HPSEC-TOC
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analysis at a concentration of 0.4 mgC dm−3 (red solid bars) and 4.0mgC dm−3 (blue crossed bars).
Figure S8. HPSEC-TOC chromatogram of raw (orange), buchner (6 µm; blue) and micro (0.1 µm;
green) filtrated Blankaart water. Before analysis, all samples are filtered through a 0.45 µm filter
to prevent the injection of any particles in the HPSEC-TOC system. Figure S9. Concentration
(mgC dm−3) of total organic carbon in the fridge (5 ◦C) and the freezer (−18 ◦C) of (a) Blankaart
and (b) Coupure in function of time (weeks). * = significantly different (p < 0.05) from week 1;
** = significantly different (p < 0.05) from week 0. Statistics were executed through a permutation
test. Error bars show the standard deviation of two independent samples. Figure S10. pH of (a)
Blankaart and (b) Coupure preserved in the fridge (5 ◦C) and the freezer (−18 ◦C) in function of
time (weeks). ** = significantly different (p < 0.05) from week 0. Statistics were executed through a
permutation test. Error bars show the standard deviation of two independent samples. Figure S11.
Ion concentrations in Blankaart water at week 1,4 and 7 preserved in the fridge (5 ◦C, solid bar) and
the freezer (−18 ◦C, crossed bar). (a) Fluoride, (b) Chloride, (c) Bromide, (d) Nitrate, (e) Phosphate, (f)
Sulphate, (g) Calcium, (h) Potassium, (i) Sodium, (j) Magnesium. * = significantly different (p < 0.05)
from week 1, ** = significantly different (p < 0.05) from week 0. Statistics were executed through a
permutation test. Error bars show the standard deviation of two independent samples. Figure S12.
Ion concentrations in Coupure water at week 1,4 and 7 preserved in the fridge (5 ◦C, solid bar) and
the freezer (−18 ◦C, crossed bar). (a) Fluoride, (b) Chloride, (c) Bromide, (d) Nitrate, (e) Phosphate, (f)
Sulphate, (g) Calcium, (h) Potassium, (i) Sodium, (j) Magnesium. * = significantly different (p < 0.05)
from week 1, ** = significantly different (p < 0.05) from week 0. Statistics were executed through a
permutation test. Error bars show the standard deviation of two independent samples.
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