Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,033)

Search Parameters:
Keywords = sirtuins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4843 KiB  
Review
Glucocorticoid-Mediated Skeletal Muscle Atrophy: Molecular Mechanisms and Potential Therapeutic Targets
by Uttapol Permpoon, Jiyeong Moon, Chul Young Kim and Tae-gyu Nam
Int. J. Mol. Sci. 2025, 26(15), 7616; https://doi.org/10.3390/ijms26157616 - 6 Aug 2025
Abstract
Skeletal muscle atrophy is a critical health issue affecting the quality of life of elderly individuals and patients with chronic diseases. These conditions induce dysregulation of glucocorticoid (GC) secretion. GCs play a critical role in maintaining homeostasis in the stress response and glucose [...] Read more.
Skeletal muscle atrophy is a critical health issue affecting the quality of life of elderly individuals and patients with chronic diseases. These conditions induce dysregulation of glucocorticoid (GC) secretion. GCs play a critical role in maintaining homeostasis in the stress response and glucose metabolism. However, prolonged exposure to GC is directly linked to muscle atrophy, which is characterized by a reduction in muscle size and weight, particularly affecting fast-twitch muscle fibers. The GC-activated glucocorticoid receptor (GR) decreases protein synthesis and facilitates protein breakdown. Numerous antagonists have been developed to mitigate GC-induced muscle atrophy, including 11β-HSD1 inhibitors and myostatin and activin receptor blockers. However, the clinical trial results have fallen short of the expected efficacy. Recently, several emerging pathways and targets have been identified. For instance, GC-induced sirtuin 6 isoform (SIRT6) expression suppresses AKT/mTORC1 signaling. Lysine-specific demethylase 1 (LSD1) cooperates with the GR for the transcription of atrogenes. The kynurenine pathway and indoleamine 2,3-dioxygenase 1 (IDO-1) also play crucial roles in protein synthesis and energy production in skeletal muscle. Therefore, a deeper understanding of the complexities of GR transactivation and transrepression will provide new strategies for the discovery of novel drugs to overcome the detrimental effects of GCs on muscle tissues. Full article
(This article belongs to the Special Issue Understanding Aging in Health and Disease)
Show Figures

Figure 1

31 pages, 13626 KiB  
Article
Epigenomics Nutritional Insights of Crocus sativus L.: Computational Analysis of Bioactive Molecules Targeting DNA Methyltransferases and Histone Deacetylases
by Alessia Piergentili, Paolo Roberto Saraceni, Olivia Costantina Demurtas, Barbara Benassi and Caterina Arcangeli
Int. J. Mol. Sci. 2025, 26(15), 7575; https://doi.org/10.3390/ijms26157575 - 5 Aug 2025
Abstract
Saffron (Crocus sativus L.) contains bioactive compounds with potential health benefits, including modulation of protein function and gene expression. However, their ability to tune the epigenetic machine remains poorly understood. This study employs molecular docking (AutoDock Vina 1.4), dynamics simulations, and MM/PBSA [...] Read more.
Saffron (Crocus sativus L.) contains bioactive compounds with potential health benefits, including modulation of protein function and gene expression. However, their ability to tune the epigenetic machine remains poorly understood. This study employs molecular docking (AutoDock Vina 1.4), dynamics simulations, and MM/PBSA calculations to investigate the interactions between four saffron-derived molecules—crocetin, beta-D-glucosyl trans-crocetin, picrocrocin and safranal—and four epigenetic enzymes—DNMT1, DNMT3a, HDAC2, and SIRT1. Our in silico screening identifies beta-D-glucosyl trans-crocetin, one of the saffron’s crocins, as a potential DNMT1 inhibitor. Along with crocetin, it also shows the ability to inhibit HDAC2 and activate SIRT1. Picrocrocin displays a resveratrol-like ability to activate SIRT1. None of the saffron-derived compounds effectively bind or inhibit DNMT3a. Among the tested molecules, safranal shows no interaction with the selected epigenetic targets. These findings highlight saffron’s nutriepigenomic potential and emphasize the need for functional validation within relevant in vitro and in vivo experimental methodologies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 1970 KiB  
Review
Resveratrol as a Therapeutic Agent in Alzheimer’s Disease: Evidence from Clinical Studies
by Nidhi Puranik, Meenakshi Kumari, Shraddha Tiwari, Thakur Dhakal and Minseok Song
Nutrients 2025, 17(15), 2557; https://doi.org/10.3390/nu17152557 - 5 Aug 2025
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and neuronal dysfunction. It is driven by the accumulation of amyloid-beta (Aβ) plaques, Tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. Resveratrol (RSV) is a natural polyphenolic compound found in [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and neuronal dysfunction. It is driven by the accumulation of amyloid-beta (Aβ) plaques, Tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. Resveratrol (RSV) is a natural polyphenolic compound found in grapes, berries, and red wine that has garnered attention for its potential neuroprotective properties in combating AD. The neuroprotective effects of RSV are mediated through the activation of sirtuins (SIRT1), inhibition of Aβ aggregation, modulation of Tau protein phosphorylation, and the attenuation of oxidative stress and inflammatory responses. RSV also enhances mitochondrial function and promotes autophagy, which are important processes for maintaining neuronal health. Preclinical studies have demonstrated its efficacy in reducing Aβ burden, improving cognitive performance, and mitigating synaptic damage; however, challenges such as poor bioavailability, rapid metabolism, and limited blood–brain barrier penetration restrict its clinical applicability. Recent technological advances and selected modifications are being explored to overcome these limitations and enhance its therapeutic efficacy. This review summarizes the multifaceted neuroprotective mechanisms of RSV, the synergistic potential of natural compounds in enhancing neuroprotection, and the advancements in formulation strategies aimed at mitigating AD pathology. Leveraging the therapeutic potential of natural compounds represents a compelling paradigm shift for AD management, paving the way for future clinical applications. Full article
(This article belongs to the Special Issue The Neuroprotective Activity of Natural Dietary Compounds)
Show Figures

Figure 1

24 pages, 5695 KiB  
Article
Impact of miR-181a on SIRT1 Expression and Senescence in Hutchinson–Gilford Progeria Syndrome
by Eva-Maria Lederer, Felix Quirin Fenzl, Peter Krüger, Moritz Schroll, Ramona Hartinger and Karima Djabali
Diseases 2025, 13(8), 245; https://doi.org/10.3390/diseases13080245 - 4 Aug 2025
Abstract
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal genetic disease caused by a silent mutation in the LMNA gene, leading to the production of progerin, a defective prelamin A variant. Progerin accumulation disrupts nuclear integrity, alters chromatin organization, and drives systemic [...] Read more.
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal genetic disease caused by a silent mutation in the LMNA gene, leading to the production of progerin, a defective prelamin A variant. Progerin accumulation disrupts nuclear integrity, alters chromatin organization, and drives systemic cellular dysfunction. While autophagy and inflammation are key dysregulated pathways in HGPS, the role of microRNAs (miRNAs) in these processes remains poorly understood. Methods: We performed an extensive literature review to identify miRNAs involved in autophagy and inflammation. Through stem-loop RT-qPCR in aging HGPS and control fibroblast strains, we identified significant miRNAs and focused on the most prominent one, miR-181a-5p, for in-depth analysis. We validated our in vitro findings with miRNA expression studies in skin biopsies from an HGPS mouse model and conducted functional assays in human fibroblasts, including immunofluorescence staining, β-Galactosidase assay, qPCR, and Western blot analysis. Transfection studies were performed using an miR-181a-5p mimic and its inhibitor. Results: We identified miR-181a-5p as a critical regulator of premature senescence in HGPS. miR-181a-5p was significantly upregulated in HGPS fibroblasts and an HGPS mouse model, correlating with Sirtuin 1 (SIRT1) suppression and induction of senescence. Additionally, we demonstrated that TGFβ1 induced miR-181a-5p expression, linking inflammation to miRNA-mediated senescence. Inhibiting miR-181a-5p restored SIRT1 levels, increased proliferation, and alleviated senescence in HGPS fibroblasts, supporting its functional relevance in disease progression. Conclusions: These findings highlight the important role of miR-181a-5p in premature aging and suggest its potential as a therapeutic target for modulating senescence in progeroid syndromes. Full article
(This article belongs to the Section Rare Syndrome)
Show Figures

Figure 1

30 pages, 3414 KiB  
Article
In Vitro Neuroprotective Effects of a Mixed Extract of Bilberry, Centella asiatica, Hericium erinaceus, and Palmitoylethanolamide
by Rebecca Galla, Sara Ferrari, Ivana Miletto, Simone Mulè and Francesca Uberti
Foods 2025, 14(15), 2678; https://doi.org/10.3390/foods14152678 - 30 Jul 2025
Viewed by 355
Abstract
Oxidative stress, driven by impaired antioxidant defence systems, is a major contributor to cognitive decline and neurodegenerative processes in brain ageing. This study investigates the neuroprotective effects of a natural compound mixture—composed of Hericium erinaceus, Palmitoylethanolamide, Bilberry extract, and Centella asiatica—using [...] Read more.
Oxidative stress, driven by impaired antioxidant defence systems, is a major contributor to cognitive decline and neurodegenerative processes in brain ageing. This study investigates the neuroprotective effects of a natural compound mixture—composed of Hericium erinaceus, Palmitoylethanolamide, Bilberry extract, and Centella asiatica—using a multi-step in vitro strategy. An initial evaluation in a 3D intestinal epithelial model demonstrated that the formulation preserves barrier integrity and may be bioaccessible, as evidenced by transepithelial electrical resistance (TEER) and the expression of tight junctions. Subsequent analysis in an integrated gut–brain axis model under oxidative stress conditions revealed that the formulation significantly reduces inflammatory markers (NF-κB, TNF-α, IL-1β, and IL-6; about 1.5-fold vs. H2O2), reactive oxygen species (about 2-fold vs. H2O2), and nitric oxide levels (about 1.2-fold vs. H2O2). Additionally, it enhances mitochondrial activity while also improving antioxidant responses. In a co-culture of neuronal and astrocytic cells, the combination upregulates neurotrophic factors such as BDNF and NGF (about 2.3-fold and 1.9-fold vs. H2O2). Crucially, the formulation also modulates key biomarkers associated with cognitive decline, reducing APP and phosphorylated tau levels (about 98% and 1.6-fold vs. H2O2) while increasing Sirtuin 1 and Nrf2 expression (about 3.6-fold and 3-fold vs. H2O2). These findings suggest that this nutraceutical combination may support the cellular pathways involved in neuronal resilience and healthy brain ageing, offering potential as a functional food ingredient or dietary supplement. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

20 pages, 17080 KiB  
Article
Exercise Ameliorates Dopaminergic Neurodegeneration in Parkinson’s Disease Mice by Suppressing Microglia-Regulated Neuroinflammation Through Irisin/AMPK/Sirt1 Pathway
by Bin Wang, Nan Li, Yuanxin Wang, Xin Tian, Junjie Lin, Xin Zhang, Haocheng Xu, Yu Sun and Renqing Zhao
Biology 2025, 14(8), 955; https://doi.org/10.3390/biology14080955 - 29 Jul 2025
Viewed by 343
Abstract
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the [...] Read more.
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the role of irisin signaling in mediating these effects. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we found that a 10-week treadmill exercise regimen significantly enhanced motor function, reduced dopaminergic neuron loss, attenuated neuronal apoptosis, and alleviated neuroinflammation. Exercise also shifted microglia from a pro-inflammatory to an anti-inflammatory phenotype. Notably, levels of irisin, phosphorylated AMP-activated protein kinase (p-AMPK), and sirtuin 1 (Sirt1), which were decreased in the PD brain, were significantly increased following exercise. These beneficial effects were abolished by blocking the irisin receptor with cyclic arginine–glycine–aspartic acid–tyrosine–lysine (cycloRGDyk). Our results indicate that exercise promotes neuroprotection in PD by modulating microglial activation and the AMPK/Sirt1 pathway through irisin signaling, offering new insights into exercise-based therapeutic approaches for PD. Full article
Show Figures

Figure 1

24 pages, 2301 KiB  
Review
Nicotinamide and Pyridoxine in Muscle Aging: Nutritional Regulation of Redox, Inflammation, and Regeneration
by Agnieszka Nowacka, Maciej Śniegocki, Martyna Śniegocka and Ewa A. Ziółkowska
Antioxidants 2025, 14(8), 911; https://doi.org/10.3390/antiox14080911 - 25 Jul 2025
Viewed by 724
Abstract
Sarcopenia, the progressive loss of muscle mass, strength, and regenerative capacity with age, is driven by interconnected processes such as oxidative stress, chronic inflammation, mitochondrial dysfunction, and reduced activity of muscle stem cells. As the population ages, nutritional strategies that target these mechanisms [...] Read more.
Sarcopenia, the progressive loss of muscle mass, strength, and regenerative capacity with age, is driven by interconnected processes such as oxidative stress, chronic inflammation, mitochondrial dysfunction, and reduced activity of muscle stem cells. As the population ages, nutritional strategies that target these mechanisms are becoming increasingly important. This review focuses on nicotinamide (vitamin B3) and pyridoxine (vitamin B6), two essential micronutrients found in functional foods, which play complementary roles in redox regulation, immune balance, and muscle repair. Nicotinamide supports nicotinamide adenine dinucleotide (NAD+) metabolism, boosts mitochondrial function, and activates sirtuin pathways involved in autophagy and stem cell maintenance. Pyridoxine, via its active form pyridoxal 5′-phosphate (PLP), is key to amino acid metabolism, antioxidant defense, and the regulation of inflammatory cytokines. We summarize how these vitamins influence major molecular pathways such as Sirtuin1 (SIRT1), protein kinase B (AKT)/mechanistic target of rapamycin (mTOR), Nuclear factor-κB (NF-κB), and Nrf2, contributing to improved myogenic differentiation and protection of the aging muscle environment. We also highlight emerging preclinical and clinical data, including studies suggesting possible synergy between B3 and B6. Finally, we discuss how biomarkers such as PLP, nicotinamide mononucleotide (NMN), and C-reactive protein (CRP) may support the development of personalized nutrition strategies using these vitamins. Safe, accessible, and mechanistically grounded, nicotinamide and pyridoxine offer promising tools for sarcopenia prevention and healthy aging. Full article
(This article belongs to the Topic Functional Food and Anti-Inflammatory Function)
Show Figures

Figure 1

11 pages, 857 KiB  
Article
Placental Expression of Sirtuins in Women with Gestational Diabetes
by Michał Czerewaty, Łukasz Ustianowski, Kajetan Kiełbowski, Estera Bakinowska, Krzysztof Safranow, Maciej Tarnowski, Tomasz Sroczyński and Andrzej Pawlik
Genes 2025, 16(7), 844; https://doi.org/10.3390/genes16070844 - 20 Jul 2025
Viewed by 361
Abstract
Background/Objectives: Gestational diabetes mellitus (GDM) is a common metabolic disorder in pregnant women. It can lead to several complications, such as preterm delivery, macrosomia, or metabolic disorders in newborns. Studies have revealed morphological and transcriptional differences between the placentas of patients with GDM [...] Read more.
Background/Objectives: Gestational diabetes mellitus (GDM) is a common metabolic disorder in pregnant women. It can lead to several complications, such as preterm delivery, macrosomia, or metabolic disorders in newborns. Studies have revealed morphological and transcriptional differences between the placentas of patients with GDM and women with normal glucose tolerance. Sirtuins (SIRTs) are nicotinamide adenine dinucleotide-dependent deacetylases that interact with and regulate the activity of numerous proteins. However, little is known about their role in the pathogenesis of GDM. This study was performed to analyze the placental expression of SIRTs and investigate their correlations with clinical parameters. Methods: GDM was diagnosed based on the 75 g oral glucose tolerance test in accordance with the criteria developed by the International Association of Diabetes and Pregnancy Study Groups. Placental tissues were collected, and the expression of SIRT1,-3,-4 and a reference gene (β-2 microglobulin) was analyzed. Results: The placental expression of SIRT1 and SIRT3 was elevated in women with GDM. However, there was no significant difference in SIRT4 expression between women with GDM and those with normal glucose tolerance. Furthermore, we found no significant correlations between SIRT1, SIRT3, and SIRT4 expression and clinical parameters. Conclusions: The findings of this study demonstrate elevated expression of SIRT1 and SIRT3 in the placentas of women with GDM. Further studies are required to confirm our observations and demonstrate the precise role of these enzymes in GDM. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

41 pages, 2822 KiB  
Review
Sirtuins in Central Nervous System Tumors—Molecular Mechanisms and Therapeutic Targeting
by Agnieszka Nowacka, Martyna Śniegocka, Maciej Śniegocki and Ewa Aleksandra Ziółkowska
Cells 2025, 14(14), 1113; https://doi.org/10.3390/cells14141113 - 19 Jul 2025
Viewed by 909
Abstract
Sirtuins (SIRTs), a family of NAD+-dependent enzymes, play crucial roles in epigenetic regulation, metabolism, DNA repair, and stress response, making them relevant to glioma biology. This review systematically summarizes the molecular mechanisms and context-specific functions of SIRT1–SIRT7 in central nervous system tumors, with [...] Read more.
Sirtuins (SIRTs), a family of NAD+-dependent enzymes, play crucial roles in epigenetic regulation, metabolism, DNA repair, and stress response, making them relevant to glioma biology. This review systematically summarizes the molecular mechanisms and context-specific functions of SIRT1–SIRT7 in central nervous system tumors, with particular focus on gliomas. SIRT1, SIRT3, SIRT5, and SIRT7 are often overexpressed and promote glioma cell proliferation, stemness, therapy resistance, and metabolic adaptation. Conversely, SIRT2, SIRT4, and SIRT6 generally exhibit tumor-suppressive functions by inducing apoptosis, inhibiting invasion, and counteracting oncogenic signaling. Preclinical studies have identified several sirtuin modulators—both inhibitors and activators—that alter tumor growth, sensitize cells to temozolomide, and regulate pathways such as JAK2/STAT3, NF-κB, and mitochondrial metabolism. Emerging evidence positions sirtuins as promising targets for glioma therapy. Future studies should evaluate sirtuin modulators in clinical trials and explore their potential for patient stratification and combined treatment strategies. Full article
Show Figures

Figure 1

21 pages, 2638 KiB  
Article
Inhibiting miR-200a-3p Increases Sirtuin 1 and Mitigates Kidney Injury in a Tubular Cell Model of Diabetes and Hypertension-Related Renal Damage
by Olga Martinez-Arroyo, Ana Flores-Chova, Marta Mendez-Debaets, Laia Garcia-Ferran, Lesley Escrivá, Maria Jose Forner, Josep Redón, Raquel Cortes and Ana Ortega
Biomolecules 2025, 15(7), 995; https://doi.org/10.3390/biom15070995 - 11 Jul 2025
Viewed by 388
Abstract
Hypertension and diabetes mellitus are key contributors to kidney damage, with the renal tubule playing a central role in the progression of kidney disease. MicroRNAs have important regulatory roles in renal injury and are among the most abundant cargos within extracellular vesicles (EVs), [...] Read more.
Hypertension and diabetes mellitus are key contributors to kidney damage, with the renal tubule playing a central role in the progression of kidney disease. MicroRNAs have important regulatory roles in renal injury and are among the most abundant cargos within extracellular vesicles (EVs), emerging as novel kidney disease biomarkers and therapeutic tools. Previously, we identified miR-200a-3p and its target SIRT1 as having a potential role in kidney injury. We aimed to evaluate miR-200a-3p levels in EVs from patient’s urine and delve into its function in causing tubular injury. We quantified miR-200a-3p urinary EV levels in hypertensive patients with and without diabetes (n = 69), 42 of which were with increased urinary albumin excretion (UAE). We analysed miR-200a-3p levels in EVs and cellular pellets, as well as their targets at mRNA and protein levels in renal tubule cells (RPTECs) subjected to high glucose and Angiotensin II treatments, and observed their influence on apoptosis, RPTEC markers and tubular injury markers. We conducted microRNA mimic and inhibitor transfections in treated RPTECs. Our findings revealed elevated miR-200a-3p levels in increased UAE patient urinary EVs, effectively discriminating UAE (AUC of 0.75, p = 0.003). In vitro, miR-200a-3p and renal injury markers increased, while RPTEC markers, SIRT1, and apoptosis decreased under treatments. Experiments using miR-200a-3p mimics and inhibitors revealed a significant impact on SIRT1 and decrease in tubular damage through miR-200a-3p inhibition. Increased levels of miR-200a-3p emerge as a potential disease marker, and its inhibition provides a therapeutic target aimed at reducing renal tubular damage linked to hypertension and diabetes. Full article
(This article belongs to the Special Issue New Insights into Kidney Disease Development and Therapy Strategies)
Show Figures

Graphical abstract

21 pages, 4391 KiB  
Article
Thermal Cycling-Hyperthermia Attenuates Rotenone-Induced Cell Injury in SH-SY5Y Cells Through Heat-Activated Mechanisms
by Yu-Yi Kuo, Guan-Bo Lin, You-Ming Chen, Hsu-Hsiang Liu, Fang-Tzu Hsu, Yi Kung and Chih-Yu Chao
Int. J. Mol. Sci. 2025, 26(14), 6671; https://doi.org/10.3390/ijms26146671 - 11 Jul 2025
Viewed by 376
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by mitochondrial dysfunction, increased reactive oxygen species (ROS), α-synuclein (α-syn) and phosphorylated-tau protein (p-tau) aggregation, and dopaminergic neuron cell death. Current drug therapies only provide temporary symptomatic relief and fail [...] Read more.
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by mitochondrial dysfunction, increased reactive oxygen species (ROS), α-synuclein (α-syn) and phosphorylated-tau protein (p-tau) aggregation, and dopaminergic neuron cell death. Current drug therapies only provide temporary symptomatic relief and fail to stop or reverse disease progression due to the severe side effects or the blood–brain barrier. This study aimed to investigate the neuroprotective effects of an intermittent heating approach, thermal cycling-hyperthermia (TC-HT), in an in vitro PD model using rotenone (ROT)-induced human neural SH-SY5Y cells. Our results revealed that TC-HT pretreatment conferred neuroprotective effects in the ROT-induced in vitro PD model using human SH-SY5Y neuronal cells, including reducing ROT-induced mitochondrial apoptosis and ROS accumulation in SH-SY5Y cells. In addition, TC-HT also inhibited the expression of α-syn and p-tau through heat-activated pathways associated with sirtuin 1 (SIRT1) and heat-shock protein 70 (Hsp70), involved in protein chaperoning, and resulted in the phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β), which inhibit p-tau formation. These findings underscore the potential of TC-HT as an effective treatment for PD in vitro, supporting its further investigation in in vivo models with focused ultrasound (FUS) as a feasible heat-delivery approach. Full article
Show Figures

Figure 1

22 pages, 2406 KiB  
Review
Sirtuins Contribute to the Migraine–Stroke Connection
by Jan Krekora, Michal Fila, Maria Mitus-Kenig, Elzbieta Pawlowska, Justyna Ciupinska and Janusz Blasiak
Int. J. Mol. Sci. 2025, 26(14), 6634; https://doi.org/10.3390/ijms26146634 - 10 Jul 2025
Viewed by 488
Abstract
The prevalence of stroke in patients with migraine is higher than in the general population, suggesting certain shared mechanisms of pathogenesis. Migrainous infarction is a pronounced example of the migraine–stroke connection. Some cases of migraine with aura may be misdiagnosed as stroke, with [...] Read more.
The prevalence of stroke in patients with migraine is higher than in the general population, suggesting certain shared mechanisms of pathogenesis. Migrainous infarction is a pronounced example of the migraine–stroke connection. Some cases of migraine with aura may be misdiagnosed as stroke, with subsequent mistreatment. Therefore, it is important to identify these shared mechanisms of pathogenesis contributing to the migraine–stroke connection to improve diagnosis and treatment. Sirtuins (SIRTs) are a seven-member family of NAD+-dependent histone deacetylases that can epigenetically regulate gene expression. Sirtuins possess antioxidant properties, making them a first-line defense against oxidative stress, which is important in the pathogenesis of migraine and stroke. Mitochondrial localization of SIRT2, SIRT3, and SIRT4 supports this function, as most reactive oxygen and nitrogen species are produced in mitochondria. In this narrative review, we present arguments that sirtuins may link migraine with stroke through their involvement in antioxidant defense, mitochondrial quality control, neuroinflammation, and autophagy. We also indicate mediators of this involvement that can be, along with sirtuins, therapeutic targets to ameliorate migraine and prevent stroke. Full article
Show Figures

Figure 1

18 pages, 3655 KiB  
Article
Herbal Cuscutae Semen Contributes to Oxidative Stress Tolerance and Extends Lifespan via Sirtuin1 in Caenorhabditis elegans
by Chunyan Chen, Yudie Liu, Jing Hu, Yihan Gu, Weiwei Li, Hui Yue, Sijing An, Na Sun, Peng Zhang, Nan Li and Lin Miao
Antioxidants 2025, 14(7), 786; https://doi.org/10.3390/antiox14070786 - 26 Jun 2025
Viewed by 590
Abstract
Cuscutae Semen (CS), a traditional herb recognized as a nutraceutical food in China, has been widely utilized in managing aging-related diseases throughout history. However, whether this mechanism is associated with mitochondrial stress tolerance remains unclear. In the present study, Caenorhabditis elegans (C. [...] Read more.
Cuscutae Semen (CS), a traditional herb recognized as a nutraceutical food in China, has been widely utilized in managing aging-related diseases throughout history. However, whether this mechanism is associated with mitochondrial stress tolerance remains unclear. In the present study, Caenorhabditis elegans (C. elegans) was used to investigate the effects of CS on their longevity. The data demonstrated that CS prolonged the average lifespan of the nematodes by 15.26%, reducing lipofuscin accumulation by 61.46%, as well as improving spontaneous motility. CS treatment significantly enhanced the resistance of C. elegans to hydrogen peroxide-induced oxidative stress and 37 °C induced heat stress, reducing reactive oxygen species (ROS) production by 71.45%. Additionally, membrane potential (MMP) and adenosine triphosphate (ATP) were increased by 354.72% and 69.64%, respectively. However, mitochondrion-specific ROS and calcium flux were significantly reduced to 45.86% and 63.25%, respectively, in C. elegans treated with CS. Consistently, the polymerase chain reaction data revealed that CS significantly up-regulated the expressions of the antioxidant-related genes skn-1, ctl-1, sod-3, and gst-4; the heat shock gene hsp-16.2; and the autophagy-related genes lgg-1 and bec-1. Considering the crucial role of the silent information regulator sirtuin 1 (SIR-2.1/SIRT1) in aging-related mitochondrial oxidative stress, we examined its expression and transcriptional activity. As expected, treatment with CS induced SIRT1 expression, and isorhamnetin identified from CS extract significantly enhanced SIRT1 transcriptional activity in HEK293T cells. Collectively, our results provided evidence that CS prolonged the lifespan of C. elegans by ameliorating oxidative stress damage and mitochondrial dysfunction via SIRT1. Full article
Show Figures

Figure 1

11 pages, 2775 KiB  
Article
Pyridostigmine Mitigates Methotrexate-Induced Liver Fibrosis in Rats: Association with Changes in BMP-9, SIRT1, and Endoglin Expression
by Mehmet Ulusan, Mumin Alper Erdogan, Ozkan Simsek, Hilal Ustundag, Zafer Dogan, Bertug Bekir Ciftci, Mesih Kocamuftuoglu, Imdat Orhan and Oytun Erbas
Biomedicines 2025, 13(6), 1502; https://doi.org/10.3390/biomedicines13061502 - 19 Jun 2025
Viewed by 527
Abstract
Background and Objectives: Methotrexate (MTX) is a widely utilised pharmaceutical agent in the treatment of various malignancies and inflammatory diseases. However, its clinical utility is often constrained by its potential for hepatotoxicity. Although pyridostigmine is a well-established reversible acetylcholinesterase inhibitor, its potential therapeutic [...] Read more.
Background and Objectives: Methotrexate (MTX) is a widely utilised pharmaceutical agent in the treatment of various malignancies and inflammatory diseases. However, its clinical utility is often constrained by its potential for hepatotoxicity. Although pyridostigmine is a well-established reversible acetylcholinesterase inhibitor, its potential therapeutic role in preventing hepatic injury remains incompletely defined. The present study aimed to investigate whether pyridostigmine provides protective effects against MTX-triggered liver damage in a rat model. Methods: Thirty-six female Wistar albino rats randomly assigned to three groups: control (n = 12), MTX + saline (n = 12), and MTX + pyridostigmine (n = 12). Hepatotoxicity was induced by a single-dose MTX injection (20 mg/kg), followed by daily oral administration of either pyridostigmine (5 mg/kg) or saline for ten consecutive days. Hepatic function markers, oxidative stress parameters, fibrosis-associated mediators, and histopathological changes were assessed. Results: Pyridostigmine significantly attenuated MTX-induced elevations in plasma alanine aminotransferase (p < 0.05) and cytokeratin-18 levels (p < 0.001), and reduced liver and plasma malondialdehyde (MDA) levels (p < 0.05). Additionally, pyridostigmine treatment resulted in reduced levels of transforming growth factor-beta (p < 0.05), bone morphogenetic protein-9 (p < 0.001), and endoglin levels (p < 0.05), as well as increased sirtuin 1 level (p < 0.05). Histopathological examination revealed that pyridostigmine treatment significantly reduced MTX-induced hepatocyte necrosis, fibrosis, and cellular infiltration. Conclusions: Pyridostigmine exerted hepatoprotective effects against MTX-induced liver injury by attenuating oxidative stress, restoring SIRT1 expression, and suppressing pro-fibrotic signaling. These findings indicate that pyridostigmine may hold therapeutic potential for the prevention of MTX-associated hepatotoxicity. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

42 pages, 18742 KiB  
Article
Mitochondrial Unfolded Protein Response (mtUPR) Activation Improves Pathological Alterations in Cellular Models of Ethylmalonic Encephalopathy
by José Manuel Romero-Domínguez, Paula Cilleros-Holgado, David Gómez-Fernández, Rocío Piñero-Pérez, Diana Reche-López, Ana Romero-González, Mónica Álvarez-Córdoba, Alejandra López-Cabrera, Marta Castro De Oliveira, Andrés Rodríguez-Sacristán, Susana González-Granero, José Manuel García-Verdugo, Angeles Aroca and José A. Sánchez-Alcázar
Antioxidants 2025, 14(6), 741; https://doi.org/10.3390/antiox14060741 - 16 Jun 2025
Viewed by 2493
Abstract
Ethylmalonic encephalopathy (EE) is a serious metabolic disorder that usually appears in early childhood development and the effects are seen primarily in the brain, gastrointestinal tract, and peripheral vessels. EE is caused by pathogenic variants in the gene that encodes the ETHE1 protein, [...] Read more.
Ethylmalonic encephalopathy (EE) is a serious metabolic disorder that usually appears in early childhood development and the effects are seen primarily in the brain, gastrointestinal tract, and peripheral vessels. EE is caused by pathogenic variants in the gene that encodes the ETHE1 protein, and its main features are high levels of acidic compounds in body fluids and decreased activity of the mitochondrial complex IV, which limits energy production in tissues that require a large supply of energy. ETHE1 is a mitochondrial sulfur dioxygenase that plays the role of hydrogen sulfide (H2S) detoxification, and, when altered, it leads to the accumulation of this gaseous molecule due to its deficient elimination. In this article, we characterised the pathophysiology of ETHE1 deficiency in cellular models, fibroblasts, and induced neurons, derived from a patient with a homozygous pathogenic variant in ETHE1. Furthermore, we evaluated the effect of the activation of the mitochondrial unfolded protein response (mtUPR) on the mutant phenotype. Our results suggest that mutant fibroblasts have alterations in ETHE1 protein expression levels, associated with elevated levels of H2S and protein persulfidation, mitochondrial dysfunction, iron/lipofuscin accumulation, and oxidative stress. We also identified a cocktail of compounds consisting of pterostilbene, nicotinamide, riboflavin, thiamine, biotin, lipoic acid, and L-carnitine that improved the cellular and metabolic alterations. The positive effect of the cocktail was dependent on sirtuin 3 activation (SIRT3) and was also confirmed in induced neurons obtained by direct reprogramming. In conclusion, personalised precision medicine in EE using patient-derived cellular models can be an interesting approach for the screening and evaluation of potential therapies. In addition, the activation of the SIRT3 axe of mtUPR is a promising therapeutic strategy for rescuing ETHE1 pathogenic variants. Full article
Show Figures

Graphical abstract

Back to TopTop