Sirtuins Contribute to the Migraine–Stroke Connection
Abstract
1. Introduction
2. The Migraine–Stroke Connection
2.1. Epidemiology
2.2. Shared Risk Factors
2.3. Cortical Spreading Depolarization/Depression
2.4. Migrainous Infarction and Brain Structural Alterations
2.5. Genetics/Epigenetics
3. Sirtuins
4. Sirtuins in Migraine
5. Sirtuins in Stroke
5.1. Oxidative Stress
5.2. Autophagy
5.3. Neuroinflammation
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Macias-Gómez, A.; Suárez-Pérez, A.; Rodríguez-Campello, A.; Giralt-Steinhauer, E.; Moreira, A.; Guisado-Alonso, D.; Capellades, J.; Fernández-Pérez, I.; Jiménez-Conde, J.; Rey, L.; et al. Factors associated with migraine aura mimicking stroke in code stroke. Neurol. Sci. 2023, 44, 2113–2120. [Google Scholar] [CrossRef]
- Kurth, T.; Chabriat, H.; Bousser, M.-G. Migraine and stroke: A complex association with clinical implications. Lancet Neurol. 2012, 11, 92–100. [Google Scholar] [CrossRef]
- Malik, R.; Winsvold, B.; Auffenberg, E.; Dichgans, M.; Freilinger, T. The migraine-stroke connection: A genetic perspective. Cephalalgia Int. J. Headache 2016, 36, 658–668. [Google Scholar] [CrossRef]
- Etminan, M.; Takkouche, B.; Isorna, F.C.; Samii, A. Risk of ischaemic stroke in people with migraine: Systematic review and meta-analysis of observational studies. BMJ 2005, 330, 63. [Google Scholar] [CrossRef] [PubMed]
- MacClellan, L.R.; Giles, W.; Cole, J.; Wozniak, M.; Stern, B.; Mitchell, B.D.; Kittner, S.J. Probable migraine with visual aura and risk of ischemic stroke: The stroke prevention in young women study. Stroke 2007, 38, 2438–2445. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-C.; Chen, S.-P. Chapter 27—Migrainous infarction. In Handbook of Clinical Neurology; Swanson, J.W., Matharu, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 199, pp. 465–474. [Google Scholar]
- Xu, W.J.; Barisano, G.; Phung, D.; Chou, B.; Pinto, S.N.; Lerner, A.; Sheikh-Bahaei, N. Structural MRI in Migraine: A Review of Migraine Vascular and Structural Changes in Brain Parenchyma. J. Cent. Nerv. Syst. Dis. 2023, 15, 11795735231167868. [Google Scholar] [CrossRef]
- Borończyk, M.; Zduńska, A.; Węgrzynek-Gallina, J.; Grodzka, O.; Lasek-Bal, A.; Domitrz, I. Migraine and stroke: Correlation, coexistence, dependence—A modern perspective. J. Headache Pain. 2025, 26, 39. [Google Scholar] [CrossRef]
- Nathan, N.; Ngo, A.; Khoromi, S. Migraine and Stroke: A Scoping Review. J. Clin. Med. 2024, 13, 5380. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Yang, N.; Hao, P.-H.; Wen, R.; Zhang, T.-N. Targeting sirtuins in neurological disorders: A comprehensive review. Int. J. Biol. Macromol. 2025, 292, 139258. [Google Scholar] [CrossRef]
- Feng, S.; Yang, M.; Liu, S.; He, Y.; Deng, S.; Gong, Y. Oxidative stress as a bridge between age and stroke: A narrative review. J. Intensive Med. 2023, 3, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Jiménez, F.J.; Alonso-Navarro, H.; García-Martín, E.; Espada-Rubio, S.; Agúndez, J.A.G. Oxidative Stress and Migraine. Mol. Neurobiol. 2024, 61, 8344–8360. [Google Scholar] [CrossRef]
- Jia, Z.; Xu, K.; Li, R.; Yang, S.; Chen, L.; Zhang, Q.; Li, S.; Sun, X. The critical role of Sirt1 in ischemic stroke. Front. Pharmacol. 2025, 16, 1425560. [Google Scholar] [CrossRef]
- Kuybu, O.; Amireh, A.; Davis, D.; Kelley, R.E.; Javalkar, V. Prevalence of ischemic stroke and atrial fibrillation in young patients with migraine national inpatient sample analysis. J. Stroke Cerebrovasc. Dis. 2020, 29, 104972. [Google Scholar] [CrossRef]
- Øie, L.R.; Kurth, T.; Gulati, S.; Dodick, D.W. Migraine and risk of stroke. J. Neurol. Neurosurg. Psychiatry 2020, 91, 593. [Google Scholar] [CrossRef] [PubMed]
- Acarsoy, C.; Fani, L.; Al-Hassany, L.; Berghout, B.; Koudstaal, P.J.; Maassen Van Den Brink, A.; Ikram, M.K.; Bos, D. Migraine and the risk of stroke in a middle-aged and elderly population: A prospective cohort study. Cephalalgia Int. J. Headache 2023, 43, 3331024221132008. [Google Scholar] [CrossRef] [PubMed]
- Monteith, T.S.; Gardener, H.; Rundek, T.; Elkind, M.S.; Sacco, R.L. Migraine and risk of stroke in older adults: Northern Manhattan Study. Neurology 2015, 85, 715–721. [Google Scholar] [CrossRef]
- Fila, M.; Przyslo, L.; Derwich, M.; Pawlowska, E.; Blasiak, J. Sexual Dimorphism in Migraine. Focus on Mitochondria. Curr. Pain. Headache Rep. 2025, 29, 11. [Google Scholar] [CrossRef]
- Kurth, T.; Gaziano, J.M.; Cook, N.R.; Logroscino, G.; Diener, H.C.; Buring, J.E. Migraine and risk of cardiovascular disease in women. JAMA 2006, 296, 283–291. [Google Scholar] [CrossRef]
- Kurth, T.; Slomke, M.A.; Kase, C.S.; Cook, N.R.; Lee, I.M.; Gaziano, J.M.; Diener, H.C.; Buring, J.E. Migraine, headache, and the risk of stroke in women: A prospective study. Neurology 2005, 64, 1020–1026. [Google Scholar] [CrossRef]
- Reddy, M.; Vazquez, S.; Nolan, B.; Clare, K.; Feldstein, E.; Medicherla, C.; Kaur, G.; Rostanski, S.K.; Czap, A.L.; Li, J.; et al. Migraine and its Association with Stroke in Pregnancy: A National Examination. J. Womens Health 2024, 33, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Turtzo, L.C.; McCullough, L.D. Sex-specific responses to stroke. Future Neurol. 2010, 5, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Kurth, T.; Rohmann, J.L. Studying migraine as a risk factor for stroke: The importance of working with an explicit causal framework. Cephalalgia Int. J. Headache 2023, 43, 3331024221132007. [Google Scholar] [CrossRef]
- Henrich, J.B.; Horwitz, R.I. A controlled study of ischemic stroke risk in migraine patients. J. Clin. Epidemiol. 1989, 42, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Leao, A.A. Further observations on the spreading depression of activity in the cerebral cortex. J. Neurophysiol. 1947, 10, 409–414. [Google Scholar] [CrossRef]
- Bolay, H.; Vuralli, D.; Goadsby, P.J. Aura and Head pain: Relationship and gaps in the translational models. J. Headache Pain. 2019, 20, 94. [Google Scholar] [CrossRef]
- Close, L.N.; Eftekhari, S.; Wang, M.; Charles, A.C.; Russo, A.F. Cortical spreading depression as a site of origin for migraine: Role of CGRP. Cephalalgia Int. J. Headache 2019, 39, 428–434. [Google Scholar] [CrossRef]
- Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia Int. J. Headache 2018, 38, 1–211. [CrossRef]
- Kruit, M.C.; Launer, L.J.; van Buchem, M.A.; Terwindt, G.M.; Ferrari, M.D. MRI findings in migraine. Rev. Neurol. 2005, 161, 661–665. [Google Scholar] [CrossRef]
- Ashina, S.; Bentivegna, E.; Martelletti, P.; Eikermann-Haerter, K. Structural and Functional Brain Changes in Migraine. Pain. Ther. 2021, 10, 211–223. [Google Scholar] [CrossRef]
- Guidetti, D.; Rota, E.; Morelli, N.; Immovilli, P. Migraine and stroke: “vascular” comorbidity. Front. Neurol. 2014, 5, 193. [Google Scholar] [CrossRef] [PubMed]
- Tournier-Lasserve, E.; Joutel, A.; Melki, J.; Weissenbach, J.; Lathrop, G.M.; Chabriat, H.; Mas, J.L.; Cabanis, E.A.; Baudrimont, M.; Maciazek, J.; et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat. Genet. 1993, 3, 256–259. [Google Scholar] [CrossRef]
- Cox, B.C.; Pearson, J.Y.; Mandrekar, J.; Gavrilova, R.H. The clinical spectrum of MELAS and associated disorders across ages: A retrospective cohort study. Front. Neurol. 2023, 14, 1298569. [Google Scholar] [CrossRef] [PubMed]
- Vollono, C.; Primiano, G.; Della Marca, G.; Losurdo, A.; Servidei, S. Migraine in mitochondrial disorders: Prevalence and characteristics. Cephalalgia Int. J. Headache 2018, 38, 1093–1106. [Google Scholar] [CrossRef] [PubMed]
- Pavlakis, S.G.; Phillips, P.C.; DiMauro, S.; De Vivo, D.C.; Rowland, L.P. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: A distinctive clinical syndrome. Ann. Neurol. 1984, 16, 481–488. [Google Scholar] [CrossRef]
- Fila, M.; Pawłowska, E.; Blasiak, J. Mitochondria in migraine pathophysiology—Does epigenetics play a role? Arch. Med. Sci. 2019, 15, 944–956. [Google Scholar] [CrossRef]
- De Fusco, M.; Marconi, R.; Silvestri, L.; Atorino, L.; Rampoldi, L.; Morgante, L.; Ballabio, A.; Aridon, P.; Casari, G. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat. Genet. 2003, 33, 192–196. [Google Scholar] [CrossRef]
- Dichgans, M.; Freilinger, T.; Eckstein, G.; Babini, E.; Lorenz-Depiereux, B.; Biskup, S.; Ferrari, M.D.; Herzog, J.; van den Maagdenberg, A.M.; Pusch, M.; et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 2005, 366, 371–377. [Google Scholar] [CrossRef]
- Ophoff, R.A.; Terwindt, G.M.; Vergouwe, M.N.; van Eijk, R.; Oefner, P.J.; Hoffman, S.M.; Lamerdin, J.E.; Mohrenweiser, H.W.; Bulman, D.E.; Ferrari, M.; et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996, 87, 543–552. [Google Scholar] [CrossRef]
- Oterino, A.; Toriello, M.; Valle, N.; Castillo, J.; Alonso-Arranz, A.; Bravo, Y.; Ruiz-Alegria, C.; Quintela, E.; Pascual, J. The relationship between homocysteine and genes of folate-related enzymes in migraine patients. Headache 2010, 50, 99–168. [Google Scholar] [CrossRef]
- Rubino, E.; Ferrero, M.; Rainero, I.; Binello, E.; Vaula, G.; Pinessi, L. Association of the C677T polymorphism in the MTHFR gene with migraine: A meta-analysis. Cephalalgia Int. J. Headache 2009, 29, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Schürks, M.; Rist, P.M.; Kurth, T. MTHFR 677C>T and ACE D/I polymorphisms in migraine: A systematic review and meta-analysis. Headache 2010, 50, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Schürks, M.; Zee, R.Y.; Buring, J.E.; Kurth, T. ACE D/I polymorphism, migraine, and cardiovascular disease in women. Neurology 2009, 72, 650–656. [Google Scholar] [CrossRef]
- Malik, R.; Freilinger, T.; Winsvold, B.S.; Anttila, V.; Vander Heiden, J.; Traylor, M.; de Vries, B.; Holliday, E.G.; Terwindt, G.M.; Sturm, J.; et al. Shared genetic basis for migraine and ischemic stroke: A genome-wide analysis of common variants. Neurology 2015, 84, 2132–2145. [Google Scholar] [CrossRef]
- de Lima, J.; Leite, J.A.; Basso, P.J.; Ghirotto, B.; Martins da Silva, E.; Menezes-Silva, L.; Hiyane, M.I.; Goes, C.P.; Coutinho, L.L.; de Andrade Oliveira, V.; et al. Sirtuin 1 regulates the phenotype and functions of dendritic cells through Ido1 pathway in obesity. Cell Death Dis. 2024, 15, 757. [Google Scholar] [CrossRef]
- North, B.J.; Verdin, E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 2004, 5, 224. [Google Scholar] [CrossRef]
- Kiran, S.; Chatterjee, N.; Singh, S.; Kaul, S.C.; Wadhwa, R.; Ramakrishna, G. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. Febs J. 2013, 280, 3451–3466. [Google Scholar] [CrossRef]
- Thapa, R.; Moglad, E.; Afzal, M.; Gupta, G.; Bhat, A.A.; Hassan Almalki, W.; Kazmi, I.; Alzarea, S.I.; Pant, K.; Singh, T.G.; et al. The role of sirtuin 1 in ageing and neurodegenerative disease: A molecular perspective. Ageing Res. Rev. 2024, 102, 102545. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-J.; Zhang, T.-N.; Chen, H.-H.; Yu, X.-F.; Lv, J.-L.; Liu, Y.-Y.; Liu, Y.-S.; Zheng, G.; Zhao, J.-Q.; Wei, Y.-F.; et al. The sirtuin family in health and disease. Signal Transduct. Target. Ther. 2022, 7, 402. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, X.; Wang, X.; Zheng, Y.; Qiu, J.; Peng, Y.; Xu, J.; Chai, Z.; Liu, C. Multiple Roles of SIRT2 in Regulating Physiological and Pathological Signal Transduction. Genet Res. 2022, 2022, 9282484. [Google Scholar] [CrossRef]
- Trinh, D.; Al Halabi, L.; Brar, H.; Kametani, M.; Nash, J.E. The role of SIRT3 in homeostasis and cellular health. Front. Cell. Neurosci. 2024, 18, 1434459. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhan, H.; Ren, Y.; Feng, M.; Wang, Q.; Jiao, Q.; Wang, Y.; Liu, X.; Zhang, S.; Du, L.; et al. Sirtuin 4 activates autophagy and inhibits tumorigenesis by upregulating the p53 signaling pathway. Cell Death Differ. 2023, 30, 313–326. [Google Scholar] [CrossRef]
- Nahalkova, J. A new view on functions of the lysine demalonylase activity of SIRT5. Life Sci. 2023, 320, 121572. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, F.; Carafa, V.; Favale, G.; Altucci, L.; Mai, A.; Rotili, D. The Two-Faced Role of SIRT6 in Cancer. Cancers 2021, 13, 1156. [Google Scholar] [CrossRef]
- Smirnov, D.; Eremenko, E.; Stein, D.; Kaluski, S.; Jasinska, W.; Cosentino, C.; Martinez-Pastor, B.; Brotman, Y.; Mostoslavsky, R.; Khrameeva, E.; et al. SIRT6 is a key regulator of mitochondrial function in the brain. Cell Death Dis. 2023, 14, 35. [Google Scholar] [CrossRef]
- Ianni, A.; Kumari, P.; Tarighi, S.; Braun, T.; Vaquero, A. SIRT7: A novel molecular target for personalized cancer treatment? Oncogene 2024, 43, 993–1006. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, T.; Sato, Y.; Sobuz, S.U.; Mizumoto, T.; Tsuyama, T.; Karim, M.F.; Miyata, K.; Tasaki, M.; Yamazaki, M.; Kariba, Y.; et al. SIRT7 suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions in mice. Nat. Commun. 2022, 13, 7439. [Google Scholar] [CrossRef]
- Nie, Y.; Song, C.; Huang, H.; Mao, S.; Ding, K.; Tang, H. Chromatin modifiers in human disease: From functional roles to regulatory mechanisms. Mol. Biomed. 2024, 5, 12. [Google Scholar] [CrossRef]
- Song, F.H.; Liu, D.Q.; Zhou, Y.Q.; Mei, W. SIRT1: A promising therapeutic target for chronic pain. CNS Neurosci. Ther. 2022, 28, 818–828. [Google Scholar] [CrossRef]
- Alves-Fernandes, D.K.; Jasiulionis, M.G. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int. J. Mol. Sci. 2019, 20, 3153. [Google Scholar] [CrossRef]
- Baeken, M.W. Sirtuins and their influence on autophagy. J. Cell. Biochem. 2024, 125, e30377. [Google Scholar] [CrossRef]
- Xu, H.; Liu, Y.Y.; Li, L.S.; Liu, Y.S. Sirtuins at the Crossroads between Mitochondrial Quality Control and Neurodegenerative Diseases: Structure, Regulation, Modifications, and Modulators. Aging Dis. 2023, 14, 794–824. [Google Scholar] [CrossRef]
- Yang, X.; Park, S.H.; Chang, H.C.; Shapiro, J.S.; Vassilopoulos, A.; Sawicki, K.T.; Chen, C.; Shang, M.; Burridge, P.W.; Epting, C.L.; et al. Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2. J. Clin. Investig. 2017, 127, 1505–1516. [Google Scholar] [CrossRef]
- Luo, Y.X.; Tang, X.; An, X.Z.; Xie, X.M.; Chen, X.F.; Zhao, X.; Hao, D.L.; Chen, H.Z.; Liu, D.P. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur. Heart J. 2017, 38, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Garcia-Peterson, L.M.; Mack, N.J.; Ahmad, N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid. Redox Signal. 2018, 28, 643–661. [Google Scholar] [CrossRef]
- Sharma, A.; Costantini, S.; Colonna, G. The protein-protein interaction network of the human Sirtuin family. Biochim. Biophys. Acta 2013, 1834, 1998–2009. [Google Scholar] [CrossRef] [PubMed]
- Fagerli, E.; Escobar, I.; Ferrier, F.J.; Jackson, C.W.; Perez-Lao, E.J.; Perez-Pinzon, M.A. Sirtuins and cognition: Implications for learning and memory in neurological disorders. Front. Physiol. 2022, 13, 908689. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, F.; Griffiths, L.R.; Sutherland, H.G.; Cole, M.H.; Fitton, J.H.; Winberg, P.; Schweitzer, D.; Hopkins, L.N.; Meyer, B.J. Sirtuin Proteins and Memory: A Promising Target in Alzheimer’s Disease Therapy? Nutrients 2024, 16, 4088. [Google Scholar] [CrossRef]
- Yoon, Y.; Berdigaliyev, N.; Chang, Y. Sirtuins and Their Implications in Neurodegenerative Diseases from a Drug Discovery Perspective. ACS Chem. Neurosci. 2020, 11, 4073–4091. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, F.; Xiong, C.E.; Wang, G.P.; Chen, L.W.; Zhang, Y.T.; Qi, S.G.; Wang, Z.H.; Mei, C.; Xu, Y.J.; et al. Serum sirtuin1: A potential blood biomarker for early diagnosis of Alzheimer’s disease. Aging 2023, 15, 9464–9478. [Google Scholar] [CrossRef]
- Romeo-Guitart, D.; Leiva-Rodríguez, T.; Casas, C. SIRT2 Inhibition Improves Functional Motor Recovery After Peripheral Nerve Injury. Neurotherapeutics 2020, 17, 1197–1211. [Google Scholar] [CrossRef]
- Zeng, Y.; Fang, Q.; Chen, J.; Wang, Y.; Liu, X.; Zhang, X.; Shi, Y.; Zhan, H.; Zhong, X.; Yao, M.; et al. Melatonin Improves Mitochondrial Dysfunction and Attenuates Neuropathic Pain by Regulating SIRT1 in Dorsal Root Ganglions. Neuroscience 2023, 534, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.S.; Finnerup, N.B. Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. Lancet Neurol. 2014, 13, 924–935. [Google Scholar] [CrossRef]
- Polk, A.N.; Protti, T.A.; Smitherman, T.A. Allodynia and Disability in Migraine: The Mediating Role of Stress. Headache 2020, 60, 2281–2290. [Google Scholar] [CrossRef] [PubMed]
- Borkum, J.M. Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility. Neurochem. Res. 2021, 46, 1913–1932. [Google Scholar] [CrossRef]
- Borkum, J.M. Migraine Triggers and Oxidative Stress: A Narrative Review and Synthesis. Headache 2016, 56, 12–35. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Olvera, A.C.; Morán, J.; Camacho-Carranza, R.; Prospéro-García, O.; Espinosa-Aguirre, J.J. CYP2E1 induction leads to oxidative stress and cytotoxicity in glutathione-depleted cerebellar granule neurons. Toxicol Vitr. 2014, 28, 1206–1214. [Google Scholar] [CrossRef]
- Faraco, G.; Wijasa, T.S.; Park, L.; Moore, J.; Anrather, J.; Iadecola, C. Water deprivation induces neurovascular and cognitive dysfunction through vasopressin-induced oxidative stress. J. Cereb. Blood Flow Metab. 2014, 34, 852–860. [Google Scholar] [CrossRef]
- Dief, A.E.; Kamha, E.S.; Baraka, A.M.; Elshorbagy, A.K. Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: A potential role for cyclic AMP protein kinase. Neurotoxicology 2014, 42, 76–82. [Google Scholar] [CrossRef]
- Ashok, I.; Sheeladevi, R. Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain. Redox Biol. 2014, 2, 820–831. [Google Scholar] [CrossRef]
- Schmidt, N.; Ferger, B. The biogenic trace amine tyramine induces a pronounced hydroxyl radical production via a monoamine oxidase-dependent mechanism: An in vivo microdialysis study in mouse striatum. Brain Res. 2004, 1012, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Shatillo, A.; Koroleva, K.; Giniatullina, R.; Naumenko, N.; Slastnikova, A.A.; Aliev, R.R.; Bart, G.; Atalay, M.; Gu, C.; Khazipov, R.; et al. Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system. Neuroscience 2013, 253, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, A.; de Oliveira, J.; da Silva Pontes, L.V.; de Souza Júnior, J.F.; Gonçalves, T.A.F.; Dantas, S.H.; de Almeida Feitosa, M.S.; Silva, A.O.; de Medeiros, I.A. ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxidative Med. Cell. Longev. 2022, 2022, 1225578. [Google Scholar] [CrossRef]
- Borkum, J.M. The Migraine Attack as a Homeostatic, Neuroprotective Response to Brain Oxidative Stress: Preliminary Evidence for a Theory. Headache 2018, 58, 118–135. [Google Scholar] [CrossRef]
- Togha, M.; Razeghi Jahromi, S.; Ghorbani, Z.; Ghaemi, A.; Rafiee, P. An investigation of oxidant/antioxidant balance in patients with migraine: A case-control study. BMC Neurol. 2019, 19, 323. [Google Scholar] [CrossRef]
- Ando, M.; Fukushima, K.; Nishizaki, K. The discovery of acatalasemia (lack of catalase in the blood) and its significance in human genetics. Proc. Jpn. Acad Ser. B Phys. Biol. Sci. 2024, 100, 353–367. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Tao, X.; Zhang, B.; Sun, C.; Wang, P.; Song, T. Sirt2 in the Spinal Cord Regulates Chronic Neuropathic Pain Through Nrf2-Mediated Oxidative Stress Pathway in Rats. Front. Pharmacol. 2021, 12, 646477. [Google Scholar] [CrossRef]
- Bashir, A.; Lipton, R.B.; Ashina, S.; Ashina, M. Migraine and structural changes in the brain: A systematic review and meta-analysis. Neurology 2013, 81, 1260–1268. [Google Scholar] [CrossRef]
- Kruit, M.C.; van Buchem, M.A.; Launer, L.J.; Terwindt, G.M.; Ferrari, M.D. Migraine is associated with an increased risk of deep white matter lesions, subclinical posterior circulation infarcts and brain iron accumulation: The population-based MRI CAMERA study. Cephalalgia Int. J. Headache 2010, 30, 129–136. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, Y.; Pan, Q.; Tian, R.; Zhang, D.; Qin, G.; Zhou, J.; Chen, L. MicroRNA-155-5p promotes neuroinflammation and central sensitization via inhibiting SIRT1 in a nitroglycerin-induced chronic migraine mouse model. J. Neuroinflamm. 2021, 18, 287. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, J.; Li, J.; Pang, X.; Wang, H. Inhibition of microRNA-155 Reduces Neuropathic Pain During Chemotherapeutic Bortezomib via Engagement of Neuroinflammation. Front. Oncol. 2020, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Bighiani, F.; Demartini, C.; Zanaboni, A.; Francavilla, M.; Facchetti, S.; Vaghi, G.; Allena, M.; Martinelli, D.; Guaschino, E.; et al. Expression of miR-155 in monocytes of people with migraine: Association with phenotype, disease severity and inflammatory profile. J. Headache Pain. 2024, 25, 138. [Google Scholar] [CrossRef]
- Chen, Y.; Xing, Z.; Chen, J.; Sun, C.; Liu, Y.; Peng, C.; Peng, F.; Li, D. SIRT1 activation by Ligustrazine ameliorates migraine via the paracrine interaction of microglia and neurons. Phytomedicine 2024, 135, 156069. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.; Jo, Y.S.; Lo Sasso, G.; Stein, S.; Zhang, H.; Perino, A.; Lee, J.U.; Zeviani, M.; Romand, R.; Hottiger, M.O.; et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab. 2014, 20, 856–869. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.; Ma, Y.; Chen, L.; Cai, G.; Chen, Z.; Zhang, S.; Ye, Q. A New Vision of Mitochondrial Unfolded Protein Response to the Sirtuin Family. Curr. Neuropharmacol. 2020, 18, 613–623. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, X.; Wang, J.; Fei, Z.Y.; Qin, G.C.; Zhang, D.K.; Zhou, J.Y.; Chen, L.X. Upregulation of silent information regulator 1 alleviates mitochondrial dysfunction in the trigeminal nucleus caudalis in a rat model of chronic migraine. Neuroreport 2021, 32, 144–156. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Wang, Y.; Zhang, Y.; Zhang, D.; Qin, G.; Zhou, J.; Chen, L. SIRT1-regulated ROS generation activates NMDAR2B phosphorylation to promote central sensitization and allodynia in a male chronic migraine rat model. Front. Mol. Neurosci. 2024, 17, 1387481. [Google Scholar] [CrossRef]
- Harriott, A.M.; Strother, L.C.; Vila-Pueyo, M.; Holland, P.R. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J. Headache Pain. 2019, 20, 91. [Google Scholar] [CrossRef]
- Iyengar, S.; Johnson, K.W.; Ossipov, M.H.; Aurora, S.K. CGRP and the Trigeminal System in Migraine. Headache 2019, 59, 659–681. [Google Scholar] [CrossRef]
- Niu, Y.; Zeng, X.; Zhao, L.; Zhou, Y.; Qin, G.; Zhang, D.; Fu, Q.; Zhou, J.; Chen, L. Metabotropic glutamate receptor 5 regulates synaptic plasticity in a chronic migraine rat model through the PKC/NR2B signal. J. Headache Pain. 2020, 21, 139. [Google Scholar] [CrossRef]
- Chojdak-Łukasiewicz, J.; Bizoń, A.; Waliszewska-Prosół, M.; Piwowar, A.; Budrewicz, S.; Pokryszko-Dragan, A. Role of Sirtuins in Physiology and Diseases of the Central Nervous System. Biomedicines 2022, 10, 2434. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.F.; Lerner, A. Nutraceutical induction and mimicry of heme oxygenase activity as a strategy for controlling excitotoxicity in brain trauma and ischemic stroke: Focus on oxidative stress. Expert. Rev. Neurother. 2021, 21, 157–168. [Google Scholar] [CrossRef]
- Chamorro, Á.; Dirnagl, U.; Urra, X.; Planas, A.M. Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016, 15, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, C.; Moreira, P.I. Oxidative Stress: A Major Player in Cerebrovascular Alterations Associated to Neurodegenerative Events. Front. Physiol. 2018, 9, 806. [Google Scholar] [CrossRef]
- Cocco, C.; Siotto, M.; Guerrini, A.; Germanotta, M.; Galluccio, C.; Cipollini, V.; Cortellini, L.; Pavan, A.; Lattanzi, S.; Insalaco, S.; et al. Systemic Oxidative Stress in Subacute Stroke Patients Undergoing Rehabilitation Treatment. Antioxidants 2024, 13, 354. [Google Scholar] [CrossRef] [PubMed]
- Chandran, S.; Sanderson, T.H. Abstract TP32: Sirtuin 3 Regulation of Mitochondrial Dynamics and Neuronal Apoptosis During Ischemia/Reperfusion. Stroke 2024, 55, ATP32. [Google Scholar] [CrossRef]
- Yin, J.; Han, P.; Tang, Z.; Liu, Q.; Shi, J. Sirtuin 3 mediates neuroprotection of ketones against ischemic stroke. J. Cereb. Blood Flow. Metab. 2015, 35, 1783–1789. [Google Scholar] [CrossRef]
- Ferber, E.C.; Peck, B.; Delpuech, O.; Bell, G.P.; East, P.; Schulze, A. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 2012, 19, 968–979. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Wang, P.; Li, X.; Qiu, D.; Li, L.; Zhang, J.; Hou, X.; Han, L.; Ge, J.; et al. Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice. Cell Cycle 2017, 16, 1302–1308. [Google Scholar] [CrossRef]
- Esmayel, I.M.; Hussein, S.; Gohar, E.A.; Ebian, H.F.; Mousa, M.M. Plasma levels of sirtuin-1 in patients with cerebrovascular stroke. Neurol. Sci. 2021, 42, 3843–3850. [Google Scholar] [CrossRef] [PubMed]
- Klionsky, D.J. Autophagy: From phenomenology to molecular understanding in less than a decade. Nat. reviews. Mol. Cell Biol. 2007, 8, 931–937. [Google Scholar] [CrossRef]
- Klionsky, D.J. Autophagy participates in, well, just about everything. Cell Death Differ. 2020, 27, 831–832. [Google Scholar] [CrossRef]
- Perez-Alvarez, M.J.; Villa Gonzalez, M.; Benito-Cuesta, I.; Wandosell, F.G. Role of mTORC1 Controlling Proteostasis after Brain Ischemia. Front. Neurosci. 2018, 12, 60. [Google Scholar] [CrossRef]
- Wang, X.; Fang, Y.; Huang, Q.; Xu, P.; Lenahan, C.; Lu, J.; Zheng, J.; Dong, X.; Shao, A.; Zhang, J. An updated review of autophagy in ischemic stroke: From mechanisms to therapies. Exp. Neurol. 2021, 340, 113684. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Q.; Wang, W.; Lin, F.; Wang, S.; Zhao, J. Mesenchymal stem cell therapy for ischemic stroke: A look into treatment mechanism and therapeutic potential. J. Neurol. 2021, 268, 4095–4107. [Google Scholar] [CrossRef]
- Song, M.; Yi, F.; Zeng, F.; Zheng, L.; Huang, L.; Sun, X.; Huang, Q.; Deng, J.; Wang, H.; Gu, W. USP18 Stabilized FTO Protein to Activate Mitophagy in Ischemic Stroke Through Repressing m6A Modification of SIRT6. Mol. Neurobiol. 2024, 61, 6658–6674. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Hu, Y.; Yun, T.; Yu, D.; Yang, G. USP7 promotes PINK1/Parkin-dependent mitophagy to ameliorate cerebral ischemia-reperfusion injury by deubiquitinating and stabilizing SIRT1. Brain Res. 2025, 1858, 149638. [Google Scholar] [CrossRef]
- Teertam, S.K.; Phanithi, P.B. Up-regulation of Sirtuin-1/autophagy signaling in human cerebral ischemia: Possible role in caspase-3 mediated apoptosis. Heliyon 2022, 8, e12278. [Google Scholar] [CrossRef]
- Wang, L.; Hou, J.; Xu, H.; Cai, Q.; Tian, L.; Li, X.; Zhang, J.; Yang, H. Angong Niuhuang Pill pretreatment alleviates cerebral ischemia-reperfusion injury by inhibiting excessive autophagy through the SIRT1-H4K16ac axis. J. Ethnopharmacol. 2025, 340, 119214. [Google Scholar] [CrossRef]
- Shui, X.; Chen, J.; Fu, Z.; Zhu, H.; Tao, H.; Li, Z. Microglia in Ischemic Stroke: Pathogenesis Insights and Therapeutic Challenges. J. Inflamm. Res. 2024, 17, 3335–3352. [Google Scholar] [CrossRef]
- Liao, H.; Huang, J.; Liu, J.; Zhu, H.; Chen, Y.; Li, X.; Wen, J.; Yang, Q. Sirt1 regulates microglial activation and inflammation following oxygen-glucose deprivation/reoxygenation injury by targeting the Shh/Gli-1 signaling pathway. Mol. Biol. Rep. 2023, 50, 3317–3327. [Google Scholar] [CrossRef]
- Xia, Q.; Gao, S.; Han, T.; Mao, M.; Zhan, G.; Wang, Y.; Li, X. Sirtuin 5 aggravates microglia-induced neuroinflammation following ischaemic stroke by modulating the desuccinylation of Annexin-A1. J. Neuroinflamm. 2022, 19, 301. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, D.; Datta, A.; Chaudhary, A.; Kalia, K.; Rodriguez, A.-M.; Yavagal, D.R.; Bhattacharya, P. Sirtuin 1 Mediated Modulation of Inflammasome Signaling Confers Neuroprotection in Rodent Model of Ischemic Stroke Following Endovascular Mesenchymal Stem Cell Therapy (S33.006). Neurology 2022, 98, 366. [Google Scholar] [CrossRef]
- Cheng, Z.; Tu, J.; Wang, K.; Li, F.; He, Y.; Wu, W. Wogonin alleviates NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/SIRT1. Brain Res. Bull. 2024, 207, 110886. [Google Scholar] [CrossRef] [PubMed]
- Prakash, R.; Waseem, A.; Siddiqui, A.J.; Naime, M.; Khan, M.A.; Robertson, A.A.; Boltze, J.; Raza, S.S. MCC950 mitigates SIRT3-NLRP3-driven inflammation and rescues post-stroke neurogenesis. Biomed. Pharmacother. 2025, 183, 117861. [Google Scholar] [CrossRef]
- Tan, Z.; Dong, F.; Wu, L.; Xu, G.; Zhang, F. Transcutaneous electrical acupoint stimulation attenuated neuroinflammation and oxidative stress by activating SIRT1-induced signaling pathway in MCAO/R rat models. Exp. Neurol. 2024, 373, 114658. [Google Scholar] [CrossRef]
- Peng, Z.; Ru, D.; Leng, G.; Peng, J.; Zhang, M.; Cai, B. Apelin-13 enhances neurofunctional recovery and suppresses neuroinflammation via the SIRT1/NF-κB axis in ischemic stroke. Cell Immunol. 2025, 413, 104958. [Google Scholar] [CrossRef]
- Sarmah, D.; Datta, A.; Kaur, H.; Kalia, K.; Borah, A.; Rodriguez, A.M.; Yavagal, D.R.; Bhattacharya, P. Sirtuin-1—Mediated NF-κB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke. Stem Cell Rev. Rep. 2022, 18, 821–838. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Yao, F.; Wang, P.; Xiong, Q.; Neng, P. Bergenin has neuroprotective effects in mice with ischemic stroke through antioxidative stress and anti-inflammation via regulating Sirt1/FOXO3a/NF-κB signaling. Neuroreport 2022, 33, 549–560. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Yu, H.; Wang, Z. Tanshinone IIA inhibits the apoptosis process of nerve cells by upshifting SIRT1 and FOXO3α protein and regulating anti- oxidative stress molecules and inflammatory factors in cerebral infarction model. Immunopharmacol. Immunotoxicol. 2025, 47, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Guo, H.; Wang, X.; Jiao, H.; Li, L.; Zheng, J. c-myc protects mice from ischemia stroke through elevating microRNA-200b-5p-regulated SIRT1 expression. Brain Res. Bull. 2021, 176, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; Shimokawa, H. Sirtuin 5 promotes ischemia/reperfusion-induced blood-brain barrier damage after stroke. Int. J. Cardiol. 2019, 284, 77–78. [Google Scholar] [CrossRef]
- Gaist, D.; González-Pérez, A.; Ashina, M.; Rodríguez, L.A. Migraine and risk of hemorrhagic stroke: A study based on data from general practice. J. Headache Pain. 2014, 15, 74. [Google Scholar] [CrossRef]
- Zhang, X.-S.; Wu, Q.; Wu, L.-Y.; Ye, Z.-N.; Jiang, T.-W.; Li, W.; Zhuang, Z.; Zhou, M.-L.; Zhang, X.; Hang, C.-H. Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis. 2016, 7, e2416. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Zhou, X.; Zhang, X. The Critical Role of Sirt1 in Subarachnoid Hemorrhages: Mechanism and Therapeutic Considerations. Brain Sci. 2023, 13, 674. [Google Scholar] [CrossRef]
- Fila, M.; Pawlowska, E.; Szczepanska, J.; Blasiak, J. Autophagy may protect the brain against prolonged consequences of headache attacks: A narrative/hypothesis review. Headache 2023, 63, 1154–1166. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, H.; Yu, Q.; Pan, Y. A narrative review of autophagy in migraine. Front. Neurosci. 2025, 19, 1500189. [Google Scholar] [CrossRef]
- Tietjen, G.E.; Maly, E.F. Migraine and Ischemic Stroke in Women. A Narrative Review. Headache 2020, 60, 843–863. [Google Scholar] [CrossRef]
- Voelter-Mahlknecht, S.; Mahlknecht, U. Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1. Int. J. Mol. Med. 2006, 17, 59–67. [Google Scholar] [CrossRef]
Sirtuin | Main Localization | Key Activities | Main Targets | References |
---|---|---|---|---|
SIRT1 | Nucleus | Deacetylation | H3 *, H4, FOXO, NF-κB, HIF-1α, XRCC6, WRN | [50,51] |
SIRT2 | Cytoplasm | Deacetylation, deacylation | p53, FOXO | [52,53] |
SIRT3 | Mitochondria | Deacetylation | AceCS2 | [54] |
SIRT4 | Mitochondria | ADP-ribosylation | GDH | [55] |
SIRT5 | Mitochondria | Desuccinylation, demanlonylation | CPS1 | [56] |
SIRT6 | Nucleus | Deacetylation, deacylation | H3, H4, FOXO, HIF-1α, PARP1 | [57,58] |
SIRT7 | Nucleous | Deacetylation | H3, H4 | [59,60] |
Sirtuin | Mechanism | Mediators |
---|---|---|
SIRT1 | Antioxidative effects | PGC-1α *, ERK, NMDAR2B |
Mitochondrial quality control | PGC-1α, NRF1/2, TFAM, DRP1 | |
Neuroinflammation | miR-155-5p, NF-κB, TNFA, IL1B, IL6, IL10, AMPK, NLRP3, apelin-13, miRNA-200b-5p, MYC, lncRNA SNHG8, miR-449c-5p | |
Autophagy | lncRNA KLF3 antisense RNA 1, ETV4, ATG5, ATG7, Beclin 1, LC3-II/I, AQSTM1/p62 | |
Mitophagy | PINK1/Parkin | |
SIRT2 | Antioxidant effects | NRF2, NQO1 |
SIRT3 | Antioxidant effects | SOD2, FOXO3A, NRF2 |
Mitochondrial quality control | TOMM20 | |
Neuroinflammation | NLRP3, BRC3 | |
SIRT4 | Antioxidant effects | SOD2, FOXO3A |
SIRT5 | Neuroinflammation | ANXA1 |
SIRT6 | Mitophagy | FTO, USP18, AMPK, PGC-1α, AKT |
SIRT7 | Mitochondrial quality control | PGC-1α, NRF1/2, TFAM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krekora, J.; Fila, M.; Mitus-Kenig, M.; Pawlowska, E.; Ciupinska, J.; Blasiak, J. Sirtuins Contribute to the Migraine–Stroke Connection. Int. J. Mol. Sci. 2025, 26, 6634. https://doi.org/10.3390/ijms26146634
Krekora J, Fila M, Mitus-Kenig M, Pawlowska E, Ciupinska J, Blasiak J. Sirtuins Contribute to the Migraine–Stroke Connection. International Journal of Molecular Sciences. 2025; 26(14):6634. https://doi.org/10.3390/ijms26146634
Chicago/Turabian StyleKrekora, Jan, Michal Fila, Maria Mitus-Kenig, Elzbieta Pawlowska, Justyna Ciupinska, and Janusz Blasiak. 2025. "Sirtuins Contribute to the Migraine–Stroke Connection" International Journal of Molecular Sciences 26, no. 14: 6634. https://doi.org/10.3390/ijms26146634
APA StyleKrekora, J., Fila, M., Mitus-Kenig, M., Pawlowska, E., Ciupinska, J., & Blasiak, J. (2025). Sirtuins Contribute to the Migraine–Stroke Connection. International Journal of Molecular Sciences, 26(14), 6634. https://doi.org/10.3390/ijms26146634