Sirtuins in Central Nervous System Tumors—Molecular Mechanisms and Therapeutic Targeting
Abstract
1. Introduction
2. SIRT1
- Non-histone protein deacetylation—In addition to histones, SIRT1 deacetylates a wide array of non-histone proteins, including transcription factors like p53 (tumor protein p53), FOXO (forkhead box O), and NF-κB, as well as DNA repair proteins like Ku70 and metabolic regulators like PGC-1α [16,18,24,33,34].
SIRT1 in CNS Tumors
3. SIRT2
SIRT2 in CNS Tumors
4. SIRT3
SIRT3 in CNS Tumors
5. SIRT4
SIRT4 in CNS Tumors
6. SIRT5
SIRT5 in CNS Tumors
7. SIRT6
SIRT6 in CNS Tumors
8. SIRT7
SIRT7 in CNS Tumors
9. Limitations
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szabóová, D.; Guľašová, Z.; Hertelyová, Z.; Beňačka, R. Understanding the Fundamental Mechanisms and Conditions of the Tumor-Suppressive and Oncogenic Roles of Sirtuins in Cancer: A Review. Gene Protein Dis. 2024, 3, 4100. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Song, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Z.; Wang, Y. The Dual Role of Sirtuins in Cancer: Biological Functions and Implications. Front. Oncol. 2024, 14, 1384928. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, F.; Fabbrizi, E.; Mai, A.; Rotili, D. Activation and Inhibition of Sirtuins: From Bench to Bedside. Med. Res. Rev. 2024, 45, 484–560. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Qi, X.; Hu, Y.; Wang, Y.; Zhang, J.; Liu, Z.; Qin, Z. Targeting Sirtuins for Cancer Therapy: Epigenetics Modifications and Beyond. Theranostics 2024, 14, 6726–6767. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Cui, H. Sirtuins and Cellular Metabolism in Cancers. In Sirtuin Biology in Cancer and Metabolic Disease; Elsevier eBooks: Amsterdam, The Nethrelands, 2021; p. 195. [Google Scholar]
- Mei, Z.; Zhang, X.; Yi, J.; Huang, J.; He, J.; Tao, Y. Sirtuins in Metabolism, DNA Repair and Cancer. J. Exp. Clin. Cancer Res. 2016, 35, 182. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yoon, H. Mitochondrial Sirtuins: Energy Dynamics and Cancer Metabolism. Mol. Cells 2024, 47, 100029. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Chen, B.; Leung, G.; Kiang, K.M.Y. Sirtuin 5 (SIRT5) Suppresses Tumor Growth by Regulating Mitochondrial Metabolism and Synaptic Remodeling in Gliomas. Int. J. Mol. Sci. 2024, 25, 9125. [Google Scholar] [CrossRef] [PubMed]
- Razick, D.I.; Akhtar, M.; Alam, M.M.; Ansari, U.; Ansari, Z.A.; Tabaie, E.; Siddiqui, S. The Role of Sirtuin 1 (SIRT1) in Neurodegeneration. Cureus 2023, 15, e40463. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarasimhan, M.; Curth, U.; Moniot, S.; Mosalaganti, S.; Raunser, S.; Steegborn, C. Molecular Architecture of the Human Protein Deacetylase Sirt1 and Its Regulation by AROS and Resveratrol. Biosci. Rep. 2013, 33, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.M.; Huber, F.M.; Hoelz, A. Structural and Functional Analysis of Human SIRT1. J. Mol. Biol. 2014, 426, 526–541. [Google Scholar] [CrossRef] [PubMed]
- Nowacka, A.; Śniegocka, M.; Smuczyński, W.; Liss, S.; Ziółkowska, E.; Bożiłow, D.; Śniegocki, M.; Wiciński, M. The Potential Application of Resveratrol and Its Derivatives in Central Nervous System Tumors. Int. J. Mol. Sci. 2024, 25, 13338. [Google Scholar] [CrossRef] [PubMed]
- Sauve, A.A.; Wolberger, C.; Schramm, V.L.; Boeke, J.D. The Biochemistry of Sirtuins. Annu. Rev. Biochem. 2006, 75, 435–465. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.-S.; Zhang, J.-X.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and Its Roles in Inflammation. Front. Immunol. 2022, 13, 831168. [Google Scholar] [CrossRef] [PubMed]
- Alves-Fernandes, D.K.; Jasiulionis, M.G. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int. J. Mol. Sci. 2019, 20, 3153. [Google Scholar] [CrossRef] [PubMed]
- Chen, W. SIRT1 (Sirtuin (Silent Mating Type Information Regulation 2 Homolog) 1 (S. Cerevisiae)). Atlas Genet. Cytogenet. Oncol. Haematol. 2017, 20, 26. [Google Scholar] [CrossRef]
- Naisam, S.; Mohan, A.; Sreekumar, N. Epigenetic Regulation of Human Sirtuin 1 Insights into Aging Mechanisms. Preprints 2024, 2024100596. [Google Scholar] [CrossRef]
- Wiciński, M.; Erdmann, J.; Nowacka, A.; Kuźmiński, O.; Michalak, K.; Janowski, K.; Ohla, J.; Biernaciak, A.; Szambelan, M.; Zabrzyński, J. Natural Phytochemicals as SIRT Activators—Focus on Potential Biochemical Mechanisms. Nutrients 2023, 15, 3578. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhao, H.; Liu, Y.; Yang, Z.; Yao, H.; Liu, T.; Gou, T.-T.; Wang, L.; Zhang, J.; Tian, Y.; et al. Novel Role of the SIRT1 in Endocrine and Metabolic Diseases. Int. J. Biol. Sci. 2023, 19, 484–501. [Google Scholar] [CrossRef] [PubMed]
- Iside, C.; Scafuro, M.; Nebbioso, A.; Altucci, L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front. Pharmacol. 2020, 11, 1225. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-C.; Guarente, L. SIRT1 and Other Sirtuins in Metabolism. Trends Endocrinol. Metab. 2014, 25, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.Y.; Miller, C.M.; Bitterman, K.J.; Wall, N.R.; Hekking, B.G.; Kessler, B.M.; Howitz, K.T.; Gorospe, M.; de Cabo, R.; Sinclair, D.A. Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacetylase. Science 2004, 305, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wen, J.; Qin, T.; Chen, Y.; Huang, J.; Yang, Q.; Jiang, P.; Wang, L.; Zhao, Y.; Yang, Q. New Insights into Sirt1: Potential Therapeutic Targets for the Treatment of Cerebral Ischemic Stroke. Front. Cell. Neurosci. 2023, 17, 1228761. [Google Scholar] [CrossRef] [PubMed]
- Meidan, R.; Szymanska, M. Divergent Roles of Sirtuin 1 in Human Granulosa-Lutein Cells: Similarities to Human Chorionic Gonadotropin. Biol. Reprod. 2023, 108, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Keremidarska-Markova, M.; Sazdova, I.; Mladenov, M.; Pilicheva, B.; Zagorchev, P.; Gagov, H. Sirtuin 1 and Hormonal Regulations in Aging. Appl. Sci. 2024, 14, 12051. [Google Scholar] [CrossRef]
- Khawar, M.B.; Sohail, A.M.; Li, W. SIRT1: A Key Player in Male Reproduction. Reprod. Dev. Biol. 2022, 12, 318. [Google Scholar] [CrossRef] [PubMed]
- Rasha, F.; Mims, B.M.; Castro-Piedras, I.; Barnes, B.J.; Barnes, B.J.; Grisham, M.B.; Rahman, R.L.; Pruitt, K. The Versatility of Sirtuin-1 in Endocrinology and Immunology. Front. Cell Dev. Biol. 2020, 8, 589016. [Google Scholar] [CrossRef] [PubMed]
- Ng, F.; Wijaya, L.; Tang, B.; Tang, B. SIRT1 in the Brain-Connections with Aging-Associated Disorders and Lifespan. Front. Cell. Neurosci. 2015, 9, 64. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.-S.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Elekhnawy, E. SIRT1 Pathway in Parkinson’s Disease: A Faraway Snapshot but so Close. Inflammopharmacology 2022, 31, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, Y.; Wang, X.-X.; Truong, D.; Truong, D.; Wu, Y.-C. The Critical Role of SIRT1 in Parkinson’s Disease: Mechanism and Therapeutic Considerations. Aging Dis. 2020, 11, 1608–1622. [Google Scholar] [CrossRef] [PubMed]
- Elibol, B.; Kilic, U. High Levels of SIRT1 Expression as a Protective Mechanism Against Disease-Related Conditions. Front. Endocrinol. 2018, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Maiese, K. The Mechanistic Target of Rapamycin (mTOR) and the Silent Mating-Type Information Regulation 2 Homolog 1 (SIRT1): Oversight for Neurodegenerative Disorders. Biochem. Soc. Trans. 2018, 46, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zhang, H.; Yang, D. SIRT1 Exerts Protective Effects by Inhibiting Endoplasmic Reticulum Stress and NF-κB Signaling Pathways. Front. Cell Dev. Biol. 2024, 12, 1405546. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Islam, R. Mammalian Sirt1: Insights on Its Biological Functions. Cell Commun. Signal. 2011, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Campagna, R.; Mazzanti, L.; Pompei, V.; Alia, S.; Vignini, A.; Emanuelli, M. The Multifaceted Role of Endothelial Sirt1 in Vascular Aging: An Update. Cells 2024, 13, 1469. [Google Scholar] [CrossRef] [PubMed]
- Nogueiras, R.; Habegger, K.M.; Chaudhary, N.; Finan, B.; Banks, A.S.; Dietrich, M.O.; Horvath, T.L.; Sinclair, D.A.; Pfluger, P.T.; Tschöp, M.H. Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism. Physiol. Rev. 2012, 92, 1479–1514. [Google Scholar] [CrossRef] [PubMed]
- Pardo, P.S.; Boriek, A.M. SIRT1 Regulation in Ageing and Obesity. Mech. Ageing Dev. 2020, 188, 111249. [Google Scholar] [CrossRef] [PubMed]
- Hur, Y.; Huynh, J.T.; Leong, E.I.L.; Dosanjh, R.; Charvat, A.F.; Vu, M.H.; Alam, Z.; Lee, Y.T.; Cabreros, C.; Carroll, E.C.; et al. The Differing Effects of a Dual Acting Regulator on SIRT1. Front. Mol. Biosci. 2023, 10, 1260489. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, F.; Mai, A.; Rotili, D. The Role of Structural Biology in the Design of Sirtuin Activators. Curr. Opin. Struct. Biol. 2023, 82, 102666. [Google Scholar] [CrossRef] [PubMed]
- Budbazar, E.; Rodriguez, F.; Mate Sanchez, J.E.; Seta, F. The Role of Sirtuin-1 in the Vasculature: Focus on Aortic Aneurysm. Front. Physiol. 2020, 11, 1047. [Google Scholar] [CrossRef] [PubMed]
- Law, M.; Wang, P.; Zhou, Z. From Microcirculation to Aging-Related Diseases: A Focus on Endothelial SIRT1. Pharmaceuticals 2024, 17, 1495. [Google Scholar] [CrossRef] [PubMed]
- Brow, S. Investigating the Potential Role of SIRT1 in Glioblastoma Multiforme: A Comparison Between Glioma and Normal Astrocyte Cells in Culture. Master’s Thesis, Te Herenga Waka-Victoria—University of Wellington, Wellington, New Zealand, 2015. [Google Scholar] [CrossRef]
- Chen, H.; Lin, R.; Zhang, Z.; Wei, Q.; Zhong, Z.; Huang, J.; Xu, Y. Sirtuin 1 Knockdown Inhibits Glioma Cell Proliferation and Potentiates Temozolomide Toxicity via Facilitation of Reactive Oxygen Species Generation. Oncol. Lett. 2019, 17, 5343–5350. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, X.; Cui, Y.; Wei, Q.; Chen, S.; Wang, X. Effects of SIRT1 Silencing on Viability, Invasion and Metastasis of Human Glioma Cell Lines. Oncol. Lett. 2019, 17, 3701–3708. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, D.; Gao, Y.; Cao, Y.; Hao, B. Histone Deacetylase SIRT6 Inhibits Glioma Cell Growth through Down-Regulating NOTCH3 Expression. Acta Biochim. Biophys. Sin. 2018, 50, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Laws, M.T.; Bonomi, R.E.; Gelovani, D.; Llaniguez, J.T.; Lu, X.; Mangner, T.J.; Gelovani, J.G. Noninvasive Quantification of SIRT1 Expression-Activity and Pharmacologic Inhibition in a Rat Model of Intracerebral Glioma Using 2-[18F]BzAHA PET/CT/MRI. Neuro-Oncol. Adv. 2020, 2, vdaa006. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Wei, L.; Shi, J.; Jiang, K.; Xu, H.; Hu, L.; Kong, L.; Zhang, Y.; Meng, S.; Piao, H. Sirtuin1 Activator SRT2183 Suppresses Glioma Cell Growth Involving Activation of Endoplasmic Reticulum Stress Pathway. BMC Cancer 2019, 19, 706. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.-Q.; Zhang, X.; Zhen, Y.-Q.; He, X.; Zhao, S.-M.; Li, X.; Yang, B.; Gao, F.; Guo, F.; Fu, L.-L.; et al. A Novel Small-Molecule Activator of Sirtuin-1 Induces Autophagic Cell Death/Mitophagy as a Potential Therapeutic Strategy in Glioblastoma. Cell Death Dis. 2018, 9, 767. [Google Scholar] [CrossRef] [PubMed]
- Inhibition of Glioblastoma Progression by Urolithin A in Vitro and in Vivo by Regulating Sirt1-FOXO1 Axis via ERK/AKT Signaling Pathways. Neoplasma 2022, 69, 80–94. [CrossRef] [PubMed]
- Li, Y.; Dongwei, D.; Lu, Q.; Fei, M.; Li, M.; Wu, X. Sirt2 Suppresses Glioma Cell Growth through Targeting NF-κB-miR-21 Axis. Biochem. Biophys. Res. Commun. 2013, 441, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Wang, Y.; Wang, C.; Tang, Y.; Zhang, C.; Hou, S.; Yu, D.; Lin, N. Glucose Regulates the HMGB1 Signaling Pathway through SIRT1 in Glioma. Cell. Signal. 2024, 118, 111137. [Google Scholar] [CrossRef] [PubMed]
- Saidi, D.; Cheray, M.; Osman, A.M.; Osman, A.M.; Stratoulias, V.; Lindberg, O.R.; Shen, X.; Blomgren, K.; Blomgren, K.; Joseph, B. Glioma-Induced SIRT1-Dependent Activation of hMOF Histone H4 Lysine 16 Acetyltransferase in Microglia Promotes a Tumor Supporting Phenotype. OncoImmunology 2018, 7, 1382790. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.-W.; Shu, Y.-G.; Sun, S.-L. miR-376a Inhibits Glioma Proliferation and Angiogenesis by Regulating YAP1/VEGF Signalling via Targeting of SIRT1. Transl. Oncol. 2022, 15, 101270. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, M. SIRT1 Inhibition Exhibits Decreased Pluripotency in Cancer Stem Cells of Glioma. Ann. Oncol. 2017, 28, x35–x36. [Google Scholar] [CrossRef]
- Lee, J.-S.; Park, J.-R.; Kwon, O.-S.; Lee, T.H.; Nakano, I.; Miyoshi, H.; Chun, K.-H.; Park, M.-J.; Lee, H.J.; Kim, S.U.; et al. SIRT1 Is Required for Oncogenic Transformation of Neural Stem Cells and for the Survival of “Cancer Cells with Neural Stemness” in a P53-Dependent Manner. Neuro-Oncol. 2015, 17, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.-X.; Li, H.; Chen, X.-M.; Yang, X.-H.; Wang, Q.; Wu, M.-L.; Kong, Q.-Y.; Li, Z.-X.; Liu, J. Expression Patterns and Potential Roles of SIRT1 in Human Medulloblastoma Cells in Vivo and in Vitro. Neuropathology 2013, 33, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.-X.; Li, H.; Cheng, X.-X.; Wu, M.-L.; Yu, L.-J.; Kong, Q.-Y.; Ming, L.; Liu, J. Inhibition of SIRT1 Transcription in Resveratrol-Differentiated Medulloblastoma Cells. Funct. Foods Health Dis. 2013, 3, 154–165. [Google Scholar] [CrossRef]
- Miller, J.J.; Fink, A.; Banagis, J.A.; Nagashima, H.; Subramanian, M.; Lee, C.K.; Melamed, L.; Tummala, S.S.; Tateishi, K.; Tateishi, K.; et al. Sirtuin Activation Targets IDH-Mutant Tumors. Neuro-Oncol. 2021, 23, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Abeywardana, M.Y.; Whedon, S.D.; Lee, K.; Nam, E.; Dovarganes, R.; DuBois-Coyne, S.; Haque, I.A.; Wang, Z.A.; Cole, P.A. Multifaceted Regulation of Sirtuin 2 (Sirt2) Deacetylase Activity. J. Biol. Chem. 2024, 300, 107722. [Google Scholar] [CrossRef] [PubMed]
- Koike, T.; Suzuki, K.; Kawahat, T. SIRT2 (Sirtuin2)—An Emerging Regulator of Neuronal Degeneration. In Neurodegeneration; InTech eBooks: London, UK, 2012. [Google Scholar] [CrossRef]
- Inoue, T.; Hiratsuka, M.; Osaki, M.; Oshimura, M. The Molecular Biology of Mammalian SIRT Proteins: SIRT2 in Cell Cycle Regulation. Cell Cycle 2007, 6, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Hou, X.; Fang, H. Structure, Functions, and Recent Advances in the Development of SIRT2 Inhibitors. Pharm. Sci. Adv. 2023, 1, 100010. [Google Scholar] [CrossRef]
- Nielsen, A.L.; Rajabi, N.; Kudo, N.; Lundø, K.; Moreno-Yruela, C.; Bæk, M.; Fontenas, M.; Lucidi, A.; Madsen, A.S.; Yoshida, M.; et al. Mechanism-Based Inhibitors of SIRT2: Structure–Activity Relationship, X-Ray Structures, Target Engagement, Regulation of α-Tubulin Acetylation and Inhibition of Breast Cancer Cell Migration. RSC Chem. Biol. 2021, 2, 612–626. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Dong, X.; Wang, X.; Zhang, Y.; Qiu, J.; Peng, Y.-W.; Xu, J.; Chai, Z.; Liu, C. Multiple Roles of SIRT2 in Regulating Physiological and Pathological Signal Transduction. Genet. Res. 2022, 2022, 9282484. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.E.; Ko, S.Y.; Jo, S.; Jo, H.R.; Han, J.; Kim, Y.S.; Son, H. Downregulation of SIRT2 by Chronic Stress Reduces Expression of Synaptic Plasticity-Related Genes through the Upregulation of Ehmt2. Exp. Neurobiol. 2019, 28, 537–546. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.M.; Sarkander, J.; Kazantsev, A.G.; Outeiro, T.F. SIRT2 as a Therapeutic Target for Age-Related Disorders. Front. Pharmacol. 2012, 3, 82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Brachner, A.; Kukolj, E.; Slade, D.; Wang, Y. SIRT2 Deacetylates GRASP55 to Facilitate Post-Mitotic Golgi Assembly. J. Cell Sci. 2019, 132, jcs232389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kim, S.; Ren, X. The Clinical Significance of SIRT2 in Malignancies: A Tumor Suppressor or an Oncogene? Front. Oncol. 2020, 10, 1721. [Google Scholar] [CrossRef] [PubMed]
- Serrano, L.; Martinez-Redondo, P.; Marazuela-Duque, A.; Vazquez, B.N.; Dooley, S.J.; Voigt, P.; Beck, D.B.; Kane-Goldsmith, N.; Tong, Q.; Rabanal, R.M.; et al. The Tumor Suppressor SirT2 Regulates Cell Cycle Progression and Genome Stability by Modulating the Mitotic Deposition of H4K20 Methylation. Genes Dev. 2013, 27, 639–653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Head, P.E.; Yu, D.S. SIRT2 Orchestrates the DNA Damage Response. Cell Cycle 2016, 15, 2089–2090. [Google Scholar] [CrossRef] [PubMed]
- Funato, K.; Funato, K.; Hayashi, T.; Echizen, K.; Negishi, L.; Shimizu, N.; Koyama-Nasu, R.; Nasu-Nishimura, Y.; Morishita, Y.; Tabar, V.; et al. SIRT2-mediated Inactivation of P73 Is Required for Glioblastoma Tumorigenicity. EMBO Rep. 2018, 19, e45587. [Google Scholar] [CrossRef] [PubMed]
- Malgulwar, P.B.; Danussi, C.; Dharmaiah, S.; Johnson, W.; Singh, A.; Rai, K.; Rao, A.; Huse, J.T. Sirtuin 2 Inhibition Modulates Chromatin Landscapes Genome-Wide to Induce Senescence in ATRX-Deficient Malignant Glioma. Neuro-Oncol. 2023, 26, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, J.; Hong, T.; Chen, X.; Cui, L. SIRT2: Controversy and Multiple Roles in Disease and Physiology. Ageing Res. Rev. 2019, 55, 100961. [Google Scholar] [CrossRef] [PubMed]
- Imaoka, N.; Hiratsuka, M.; Osaki, M.; Kamitani, H.; Kambe, A.; Fukuoka, J.; Kurimoto, M.; Nagai, S.; Okada, F.; Watanabe, T.; et al. Prognostic Significance of Sirtuin 2 Protein Nuclear Localization in Glioma: An Immunohistochemical Study. Oncol. Rep. 2012, 28, 923–930. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Nie, H.; Hong, Y.; Sheng, C.; Xia, W.; Ying, W. SIRT2 Activity Is Required for the Survival of C6 Glioma Cells. Biochem. Biophys. Res. Commun. 2012, 417, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Sayd, S.; Thirant, C.; Thirant, C.; El-Habr, E.A.; Lipecka, J.; Dubois, L.G.; Bogeas, A.; Tahiri-Jouti, N.; Chneiweiss, H.; Junier, M.-P. Sirtuin-2 Activity Is Required for Glioma Stem Cell Proliferation Arrest but Not Necrosis Induced by Resveratrol. Stem Cell Rev. Rep. 2014, 10, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Alimova, I.; Wang, D.; Pierce, A.; Lakshmanachetty, S.; Prince, E.; Danis, E.; Serkova, N.J.; Madhavan, K.; Balakrishnan, I.; Yang, M.; et al. ATRT-23. SIRT2 Cooperates with SMARCB1 to Induce a Differentiation Block in ATRT. Neuro-Oncol. 2022, 24, i8. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, H.; Liu, J.; Chen, Y.; He, R.-R.; Liu, B. Mitochondrial Sirtuin 3: New Emerging Biological Function and Therapeutic Target. Theranostics 2020, 10, 8315–8342. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Dou, X.; Wang, Z.; Shi, K.; Wang, Z.; Ding, C.H.; Sang, X.; Zhong, X.; Shao, M.; Han, X.; et al. SIRT3: A Potential Therapeutic Target for Liver Fibrosis. Pharmacol. Ther. 2024, 257, 108639. [Google Scholar] [CrossRef] [PubMed]
- Xuan, P.; Ni, H.; Kuang, B.; Wang, Z.; Hou, S.; Gu, S.J.; Gong, N. Sirtuin 3 in Renal Diseases and Aging: From Mechanisms to Potential Therapies. Pharmacol. Res. 2024, 206, 107261. [Google Scholar] [CrossRef]
- Lambona, C.; Zwergel, C.; Valente, S.; Mai, A. SIRT3 Activation a Promise in Drug Development? New Insights into SIRT3 Biology and Its Implications on the Drug Discovery Process. J. Med. Chem. 2024, 67, 662–1689. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wang, M.; Zhao, J.; Han, Y.; Jia, L.-T. Sirtuin 3: A Janus Face in Cancer (Review). Int. J. Oncol. 2016, 49, 2227–2235. [Google Scholar] [CrossRef] [PubMed]
- Giralt, A.; Villarroya, F. SIRT3, a Pivotal Actor in Mitochondrial Functions: Metabolism, Cell Death and Aging. Biochem. J. 2012, 444, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhou, S.; Chang, X.; Ruxiu, L. SIRT3 Regulates Mitochondrial Function: A Promising Star Target for Cardiovascular Disease Therapy. Biomed. Pharmacother. 2023, 170, 116004. [Google Scholar] [CrossRef] [PubMed]
- Torrens-Mas, M.; Oliver, J.; Roca, P.; Sastre-Serra, J. SIRT3: Oncogene and Tumor Suppressor in Cancer. Cancers 2017, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Xi, S.; Chen, W.; Ke, Y. Advances in SIRT3 Involvement in Regulating Autophagy-Related Mechanisms. Cell Div. 2024, 19, 20. [Google Scholar] [CrossRef] [PubMed]
- Jing, E.; Emanuelli, B.; Hirschey, M.D.; Boucher, J.; Lee, K.Y.; Lombard, D.B.; Verdin, E.; Kahn, C.R. Sirtuin-3 (Sirt3) Regulates Skeletal Muscle Metabolism and Insulin Signaling via Altered Mitochondrial Oxidation and Reactive Oxygen Species Production. Proc. Natl. Acad. Sci. USA 2011, 108, 14608–14613. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wei, H.; Li, J. A Review on SIRT3 and Its Natural Small Molecule Activators as a Potential Preventive and Therapeutic Target. Eur. J. Pharmacol. 2023, 963, 176155. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Coto, D.L.; Gil, J.; Ayala, G.; Encarnación-Guevara, S. Dynamics of Mitochondrial Proteome and Acetylome in Glioblastoma Cells with Contrasting Metabolic Phenotypes. Int. J. Mol. Sci. 2024, 25, 3450. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, W.; Xing, Z.; Hu, S.; Zhang, G.; Wang, T.; Wang, T.; Fan, Q.; Chen, G.; Cheng, J.; et al. Targeting SIRT3 Sensitizes Glioblastoma to Ferroptosis by Promoting Mitophagy and Inhibiting SLC7A11. Cell Death Dis. 2024, 15, 168. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Sun, S.; Xing, S.; Huang, C.-P.; Huang, Y.; Wang, Q.; Xue, X.; Chen, Z.; Wang, Y.; Huang, Z. Fraxinellone Inhibits Progression of Glioblastoma via Regulating the SIRT3 Signaling Pathway. Biomed. Pharmacother. 2022, 153, 113416. [Google Scholar] [CrossRef] [PubMed]
- Qiao, A.; Wang, K.; Yuan, Y.; Guan, Y.-D.; Ren, X.; Li, L.; Chen, X.-S.; Li, F.; Chen, A.F.; Zhou, J.; et al. Sirt3-mediated mitophagy protects tumor cells against apoptosis under hypoxia. Oncotarget 2016, 7, 43390–43400. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Fan, M.; Candas, D.; Qin, L.; Zhang, X.; Eldridge, A.; Zou, J.X.; Zhang, T.; Juma, S.; Jin, C.; et al. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Mol. Cancer Ther. 2015, 14, 2090–2102. [Google Scholar] [CrossRef] [PubMed]
- Haq, M.F.U.; Hussain, M.Z.; Mahjabeen, I.; Akram, Z.; Saeed, N.; Shafique, R.; Abbasi, S.; Kayani, M.A. Oncometabolic Role of Mitochondrial Sirtuins in Glioma Patients. PLoS ONE 2023, 18, e0281840. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Huang, W.; Tang, S. Sirt3 Enhances Glioma Cell Viability by Stabilizing Ku70-BAX Interaction. OncoTargets Ther. 2018, 11, 7559–7567. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Dai, C.; Zhang, J. SIRT3-SOD2-ROS Pathway Is Involved in Linalool-Induced Glioma Cell Apoptotic Death. Acta Biochim. Pol. 2017, 64, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Fan, Q.; Cai, R. Glutamine Deprivation in Glioblastoma Stem Cells Triggers Autophagic SIRT3 Degradation to Epigenetically Restrict CD133 Expression and Stemness. Apoptosis 2024, 29, 1619–1631. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-K.; Hong, J.H.; Oh, Y.-T.; Kim, S.-S.; Yin, J.; Lee, A.J.; Chae, Y.C.; Kim, J.H.; Park, S.H.; Park, C.-K.; et al. Interplay Between TRAP1 and Sirtuin-3 Modulates Mitochondrial Respiration and Oxidative Stress to Maintain Stemness of Glioma Stem Cells. Cancer Res. 2019, 79, 1369–1382. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, L.; Lang, A.; Bross, C.; Altinoluk-Hambüchen, S.; Fey, I.; Overbeck, N.; Stefanski, A.; Wiek, C.; Kefalas, A.; Verhülsdonk, P.; et al. Subcellular Localization and Mitotic Interactome Analyses Identify SIRT4 as a Centrosomally Localized and Microtubule Associated Protein. Cells 2020, 9, 1950. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, Y.; Zhu, Y.; Kong, C. Functions of Mammalian SIRT4 in Cellular Metabolism and Research Progress in Human Cancer (Review). Oncol. Lett. 2020, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Min, Z.; Gao, J.; Yu, Y. The Roles of Mitochondrial SIRT4 in Cellular Metabolism. Front. Endocrinol. 2019, 9, 783. [Google Scholar] [CrossRef] [PubMed]
- Noone, J.; Rochfort, K.D.; O’Sullivan, F.; O’Gorman, D.J. SIRT4 Is a Regulator of Human Skeletal Muscle Fatty Acid Metabolism Influencing Inner and Outer Mitochondrial-Mediated Fusion. Cell. Signal. 2023, 112, 110931. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Cui, Y.; Bai, Y.; Bai, Y.; Yang, J.; Yang, J.; Yao, Y.; Yao, Y.; Zhang, C.; Zhang, C.; et al. SIRT4 Is the Molecular Switch Mediating Cellular Proliferation in Colorectal Cancer through GLS Mediated Activation of AKT/GSK3β/CyclinD1 Pathway. Carcinogenesis 2021, 42, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Hong, X.; Xu, L.; Wang, X.; Liu, J.; Wang, H.; Qian, Y.; Zhao, J.; Jia, R. Sirtuin 4 Inhibits Prostate Cancer Progression and Metastasis by Modulating P21 Nuclear Translocation and Glutamate Dehydrogenase 1 ADP-Ribosylation. J. Oncol. 2022, 2022, 5498743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Chen, H.; Da, B.; Cai, Z.; Fang, R.; Zhang, H.; Xie, X.; Zhao, S.; Zhang, M.; Wang, S.; et al. SIRT4 Enhances the Cytotoxicity of NK Cells toward Hepatic Stellate Cells and Reverses Liver Fibrosis via AMPKα/P-P53/NKG2DL Pathway. bioRxiv 2024, 2024, 2024.09.30.615768. [Google Scholar] [CrossRef]
- Xing, D.; Cui, W.; Yu, W.; Pan, P.; Lü, Y. SIRT4 Promotes Neuronal Apoptosis in Models of Alzheimer’s Disease via the STAT2-SIRT4-mTOR Pathway. Am. J. Physiol. Cell Physiol. 2024, 326, C1697–C1709. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, Y.; Gao, J.; Yuan, X. Tumor-Suppressive Function of SIRT4 in Neuroblastoma through Mitochondrial Damage. Cancer Manag. Res. 2018, 10, 5591–5603. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Yang, J.; Yang, J.; Cui, Y.; Yao, Y.; Yao, Y.; Wu, F.; Liu, C.; Fan, X.; Zhang, Y.; et al. Research Progress of Sirtuin4 in Cancer. Front. Oncol. 2021, 10, 562950. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Li, S.; Wang, X.; Mei, C.; Zan, L. Study of Expression Analysis of SIRT4 and the Coordinate Regulation of Bovine Adipocyte Differentiation by SIRT4 and Its Transcription Factors. Biosci. Rep. 2018, 38, BSR20181705. [Google Scholar] [CrossRef] [PubMed]
- Akkulak, A.; Dagdelen, D.N.; Yalcin, A.; Oktay, E.; Diniz, G.; Kahraman, D.S.; Senoglu, M.; Yalcin, G.D. The Expression of Glutamate Metabolism Modulators in the Intracranial Tumors and Glioblastoma Cell Line. Mol. Biol. Rep. 2021, 49, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Dönmez Yalçın, G.; Colak, M. SIRT4 Prevents Excitotoxicity via Modulating Glutamate Metabolism in Glioma Cells. Hum. Exp. Toxicol. 2020, 39, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, F.; Castiello, C.; Maio, A.; Rotili, D. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5. J. Med. Chem. 2022, 65, 9580–9606. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, H.; Zha, X. Overview of SIRT5 as a Potential Therapeutic Target: Structure, Function and Inhibitors. Eur. J. Med. Chem. 2022, 236, 114363. [Google Scholar] [CrossRef] [PubMed]
- Mahlknecht, U.; Ho, A.D.; Letzel, S.; Voelter-Mahlknecht, S. Assignment of the NAD-Dependent Deacetylase Sirtuin 5 Gene (SIRT5) to Human Chromosome Band 6p23 by in Situ Hybridization. Cytogenet. Genome Res. 2006, 112, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Hang, T.; Chen, W.; Wu, M.; Zhan, L.; Wang, C.; Jia, N.; Zhang, X.; Zang, J. Structural Insights into the Molecular Mechanism Underlying Sirt5-Catalyzed Desuccinylation of Histone Peptides. Biochem. J. 2019, 476, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Fabbrizi, E.; Fiorentino, F.; Carafa, V.; Altucci, L.; Maio, A.; Rotili, D. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Cells 2023, 12, 852. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-X.; Tan, J.; Cao, Z.; Cai, Y.; Huang, Z.; Chen, Z.-T.; He, W.; Liu, X.; Jiang, Y.; Gao, Q.; et al. Sirt5 Improves Cardiomyocytes Fatty Acid Metabolism and Ameliorates Cardiac Lipotoxicity in Diabetic Cardiomyopathy via CPT2 De-Succinylation. Redox Biol. 2024, 73, 103184. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.; Yuan, X.; Santana, M.; Olsen, C.A. Mechanism-Based Inactivators of Sirtuin 5: A Focused Structure–Activity Relationship Study. Bioorganic Med. Chem. Lett. 2024, 115, 130017. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, Z.; Zeng, S.; Wang, X.; Liu, W.; Qian, L.; Wei, J.; Yang, X.; Shen, Q.; Gong, Z.; et al. SIRT5 Downregulation Is Associated with Poor Prognosis in Glioblastoma. Crim. Behav. Ment. Health 2019, 24, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, E.; Bignon, E.; Schultz, P.; Pápai, G.; Ben-Shem, A. Binding to Nucleosome Poises Human SIRT6 for Histone H3 Deacetylation. eLife 2024, 12, RP87989. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, J.; Wang, Y. SIRT6 Widely Regulates Aging, Immunity, and Cancer. Front. Oncol. 2022, 12, 861334. [Google Scholar] [CrossRef] [PubMed]
- Chio, U.S.; Rechiche, O.; Bryll, A.R.; Leith, E.M.; Feldman, J.L.; Peterson, C.L.; Tan, S.; Armache, J.P. Cryo-EM Structure of the Human Sirtuin 6–Nucleosome Complex. Sci. Adv. 2023, 9, eadf7586. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Keuthan, C.J.; Esumi, N. The Many Faces of SIRT6 in the Retina and Retinal Pigment Epithelium. Front. Cell Dev. Biol. 2023, 11, 1244765. [Google Scholar] [CrossRef] [PubMed]
- Kugel, S.; Mostoslavsky, R. Chromatin and beyond: The Multitasking Roles for SIRT6. Trends Biochem. Sci. 2014, 39, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Ferrer, C.M.; Mostoslavsky, R. SIRT6, a Mammalian Deacylase with Multitasking Abilities. Physiol. Rev. 2020, 100, 145–169. [Google Scholar] [CrossRef] [PubMed]
- Beauharnois, J.M.; Bolívar, B.E.; Welch, J.T. Sirtuin 6: A Review of Biological Effects and Potential Therapeutic Properties. Mol. Biosyst. 2013, 9, 1789–1806. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, F.; Mai, A.; Rotili, D. Emerging Therapeutic Potential of SIRT6 Modulators. J. Med. Chem. 2021, 64, 9732–9758. [Google Scholar] [CrossRef] [PubMed]
- Dzidek, A.; Czerwińska-Ledwig, O.; Żychowska, M.; Pilch, W.; Piotrowska, A. The Role of Increased Expression of Sirtuin 6 in the Prevention of Premature Aging Pathomechanisms. Int. J. Mol. Sci. 2023, 24, 9655. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zheng, W.; Tasselli, L.; Tasselli, L.; Li, T.-M.; Li, T.-M.; Chua, K.F.; Chua, K.F. Mammalian SIRT6 Represses Invasive Cancer Cell Phenotypes through ATP Citrate Lyase (ACLY)-Dependent Histone Acetylation. Genes 2021, 12, 1460. [Google Scholar] [CrossRef] [PubMed]
- Baran, M.; Miziak, P.; Stepulak, A.; Cybulski, M. The Role of Sirtuin 6 in the Deacetylation of Histone Proteins as a Factor in the Progression of Neoplastic Disease. Int. J. Mol. Sci. 2023, 25, 497. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, M.; Liang, J.; Wang, H.; Sun, D.; Li, H.L.; Chen, L. SIRT6 Mediates Multidimensional Modulation to Maintain Organism Homeostasis. J. Cell. Physiol. 2022, 237, 3205–3221. [Google Scholar] [CrossRef] [PubMed]
- Raghu, S.; Prabhashankar, A.B.; Shivanaiah, B.; Tripathi, E.; Sundaresan, N.R. Sirtuin 6 Is a Critical Epigenetic Regulator of Cancer. Subcell. Biochem. 2022, 100, 337–360. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.I.; Rahman Nirzhor, S.S.; Akter, R. A Review of the Recent Advances Made with SIRT6 and Its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets. Biomolecules 2018, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Nie, Z.; Liu, S.; Huang, X.; Wang, F.; Geng, X.; Wang, F. Inhibition of TRF1 Can Accelerate Aging and Induce Autophagy through the P53-SIRT6 Pathway in Glioblastoma Multiforme. Res. Sq. 2023. preprint. [Google Scholar] [CrossRef]
- Feng, J.; Yan, P.; Zhao, H.; Zhang, F.; Zhao, W.; Feng, M. SIRT6 Suppresses Glioma Cell Growth via Induction of Apoptosis, Inhibition of Oxidative Stress and Suppression of JAK2/STAT3 Signaling Pathway Activation. Oncol. Rep. 2016, 35, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Qiao, L.; Li, B.; Wang, J.; Zhang, G.; Shi, W.; Liu, Z.; Gu, N.; Di, Z.; Xinlai, W.; et al. Suppression of SIRT6 by miR-33a Facilitates Tumor Growth of Glioma through Apoptosis and Oxidative Stress Resistance. Oncol. Rep. 2017, 38, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-F.; Ma, J.; Han, X.; Jia, Y.-X.; Yuan, H.; Shui, S.; Guo, D. MicroRNA-320 Enhances Radiosensitivity of Glioma Through Down-Regulation of Sirtuin Type 1 by Directly Targeting Forkhead Box Protein M1. Transl. Oncol. 2018, 11, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Lagunas-Rangel, F.A. Bioinformatic Analysis of SIRT7 Sequence and Structure. J. Biomol. Struct. Dyn. 2022, 41, 8081–8091. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Tarighi, S.; Braun, T.; Ianni, A. SIRT7 Acts as a Guardian of Cellular Integrity by Controlling Nucleolar and Extra-Nucleolar Functions. Genes 2021, 12, 1361. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Tang, H.; Tu, B.; Zhu, W.-G. SIRT7: A Sentinel of Genome Stability. Open Biol. 2021, 11, 210047. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Mizumoto, T.; Yoshizawa, T. The Emerging Role of SIRT7 in Glucose and Lipid Metabolism. Cells 2023, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Tarighi, S.; Fuchshuber, E.; Li, L.; Fernández-Duran, I.; Wang, M.; Ayoson, J.; Castelló-García, J.M.; Gámez-García, A.; Espinosa-Alcantud, M.; et al. SIRT7 Promotes Lung Cancer Progression by Destabilizing the Tumor Suppressor ARF. Proc. Natl. Acad. Sci. USA 2024, 121, e2409269121. [Google Scholar] [CrossRef] [PubMed]
- Blank, M.F.; Grummt, I. The Seven Faces of SIRT7. Transcription 2017, 8, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Wang, M.; Wang, Y.; Kim, D.D.; Grenier, J.K.; Cao, J.; Sadhukhan, S.; Hao, Q.; Lin, H. SIRT7 Is an RNA-Activated Protein Lysine Deacylase. ACS Chem. Biol. 2017, 12, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-T.; Zhang, Y.-P.; Zhang, M.; Zhang, Z.-Z.; Zhong, J. Sirtuin 7 Serves as a Promising Therapeutic Target for Cardiorenal Diseases. Eur. J. Pharmacol. 2022, 925, 174977. [Google Scholar] [CrossRef] [PubMed]
- Mu, P.; Liu, K.; Lin, Q.; Yang, W.; Liu, D.; Lin, Z.; Shao, W.; Ji, T. Sirtuin 7 Promotes Glioma Proliferation and Invasion through Activation of the ERK/STAT3 Signaling Pathway. Oncol. Lett. 2018, 17, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, K.; Cheng, G.; Li, H.; Lv, W.; Liang, L.; Gao, M.; Zhang, J. Temozolomide-Induced Glioma Cytotoxicity Is Enhanced by Inhibition of Sirt7, Which Is Involved in Growth and Progression and Is Regulated by miR-148a-3p. Res. Sq. 2024; preprint. [Google Scholar] [CrossRef]
- Su, F.; Su, F.; Tang, X.; Li, G.; Koeberle, A.; Koeberle, A.; Liu, B. SIRT7–SREBP1 Restrains Cancer Cell Metabolic Reprogramming by Upregulating IDH1. Genome Instab. Dis. 2021, 2, 126–137. [Google Scholar] [CrossRef]
- Weng, H.; Ma, Y.; Chen, L.; Cai, G.; Chen, Z.; Zhang, S.; Ye, Q. A New Vision of Mitochondrial Unfolded Protein Response to the Sirtuin Family. Curr. Neuropharmacol. 2020, 18, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Wrighton, K.H. Stem Cells: SIRT7, the UPR and HSC Ageing. Nat. Rev. Mol. Cell Biol. 2015, 16, 266–267. [Google Scholar] [CrossRef] [PubMed]
- Mohrin, M.; Shin, J.; Liu, Y.; Brown, K.; Luo, H.; Xi, Y.; Haynes, C.M.; Chen, D. A Mitochondrial UPR-Mediated Metabolic Checkpoint Regulates Hematopoietic Stem Cell Aging. Science 2015, 347, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- Lagunas-Rangel, F.A. SIRT7 in the Aging Process. Cell. Mol. Life Sci. 2022, 79, 297. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Li, Y.; Zhu, K.S.; Wang, H.; Zhu, W.-G. Advances in Cellular Characterization of the Sirtuin Isoform, SIRT7. Front. Endocrinol. 2018, 9, 652. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.F.; Shi, Z.; Wang, B.; Fan, Y.; Cao, P.; Tan, K. Insight into the Mitochondrial Unfolded Protein Response and Cancer: Opportunities and Challenges. Cell Biosci. 2022, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Zalles, M.; Towner, R.A. Pre-Clinical Models and Potential Novel Therapies for Glioblastomas. In Gliomas; Exon Publications eBooks: Brisbane, Australia, 2021; p. 1. [Google Scholar]
- Clark, M.J.; Homer, N.; O’Connor, B.D.; Chen, Z.; Eskin, A.; Lee, H.; Merriman, B.; Nelson, S.F. U87MG Decoded: The Genomic Sequence of a Cytogenetically Aberrant Human Cancer Cell Line. PLoS Genet. 2010, 6, e1000832. [Google Scholar] [CrossRef] [PubMed]
- Schulz, J.; Rodgers, L.; Kryscio, R.J.; Hartz, A.M.S.; Bauer, B. Characterization and Comparison of Human Glioblastoma Models. BMC Cancer 2022, 22, 844. [Google Scholar] [CrossRef] [PubMed]
- Moore, Z.; Storey, C.; Brown, D.V.; Valkovic, A.; Spiteri, M.; Pignatelli, J.F.; Oliver, S.J.; Fakhri, A.; Drummond, K.J.; Malinowski, S.; et al. Three-Dimensional Patient-Derived Models of Glioblastoma Retain Intra-Tumoral Heterogeneity. bioRxiv 2025, 2025, 2025.01.08.632025. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Zhang, D.Y.; Ming, G.; Song, H. Glioblastoma Modeling with 3D Organoids: Progress and Challenges. Oxf. Open Neurosci. 2023, 2, kvad008. [Google Scholar] [CrossRef] [PubMed]
- Caragher, S.P.; Chalmers, A.J.; Gomez-Roman, N. Glioblastoma’s Next Top Model: Novel Culture Systems for Brain Cancer Radiotherapy Research. Cancers 2019, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Griffiths, S.; Veljanoski, D.; Vaughn-Beaucaire, P.; Speirs, V.; Brüning-Richardson, A. Preclinical Models of Glioblastoma: Limitations of Current Models and the Promise of New Developments. Expert Rev. Mol. Med. 2021, 23, e20. [Google Scholar] [CrossRef] [PubMed]
- Romaguera-Ros, M.; Peris-Celda, M.; Cruz, J.O.L.; Carrión-Navarro, J.; Pérez-García, A.; García-Verdugo, J.M.; Ayuso-Sacido, Á. Cancer-Initiating Enriched Cell Lines from Human Glioblastoma: Preparing for Drug Discovery Assays. Stem Cell Rev. Rep. 2011, 8, 288. [Google Scholar] [CrossRef] [PubMed]
Sirtuin | Molecular Mechanisms | Therapeutic Implications | Clinical Evidence |
---|---|---|---|
SIRT1 |
|
| |
SIRT2 |
|
|
|
SIRT3 |
| ||
SIRT4 |
|
| |
SIRT5 |
| ||
SIRT6 |
|
|
|
SIRT7 |
|
|
|
Sirtuin | Functional Category | Primary Role in CNS Tumors | Tumorigenic Role | Mechanisms and Molecular Functions |
---|---|---|---|---|
SIRT1 | Epigenetic Modulator, Metabolic Regulator | Maintains glioma stemness, represses tumor suppressors, enhances cell survival | Oncogenic | |
SIRT2 | Epigenetic Modulator, Cell Cycle Regulator | Modulates microtubule dynamics and apoptosis; dual role in glioma depending on context | Context-dependent (Oncogenic/Tumor Suppressor) |
|
SIRT3 | Metabolic Regulator | Supports oxidative metabolism and therapy resistance in GBM | Oncogenic |
|
SIRT4 | Metabolic Regulator | Restrains glutamine metabolism, promotes autophagy and apoptosis | Tumor Suppressor |
|
SIRT5 | Metabolic Regulator | Enhances metabolic reprogramming, oxidative stress resistance | Oncogenic |
|
SIRT6 | Epigenetic Modulator, DNA Repair Coordinator | Inhibits glycolysis, maintains genome integrity, promotes apoptosis | Tumor Suppressor |
|
SIRT7 | Epigenetic Modulator, DNA Repair Coordinator | Promotes proliferation and represses apoptosis-related pathways in glioma | Oncogenic |
Sirtuin | Targets | Pathways | Functional Outcomes |
---|---|---|---|
SIRT1 |
| ||
SIRT2 |
| ||
SIRT3 | |||
SIRT4 |
| ||
SIRT5 |
| ||
SIRT6 |
| ||
SIRT7 |
|
Sirtuin | Modulator (Activator/Inhibitor) | Preclinical/Clinical Status | Potential Application in Glioma | Reference |
---|---|---|---|---|
SIRT1 | Nicotinamide (Inhibitor) | Preclinical (in vitro/in vivo) | Inhibits glioma cell proliferation, increases sensitivity to oxidative stress and TMZ | [43,44] |
SIRT1 | EX-527 (Inhibitor) | Preclinical (imaging + in vivo pharmacodynamics) | Reduces SIRT1 activity, visualized via 2-[18F]BzAHA PET imaging | [46] |
SIRT1 | SRT2183 (Activator) | Preclinical (in vitro) | Induces ER stress, apoptosis and cell cycle arrest in glioma cells | [47] |
SIRT1 | Compound 5 (Activator) | Preclinical (xenograft model) | Induces autophagy, mitophagy and tumor suppression without toxicity | [48] |
SIRT1 | Ursolic acid (Activator) | Preclinical (mouse model) | Inhibits tumor growth via SIRT1-FOXO1 axis, reduces tumor size and weight | [49] |
SIRT1 | Resveratrol (Natural compound) | Preclinical (glioma and medulloblastoma models) | Modulates SIRT1 expression, affects stemness and growth | [54,56] |
SIRT2 | AK-7 (Inhibitor) | Preclinical (in vitro glioma cells) | Induces apoptosis and necrosis, decreases motility in C6 glioma cells | [75] |
SIRT2 | siRNA (Inhibitor) | Preclinical (glioma models) | Reduces motility and viability; induces senescence and apoptosis | [72] |
SIRT3 | Fraxinellone (Indirect Inhibitor) | Preclinical (mouse GBM model) | Downregulates SIRT3, increases ROS and apoptosis, reduces tumor growth | [91] |
SIRT3 | SIRT3 knockdown (Inhibitor) | Preclinical (IDH1-mutant and GSC models) | Sensitizes to ferroptosis and radiation, disrupts stemness | [90,93,98] |
SIRT4 | SIRT4 overexpression | Preclinical (glioma cell lines) | Enhances resistance to excitotoxicity, reduces glutamate levels, upregulates GLT-1 and GDH, downregulates GS | [110,111] |
SIRT5 | SIRT5 knockdown | Preclinical (glioma models) | Enhances glioblastoma cell growth, promotes tumor progression by disrupting mitochondrial metabolism | [8] |
SIRT6 | SIRT6 overexpression | Preclinical (glioma cell lines) | Reduces glioma cell growth and viability, induces apoptosis via AIF nuclear translocation, lowers ROS and lipid peroxidation, inhibits JAK2/STAT3 signaling | [135] |
SIRT6 | SIRT6 overexpression | Preclinical (glioma cell lines) | Suppresses proliferation, migration, and invasion, reduces NOTCH3 expression and reverses its tumor-promoting effects | [45] |
SIRT6 | miR-33a (Inhibitor of SIRT6) | Preclinical (glioma models) | miR-33a downregulates SIRT6, SIRT6 restoration increases ROS and LDH, promotes apoptosis | [136] |
SIRT7 | SIRT7 knockdown (siRNA) | Preclinical (glioma cell lines and xenografts) | Reduces proliferation and invasion, associated with reduced tumor growth | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowacka, A.; Śniegocka, M.; Śniegocki, M.; Ziółkowska, E.A. Sirtuins in Central Nervous System Tumors—Molecular Mechanisms and Therapeutic Targeting. Cells 2025, 14, 1113. https://doi.org/10.3390/cells14141113
Nowacka A, Śniegocka M, Śniegocki M, Ziółkowska EA. Sirtuins in Central Nervous System Tumors—Molecular Mechanisms and Therapeutic Targeting. Cells. 2025; 14(14):1113. https://doi.org/10.3390/cells14141113
Chicago/Turabian StyleNowacka, Agnieszka, Martyna Śniegocka, Maciej Śniegocki, and Ewa Aleksandra Ziółkowska. 2025. "Sirtuins in Central Nervous System Tumors—Molecular Mechanisms and Therapeutic Targeting" Cells 14, no. 14: 1113. https://doi.org/10.3390/cells14141113
APA StyleNowacka, A., Śniegocka, M., Śniegocki, M., & Ziółkowska, E. A. (2025). Sirtuins in Central Nervous System Tumors—Molecular Mechanisms and Therapeutic Targeting. Cells, 14(14), 1113. https://doi.org/10.3390/cells14141113