Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (826)

Search Parameters:
Keywords = single copy genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 539 KiB  
Review
Genomic Adaptation, Environmental Challenges, and Sustainable Yak Husbandry in High-Altitude Pastoral Systems
by Saima Naz, Ahmad Manan Mustafa Chatha, Qudrat Ullah, Muhammad Farooq, Tariq Jamil, Raja Danish Muner and Azka Kiran
Vet. Sci. 2025, 12(8), 714; https://doi.org/10.3390/vetsci12080714 - 29 Jul 2025
Viewed by 185
Abstract
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. [...] Read more.
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. This review presents the genomic, physiological, and environmental dimensions of yak biology and husbandry. Genes such as EPAS1, which encodes hypoxia-inducible transcription factors, underpin physiological adaptations, including enlarged cardiopulmonary structures, elevated erythrocyte concentrations, and specialized thermoregulatory mechanisms that enable their survival at elevations of 3000 m and above. Copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) present promising markers for improving milk and meat production, disease resistance, and metabolic efficiency. F1 and F2 generations of yak–cattle hybrids show superior growth and milk yields, but reproductive barriers, such as natural mating or artificial insemination, and environmental factors limit the success of these hybrids beyond second generation. Infectious diseases, such as bovine viral diarrhea and antimicrobial-resistant and biofilm-forming Enterococcus and E. coli, pose risks to herd health and food safety. Rising ambient temperatures, declining forage biomass, and increased disease prevalence due to climate changes risk yak economic performance and welfare. Addressing these challenges by nutritional, environmental, and genetic interventions will safeguard yak pastoralism. This review describes the genes associated with different yak traits and provides an overview of the genetic adaptations of yaks (Bos grunniens) to environmental stresses at high altitudes and emphasizes the need for conservation and improvement strategies for sustainable husbandry of these yaks. Full article
Show Figures

Figure 1

20 pages, 1274 KiB  
Article
Detection and Quantification of House Crickets (Acheta domesticus) in the Gut of Yellow Mealworm (Tenebrio molitor) Larvae Fed Diets Containing Cricket Flour: A Comparison of qPCR and ddPCR Sensitivity
by Pavel Vejl, Agáta Čermáková, Martina Melounová, Daniela Čílová, Kamila Zdeňková, Eliška Čermáková and Jakub Vašek
Insects 2025, 16(8), 776; https://doi.org/10.3390/insects16080776 - 28 Jul 2025
Viewed by 297
Abstract
Due to their nutritional value and sustainability, edible insect-based foods are gaining popularity in Europe. Their use is regulated by EU legislation, which defines authorised species and sets labelling requirements. Molecular tools are being developed to authenticate such products. In this study, yellow [...] Read more.
Due to their nutritional value and sustainability, edible insect-based foods are gaining popularity in Europe. Their use is regulated by EU legislation, which defines authorised species and sets labelling requirements. Molecular tools are being developed to authenticate such products. In this study, yellow mealworm (Tenebrio molitor) larvae authorised for human consumption were fed wheat flour-based diets containing varying proportions of house cricket (Acheta domesticus) flour for 21 days. This was followed by a 48 h starvation period to assess the persistence of insect DNA in the digestive tract. Two novel, species-specific, single-copy markers were designed: ampd gene for the Acheta domesticus and MyD88 gene for the Tenebrio molitor. These were applied using qPCR and ddPCR. Both methods successfully detected cricket DNA in the guts of starved larvae. Linear regression analysis revealed a strong, statistically significant correlation between the proportion of Acheta domesticus flour in the diet and the normalised relative quantity of DNA. ddPCR proved to be more sensitive than qPCR, particularly in the detection of low DNA levels. These results suggest that the presence of DNA from undeclared insect species in edible insects may be indicative of their diet rather than contamination or adulteration. This highlights the importance of contextual interpretation in food authenticity testing. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

23 pages, 4653 KiB  
Article
Zinc-Induced Folding and Solution Structure of the Eponymous Novel Zinc Finger from the ZC4H2 Protein
by Rilee E. Harris, Antonio J. Rua and Andrei T. Alexandrescu
Biomolecules 2025, 15(8), 1091; https://doi.org/10.3390/biom15081091 - 28 Jul 2025
Viewed by 238
Abstract
The ZC4H2 gene is the site of congenital mutations linked to neurodevelopmental and musculoskeletal pathologies collectively termed ZARD (ZC4H2-Associated Rare Disorders). ZC4H2 consists of a coiled coil and a single novel zinc finger with four cysteines and two histidines, from which the protein [...] Read more.
The ZC4H2 gene is the site of congenital mutations linked to neurodevelopmental and musculoskeletal pathologies collectively termed ZARD (ZC4H2-Associated Rare Disorders). ZC4H2 consists of a coiled coil and a single novel zinc finger with four cysteines and two histidines, from which the protein obtains its name. Alpha Fold 3 confidently predicts a structure for the zinc finger but also for similarly sized random sequences, providing equivocal information on its folding status. We show using synthetic peptide fragments that the zinc finger of ZC4H2 is genuine and folds upon binding a zinc ion with picomolar affinity. NMR pH titration of histidines and UV–Vis of a cobalt complex of the peptide indicate its four cysteines coordinate zinc, while two histidines do not participate in binding. The experimental NMR structure of the zinc finger has a novel structural motif similar to RANBP2 zinc fingers, in which two orthogonal hairpins each contribute two cysteines to coordinate zinc. Most of the nine ZARD mutations that occur in the ZC4H2 zinc finger are likely to perturb this structure. While the ZC4H2 zinc finger shares the folding motif and cysteine-ligand spacing of the RANBP2 family, it is missing key substrate-binding residues. Unlike the NZF branch of the RANBP2 family, the ZC4H2 zinc finger does not bind ubiquitin. Since the ZC4H2 zinc finger occurs in a single copy, it is also unlikely to bind DNA. Based on sequence homology to the VAB-23 protein, the ZC4H2 zinc finger may bind RNA of a currently undetermined sequence or have alternative functions. Full article
(This article belongs to the Special Issue Functional Peptides and Their Interactions (3rd Edition))
Show Figures

Figure 1

14 pages, 1694 KiB  
Article
The Role of MLPA in Detecting Syndromic Submicroscopic Copy Number Variations in Normal QF-PCR Miscarriage Specimens
by Gabriela Popescu-Hobeanu, Mihai-Gabriel Cucu, Alexandru Calotă-Dobrescu, Luminița Dragotă, Anca-Lelia Riza, Ioana Streață, Răzvan Mihail Pleșea, Ciprian Laurențiu Pătru, Cristina Maria Comănescu, Ștefania Tudorache, Dominic Iliescu and Florin Burada
Genes 2025, 16(8), 867; https://doi.org/10.3390/genes16080867 - 24 Jul 2025
Viewed by 327
Abstract
Background/Objectives: Miscarriage is an increasingly common event worldwide arising from various factors, and identifying its etiology is important for planning and managing any future pregnancies. It is estimated that about half of early pregnancy loss cases are caused by genetic abnormalities, while [...] Read more.
Background/Objectives: Miscarriage is an increasingly common event worldwide arising from various factors, and identifying its etiology is important for planning and managing any future pregnancies. It is estimated that about half of early pregnancy loss cases are caused by genetic abnormalities, while a significantly lower rate is found in late pregnancy loss. Multiplex ligation-dependent probe amplification (MLPA) can detect small changes within a gene with precise breakpoints at the level of a single exon. The aim of our study was to identify the rate of copy number variations (CNVs) in spontaneous pregnancy loss samples after having previously tested them via quantitative fluorescence PCR (QF-PCR), with no abnormal findings. Methods: DNA was extracted from product-of-conception tissue samples, followed by the use of an MLPA kit for the detection of 31 microdeletion/microduplication syndromes (SALSA® MLPA® Probemix P245 Microdeletion Syndromes-1A, MRC-Holland, Amsterdam, The Netherlands). Results: A total of 11 (13.1%) out of the 84 successfully tested samples showed CNVs. Duplications accounted for 9.5% of the analyzed samples (eight cases), while heterozygous or hemizygous deletions were present in three cases (3.6%). Among all the detected CNVs, only three were certainly pathogenic (3.6%), with two deletions associated with DiGeorge-2 syndrome and Rett syndrome, respectively, and a 2q23.1 microduplication syndrome, all detected in early pregnancy loss samples. For the remaining cases, additional genetic tests (e.g., aCGH/SNP microarray) are required to establish CNV size and gene content and therefore their pathogenicity. Conclusions: MLPA assays seem to have limited value in detecting supplementary chromosomal abnormalities in miscarriages. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

25 pages, 5778 KiB  
Article
Comparative Analysis of Chloroplast Genome Between Widely Distributed and Locally Distributed Lysionotus (Gesneriaceae) Related Members
by Jia-Hui Li, Wei-Bin Xu and Chang-Hong Guo
Int. J. Mol. Sci. 2025, 26(15), 7031; https://doi.org/10.3390/ijms26157031 - 22 Jul 2025
Viewed by 257
Abstract
The genus Lysionotus belongs to the family Gesneriaceae and includes plants with both ornamental and medicinal value. However, genomic-level data on the genus remains scarce. Previous investigations of Lysionotus have predominantly centered on morphological classification, with only limited exploration of molecular phylogenetics. Comparative [...] Read more.
The genus Lysionotus belongs to the family Gesneriaceae and includes plants with both ornamental and medicinal value. However, genomic-level data on the genus remains scarce. Previous investigations of Lysionotus have predominantly centered on morphological classification, with only limited exploration of molecular phylogenetics. Comparative analysis of chloroplast genomes within the genus would provide valuable insights into the genetic variations and evolutionary patterns of Lysionotus plants. In this study, we present the analysis of 24 newly sequenced chloroplast genomes from Lysionotus-related members, including widely distributed and locally distributed species. The results showed that the 11 plastome sizes of widely distributed species ranged from 152,928 to 153,987 bp, with GC content of 37.43–37.49%; the 13 plastome sizes of locally distributed species ranged from 153,436 to 153,916 bp, with GC content of 37.43–37.48%. A total of 24 chloroplast genomes owned typical quadripartite structures, and the number of tRNA (36 tRNAs) and rRNA (4 rRNAs) were observed for all 24 genomes. However, the number of their protein-coding sequences (CDs) varied at individual levels. No contraction and expansion of IR borders, gene rearrangements, or inversions were detected. mVISTA and Pi showed inverted repeats (IR) region was more conserved than the single copy region, coding region was more conserved than the non-coding region. Additionally, the repeat sequences and codon usage bias of Lysionotus plastomes were also conserved. Our results offer a comprehensive understanding of the genetic differences among these species and shed light on their phylogenetic systematics. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

32 pages, 18526 KiB  
Article
Phylogenomic, Morphological, and Phylogenetic Evidence Reveals Five New Species and Two New Host Records of Nectriaceae (Hypocreales) from China
by Qi Fan, Pingping Su, Jiachen Xiao, Fangwei Lou, Xiaoyuan Huang, Zhuliang Yang, Baozheng Chen, Peihong Shen and Yuanbing Wang
Biology 2025, 14(7), 871; https://doi.org/10.3390/biology14070871 - 17 Jul 2025
Viewed by 348
Abstract
Fusarioid fungi, members of the Nectriaceae within the Hypocreales (Ascomycota), exhibit diverse ecological roles and possess complex phylogenetic relationships, including endophytic, saprophytic, and pathogenic lifestyles. Among them, the genera Fusarium and Neocosmospora are particularly significant in agriculture and medicine. However, the [...] Read more.
Fusarioid fungi, members of the Nectriaceae within the Hypocreales (Ascomycota), exhibit diverse ecological roles and possess complex phylogenetic relationships, including endophytic, saprophytic, and pathogenic lifestyles. Among them, the genera Fusarium and Neocosmospora are particularly significant in agriculture and medicine. However, the boundaries between their species remain taxonomically contentious. In this study, 22 representative isolates from plant, fungal, and insect hosts were subjected to a polyphasic taxonomic approach that integrated morphological characterization, multilocus phylogenetic analyses, and phylogenomic analysis based on 4,941 single-copy orthologous genes. Consequently, five new species (F. dracaenophilum, F. puerense, F. wenshanense, N. alboflava, and N. fungicola) were described, and F. qiannanense and N. solani were recorded from new host species. The resulting phylogenomic tree topology was highly congruent with the multilocus phylogeny, providing robust support for the taxonomic distinction between Fusarium and Neocosmospora. This study provides new insights into the taxonomy of fusarioid fungi and has important implications for plant disease management, biodiversity conservation, and the study of fungal evolution. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

13 pages, 745 KiB  
Review
How Structural Variations Influence Crop Improvement
by Xiaomei Wang, Changyuan Liu, Xiaohuan Sun, Guohong Sun, Chunmei Zong, Yuxin Qi, Yanfeng Bai, Wen Li, Fanjiang Kong, Haiyang Li and Yanping Wang
Int. J. Mol. Sci. 2025, 26(14), 6635; https://doi.org/10.3390/ijms26146635 - 10 Jul 2025
Viewed by 318
Abstract
Research on structural variations in the field of crop genetics has expanded with the rapid development of genome sequencing technologies. As an important aspect of genomic variations, structural variations have a profound impact on the genetic characteristics of crops and significantly affect their [...] Read more.
Research on structural variations in the field of crop genetics has expanded with the rapid development of genome sequencing technologies. As an important aspect of genomic variations, structural variations have a profound impact on the genetic characteristics of crops and significantly affect their key agronomic traits, such as yield, quality, and disease and stress resistance—by changing the gene arrangement order, copy number, and the positions of regulatory elements. Compared with single-nucleotide polymorphisms, structural variations present a diverse range of types, including deletions, duplications, inversions, and translocations, and their impacts are more extensive and profound. However, research on structural variations in crops still faces many challenges, for example those relating to different ploidy levels, genome repetitiveness, and their associations with phenotypes. Nevertheless, breakthroughs in long-read sequencing technologies and the integration of multi-omics data offer hope for solving these problems. A deep understanding of the impact of structural variations on crops is of great significance for accurately analyzing the evolutionary history of crops and guiding modern crop breeding, and is expected to provide strong support for global food security and the sustainable development of agriculture. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 547 KiB  
Article
Analytical Validation of the Cxbladder® Triage Plus Assay for Risk Stratification of Hematuria Patients for Urothelial Carcinoma
by Justin C. Harvey, David Fletcher, Charles W. Ellen, Megan Colonval, Jody A. Hazlett, Xin Zhou and Jordan M. Newell
Diagnostics 2025, 15(14), 1739; https://doi.org/10.3390/diagnostics15141739 - 8 Jul 2025
Viewed by 377
Abstract
Background/Objectives: Cxbladder® Triage Plus is a multimodal urinary biomarker assay that combines reverse transcription-quantitative analysis of five mRNA targets and droplet-digital polymerase chain reaction (ddPCR) analysis of six DNA single-nucleotide variants (SNVs) from two genes (fibroblast growth factor receptor 3 ( [...] Read more.
Background/Objectives: Cxbladder® Triage Plus is a multimodal urinary biomarker assay that combines reverse transcription-quantitative analysis of five mRNA targets and droplet-digital polymerase chain reaction (ddPCR) analysis of six DNA single-nucleotide variants (SNVs) from two genes (fibroblast growth factor receptor 3 (FGFR3) and telomerase reverse transcriptase (TERT)) to provide risk stratification for urothelial carcinoma (UC) in patients with hematuria. This study evaluated the analytical validity of Triage Plus. Methods: The development dataset used urine samples from patients with microhematuria or gross hematuria that were previously stabilized with Cxbladder solution. Triage Plus was evaluated for predicted performance, analytical criteria (linearity, sensitivity, specificity, accuracy, and precision), extraction efficiency, and inter-laboratory reproducibility. Results: The development dataset included 987 hematuria samples. Compared with cystoscopy (standard of care), Triage Plus had a predicted sensitivity of 93.6%, specificity of 90.8%, positive predictive value (PPV) of 46.5%, negative predictive value of 99.4%, and test-negative rate of 84.1% (score threshold 0.15); the PPV increased to 74.6% for the 0.54 score threshold. For the individual FGFR3 and TERT SNVs, the limit of detection (analytical sensitivity) was a mutant-to-wild type DNA ratio of 1:440–1:1250 copies/mL. Intra- and inter-assay variance was low, while extraction efficiency was high. All other pre-specified analytical criteria (linearity, specificity, and accuracy) were met. Triage Plus showed good reproducibility (87.9% concordance between laboratories). Conclusions: Cxbladder Triage Plus accurately and reproducibly detected FGFR3 and TERT SNVs and, in combination with mRNA expression, provides a non-invasive, highly sensitive, and reproducible tool that aids in risk stratification of patients with hematuria. Full article
(This article belongs to the Special Issue Opportunities in Laboratory Medicine in the Era of Genetic Testing)
Show Figures

Figure 1

19 pages, 3730 KiB  
Article
Phylogenomic Analyses Reveal Species Relationships and Phylogenetic Incongruence with New Member Detected in Allium Subgenus Cyathophora
by Kun Chen, Zi-Jun Tang, Yuan Wang, Jin-Bo Tan, Song-Dong Zhou, Xing-Jin He and Deng-Feng Xie
Plants 2025, 14(13), 2083; https://doi.org/10.3390/plants14132083 - 7 Jul 2025
Viewed by 384
Abstract
Species characterized by undetermined clade affiliations, limited research coverage, and deficient systematic investigation serve as enigmatic entities in plant and animal taxonomy, yet hold critical significance for exploring phylogenetic relationships and evolutionary trajectories. Subgenus Cyathophora (Allium, Amayllidaceae), a small taxon comprising [...] Read more.
Species characterized by undetermined clade affiliations, limited research coverage, and deficient systematic investigation serve as enigmatic entities in plant and animal taxonomy, yet hold critical significance for exploring phylogenetic relationships and evolutionary trajectories. Subgenus Cyathophora (Allium, Amayllidaceae), a small taxon comprising approximately five species distributed in the Qinghai–Tibet Plateau (QTP) and adjacent regions might contain an enigmatic species that has long remained unexplored. In this study, we collected data on species from subgenus Cyathophora and its close relatives in subgenus Rhizirideum, as well as the enigmatic species Allium siphonanthum. Combining phylogenomic datasets and morphological evidence, we investigated species relationships and the underlying mechanism of phylogenetic discordance. A total of 1662 single-copy genes (SCGs) and 150 plastid loci were filtered and used for phylogenetic analyses based on concatenated and coalescent-based methods. Furthermore, to systematically evaluate phylogenetic discordance and decipher its underlying drivers, we implemented integrative analyses using multiple approaches, such as coalescent simulation, Quartet Sampling (QS), and MSCquartets. Our phylogenetic analyses robustly resolve A. siphonanthum as a member of subg. Cyathophora, forming a sister clade with A. spicatum. This relationship was further corroborated by their shared morphological characteristics. Despite the robust phylogenies inferred, extensive phylogenetic conflicts were detected not only among gene trees but also between SCGs and plastid-derived species trees. These significant phylogenetic incongruences in subg. Cyathophora predominantly stem from incomplete lineage sorting (ILS) and reticulate evolutionary processes, with historical hybridization events likely correlated with the past orogenic dynamics and paleoclimatic oscillations in the QTP and adjacent regions. Our findings not only provide new insights into the phylogeny of subg. Cyathophora but also significantly enhance our understanding of the evolution of species in this subgenus. Full article
(This article belongs to the Special Issue Plant Taxonomy, Phylogeny, and Evolution)
Show Figures

Figure 1

15 pages, 8861 KiB  
Article
The Complete Chloroplast Genome of Purdom’s Rhododendron (Rhododendron purdomii Rehder & E. H. Wilson): Genome Structure and Phylogenetic Analysis
by Lu Yuan, Ningning Zhang, Shixin Zhu and Yang Lu
Forests 2025, 16(7), 1120; https://doi.org/10.3390/f16071120 - 7 Jul 2025
Viewed by 318
Abstract
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, [...] Read more.
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, assembled, and characterized. The cp genome exhibited a typical quadripartite structure with a total length of 208,062 bp, comprising a large single copy (LSC) region of 110,618 bp, a small single copy (SSC) region of 2606 bp, and two inverted repeat (IR) regions of 47,419 bp each. The overall GC content was 35.81%. The genome contained 146 genes, including 96 protein-coding genes, 42 transfer RNA genes, and 8 ribosomal RNA genes. Structure analysis identified 67,354 codons, 96 long repetitive sequences, and 171 simple sequence repeats. Comparative genomic analysis across Rhododendron species revealed hypervariable coding regions (accD, rps9) and non-coding regions (trnK-UUU-ycf3, trnI-CAU-rpoB, trnT-GGU-accD, rpoA-psbL, rpl20-trnC-GCA, trnI-CAU-rrn16, and trnI-CAU-rps16), which may serve as potential molecular markers for genetic identification. Phylogenetic reconstruction confirmed the monophyly of Rhododendron species and highlighted a close relationship between Rh. purdomii and Rh. henanense subsp. lingbaoense. These results provide essential genomic resources for advancing taxonomic, evolutionary, conservation, and breeding studies of Rh. purdomii and other species within the genus Rhododendron. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

14 pages, 3839 KiB  
Article
Revisiting the Genomic Epidemiology of Distinct Phage-Type Vibrio cholerae Strains Reveals Restricted Spatiotemporal Dissemination During an Epidemic
by Yu Jiang, Wenxuan Zhao, Xiaorong Yang, Fenxia Fan, Zhenpeng Li, Bo Pang and Biao Kan
Microorganisms 2025, 13(7), 1585; https://doi.org/10.3390/microorganisms13071585 - 5 Jul 2025
Viewed by 425
Abstract
The El Tor biotype of Vibrio cholerae caused the seventh cholera pandemic (7CP). Although V. cholerae variants of this biotype frequently emerge, studies on their microevolution and spatiotemporal transmission in epidemics caused by a single clone are limited. During the cholera outbreak in [...] Read more.
The El Tor biotype of Vibrio cholerae caused the seventh cholera pandemic (7CP). Although V. cholerae variants of this biotype frequently emerge, studies on their microevolution and spatiotemporal transmission in epidemics caused by a single clone are limited. During the cholera outbreak in Sichuan Province, China, in the 1990s, strains belonging to phage type 6 (PT6) but resistant to typing phage VP5 due to a deletion mutation in ompW, which is the gene associated with the VP5 receptor were identified. In this study, we analyzed PT6 strains using genome sequencing to reveal the genomic and transmission characteristics of such a transient phage type in China’s cholera epidemic history. The findings revealed that the PT6 strains formed an independent clone during the four-year epidemic and emerged in wave 2. Most of them carried multiple CTXclassΦ genome copies on chromosome 2 (Chr. 2) and two copies each of RS1ET and RS1-4** on chromosome 1 (Chr. 1). Frequent cross-regional transmission and local outbreaks within Sichuan Province, China, were revealed for this clone. A variety of spontaneous mutations in the ompW gene, conferring resistance to the VP5 phage, were observed under VP5 infection pressure, showing the incident mutation of OmpW for the survival adaptation of V. cholerae to phage pressure. Therefore, this genomic epidemiological revisit of these distinct phage-resistant phenotype strains reveals their clonal genetic structure, improves our understanding of the spread of V. cholerae by tracking their variation, and assists in epidemic source tracing and disease control. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

16 pages, 529 KiB  
Systematic Review
Osteopontin Expression and Its Role in Endometrial Cancer: A Systematic Review
by Carmen Imma Aquino, Sakthipriyan Venkatesan, Arianna Ligori, Raffaele Tinelli, Elena Grossini and Daniela Surico
Cancers 2025, 17(13), 2245; https://doi.org/10.3390/cancers17132245 - 4 Jul 2025
Viewed by 415
Abstract
Background/Objectives: Osteopontin (OPN) is a 34 kDa protein that is extensively phosphorylated and rich in aspartic acid, produced by a single-copy gene, and altered by post-translational processes. In several diseases, OPN has been discovered to play a direct role in immunological and inflammatory [...] Read more.
Background/Objectives: Osteopontin (OPN) is a 34 kDa protein that is extensively phosphorylated and rich in aspartic acid, produced by a single-copy gene, and altered by post-translational processes. In several diseases, OPN has been discovered to play a direct role in immunological and inflammatory responses. It is also important in kidney stone disease, preeclampsia, cardiovascular disease, endometriosis, and cancer, among other pathological conditions. It is a crucial extracellular matrix molecule involved in oncology, due to its ability to bridge the gap between inflammation and carcinogenesis. Methods: Our systematic review has as PICO “Does Osteopontin have possible etiological and prognostic correlations in patients affected by endometrial carcinoma?” Based on online data collected from PubMed, Scholar, Embase, Scopus, and other sources, a preliminary analysis was conducted. A keyword search for “Osteopontin” AND “tumors”, “endometrial cancer”, and other related terms was used to identify the publications. The relevance of scientific research was used to select articles in English. Results: For our systematic review, the citation search yielded nine articles on the topic. At the endometrial level, OPN plays a role in a variety of biological processes, including angiogenesis, metastasis, altered tissue remodeling, immunological responses, cell adhesion, and migration. Conclusions: With established direct correlations and a potential role in the assessment of the diagnosis and prognosis of the disease, OPN participates in endometrial cancer, drawing more and more attention from researchers. Full article
(This article belongs to the Special Issue Endometrial Cancer—Diagnosis and Treatment)
Show Figures

Graphical abstract

15 pages, 8047 KiB  
Article
Comparison of Chloroplast Genome Sequences of Saxifraga umbellulata var. pectinata in Qinghai–Xizang Plateau
by Cui Wang, Kaidi Su, Qiwen Li, Rui Sun, Haoyu Liu, Jingxuan Du, Jinping Li and Likuan Liu
Genes 2025, 16(7), 789; https://doi.org/10.3390/genes16070789 - 30 Jun 2025
Viewed by 298
Abstract
Background: Saxifraga umbellulata var. pectinata (Saxifragaceae) is recognized as a genuine medicinal material from the Qinghai–Tibet Plateau in China. This paper presents the chloroplast (cp) genome of S. umbellulata var. pectinata, marking the first report for this genus. The Tibetan medicinal plants [...] Read more.
Background: Saxifraga umbellulata var. pectinata (Saxifragaceae) is recognized as a genuine medicinal material from the Qinghai–Tibet Plateau in China. This paper presents the chloroplast (cp) genome of S. umbellulata var. pectinata, marking the first report for this genus. The Tibetan medicinal plants documented in ‘Chinese Medicinal Plant Resources’ are associated with their chloroplast genomes and medicinal mechanisms. Objective: In order to resolve any potential ambiguity in conventional classifications, this study reconstructs the evolutionary position of S. umbellulata var. pectinata within the genus by comparing its chloroplast genetic information with that of other groupings. Methods: The chloroplast genome of S. umbellulata var. pectinata was sequenced using the Illumina NovaSeq 6000 platform. Subsequent sequence assembly, annotation, and characterization were performed using bioinformatics analysis. The NJ phylogenetic tree was constructed using MEGA 7.0 software. Results: The complete chloroplast genome of S. umbellulata var. pectinata is 146,549 bp in length, comprising four subregions: a large single-copy (LSC) region of 79,318 bp and a small single-copy (SSC) region of 16,390 bp, separated by a pair of inverted repeat (IR) regions each 25,421 bp long. This cp genome contains 131 genes, including 86 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The overall GC content is 38.1%. Phylogenetic analysis based on 20 cp genomes indicates that S. umbellulata var. pectinata is closely related to Saxifraga sinomontana and Saxifraga stolonifera. Full article
(This article belongs to the Topic Genetic Breeding and Biotechnology of Garden Plants)
Show Figures

Figure 1

16 pages, 7142 KiB  
Article
Unveiling the Genome of the Diploid Wild Sugarcane Relative Narenga porphyrocoma (Hance) Bor
by Haibi Li, Yiyun Gui, Jinju Wei, Kai Zhu, Hui Zhou, Ronghua Zhang, Dongliang Huang, Sijie Huang, Shuangcai Li, Jisen Zhang, Yangrui Li and Xihui Liu
Int. J. Mol. Sci. 2025, 26(13), 6124; https://doi.org/10.3390/ijms26136124 - 26 Jun 2025
Viewed by 346
Abstract
Narenga porphyrocoma (Hance) Bor is a close relative of sugarcane, with traits such as drought resistance, robustness, early maturity, and disease resistance. In this study, we report the first genome assembly of N. porphyrocoma (Hance) Bor GXN1, a diploid species with a chromosomal [...] Read more.
Narenga porphyrocoma (Hance) Bor is a close relative of sugarcane, with traits such as drought resistance, robustness, early maturity, and disease resistance. In this study, we report the first genome assembly of N. porphyrocoma (Hance) Bor GXN1, a diploid species with a chromosomal count of 2n = 30. We assembled the genome into 15 pseudochromosomes with an N50 of 128.80 Mp, achieving a high level of completeness (99.0%) using benchmarking universal single-copy orthologs (BUSCO) assessment. The genome was approximately 1.8 Gb. Our analysis identified a substantial proportion of repetitive sequences, primarily long terminal repeats (LTRs), contributing to 69.12% of the genome. In total, 70,680 protein-coding genes were predicted and annotated, focusing on genes related to drought resistance. Transcriptome analysis under drought stress revealed the key gene families involved in plant physiological rhythms and hormone signal transduction, including aquaporins, late embryogenesis abundant proteins, and heat shock proteins. This research reveals the genome of the diploid wild sugarcane relative N. porphyrocoma (Hance) Bor, encouraging future studies on gene function, genome evolution, and genetic improvement of sugarcane. Full article
(This article belongs to the Special Issue Crop Stress Biology and Molecular Breeding: 5th Edition)
Show Figures

Figure 1

18 pages, 956 KiB  
Article
Comprehensive Evaluation of a 1021-Gene Panel in FFPE and Liquid Biopsy for Analytical and Clinical Use
by Angeliki Meintani, Mustafa Ozdogan, Nikolaos Touroutoglou, Konstantinos Papazisis, Ioannis Boukovinas, Cemil Bilir, Stylianos Giassas, Tansan Sualp, Sahin Lacin, Jinga Dan Corneliu, Paraskevas Kosmidis, Tahsin Ozatli, Dimitrios Ziogas, Maria Theochari, Konstantinos Botsolis, George Kapetsis, Aikaterini Tsantikidi, Chrysiida Florou-Chatzigiannidou, Styliani Maxouri, Vasiliki Metaxa-Mariatou, Dimitrios Grigoriadis, Athanasios Papathanasiou, Georgios N. Tsaousis, Panagoula Kollia, Ioannis Trougakos, Andreas Agathangelidis, Eirini Papadopoulou and George Nasioulasadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(13), 5930; https://doi.org/10.3390/ijms26135930 - 20 Jun 2025
Viewed by 529
Abstract
In the era of precision oncology, comprehensive molecular profiling is critical for guiding targeted and immunotherapy strategies. This study presents the analytical and clinical validation of a 1021-gene next-generation sequencing (NGS) panel, designed for use with both formalin-fixed paraffin-embedded (FFPE) tissue- and liquid-biopsy [...] Read more.
In the era of precision oncology, comprehensive molecular profiling is critical for guiding targeted and immunotherapy strategies. This study presents the analytical and clinical validation of a 1021-gene next-generation sequencing (NGS) panel, designed for use with both formalin-fixed paraffin-embedded (FFPE) tissue- and liquid-biopsy specimens. Analytical validation confirmed the assay’s high sensitivity and specificity across variant types—including SNVs (Single Nucleotide Variations), indels, CNVs (Copy Number Variations), and fusions—down to a 0.5% variant allele frequency. The assay also accurately identified microsatellite instability (MSI) and tumor mutational burden (TMB), essential biomarkers for immunotherapy. Clinical validation was performed on over 1300 solid tumor samples from diverse histologies, revealing actionable alterations in over 50% of cases. The panel detected on-label treatment biomarkers in 12.57% of patients, increasing to 20.15% when immunotherapy markers were included. Additionally, the assay demonstrated strong concordance with orthogonal methods and was effective in detecting variants in plasma-derived circulating tumor DNA in 70% of evaluable cases. These findings support the robust performance and broad clinical applicability of the 1021-gene panel for comprehensive genomic profiling in both tissue and liquid biopsies, offering a valuable tool for personalized cancer treatment. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop