Detection and Quantification of House Crickets (Acheta domesticus) in the Gut of Yellow Mealworm (Tenebrio molitor) Larvae Fed Diets Containing Cricket Flour: A Comparison of qPCR and ddPCR Sensitivity
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material and Experimental Design
2.2. Rearing Conditions and Experimental Treatments
2.3. DNA Extraction
2.4. Primer and Marker Design
2.5. Quantitative Polymerase Chain Reaction (qPCR)
- Cttarget is the threshold cycle (Ct) of the target gene ampd.
- Ctreference is the Ct of the reference gene MyD88.
- ΔCtsample is the ΔCt value of the test sample.
- ΔCtcalibrator is the ΔCt value of the calibrator sample.
2.6. Droplet Digital PCR (ddPCR)
- CAMPD is the absolute concentration (copies/20 μL) of the A. domesticus ampd gene.
- CMyD88 is the absolute concentration (copies/20 μL) of the T. molitor MyD88 gene.
2.7. Calculation of the Starvation Effect
- RQnorm (starved) is normalised relative quantification of ampd gene from A. domesticus detected in starved T. molitor larvae.
- RQnorm (non-starved) is normalised relative quantification of ampd gene from A. domesticus detected in non-starved T. molitor larvae.
2.8. Sequencing of PCR Products
2.9. Statistical Analysis
2.10. Ethical Approval
3. Results
3.1. Larval Development on Different Feeding Substrates
3.2. Extracted DNA and Its Parameters
3.3. Species Specificity of the Newly Designed Markers
3.4. Regression and Correlation Analysis
3.5. Starvation Effect
4. Discussion
4.1. T. molitor and A. domesticus as Subjects of Our Research
4.2. Nuclear or Mitochondrial Genes as Tools for Authenticating Insect-Based Foods and Quantifying Potential Adulteration
4.3. Comparative Sensitivity of qPCR and ddPCR
4.4. Legislation Versus Edible Insects Fed with Other Insect Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
16S rRNA | RNA located in the small subunit of mitochondrial ribosomes |
18S rRNA | RNA located in the small subunit of eukaryotic ribosomes |
A260/A230 | Ratio of UV absorbance measured at 260 nm and 230 nm |
A260/A280 | Ratio of UV absorbance measured at 260 nm and 280 nm |
ABP | Animal by-products |
ampd | Gene encoding adenosine monophosphate deaminase |
bp | Base pairs |
C | Absolute concentration |
cad | Gene encoding cadherin protein |
COI | Gene encoding mitochondrial cytochrome c oxidase subunit I |
Ct | Threshold cycle |
ddPCR | Droplet digital polymerase chain reaction |
DNA | Deoxyribonucleic acid |
EC | European Community |
FELASA | Federation of European Laboratory Animal Science Associations |
HRM | High-resolution melting analysis |
ITS1 | Internal transcribed spacer 1 |
M13 | Filamentous bacteriophage M13 |
mtDNA | Mitochondrial deoxyribonucleic acid |
MyD88 | Gene encoding myeloid differentiation primary response protein 88 |
NCBI | National Center for Biotechnology Information |
NGS | Next-generation sequencing |
PCR | Polymerase chain reaction |
qPCR | Quantitative polymerase chain reaction |
R2 | Coefficient of determination |
RFU | Relative fluorescence units |
RQ | Relative quantification |
SEff | Starvation effect |
TSE | Transmissible spongiform encephalopathy |
wg | Gene encoding wingless protein in insects |
References
- Van Huis, A.; van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Kłobukowski, F.; Śmiechowska, M.; Skotnicka, M. Edible insects from the perspective of sustainability—A review of the hazards and benefits. Foods 2025, 14, 1382. [Google Scholar] [CrossRef]
- Aleknavičius, D.; Lukša, J.; Strazdaitė-Žielienė, Ž.; Servienė, E. The bacterial microbiota of edible insects Acheta domesticus and Gryllus assimilis revealed by high content analysis. Foods 2022, 11, 1073. [Google Scholar] [CrossRef]
- Churchward-Venne, T.A.; Pinckaers, P.J.M.; van Loon, J.J.A.; van Loon, L.J.C. Consideration of insects as a source of dietary protein for human consumption. Nutr. Rev. 2017, 75, 1035–1045. [Google Scholar] [CrossRef]
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of food composition data for edible insects. Food Chem. 2016, 193, 39–46. [Google Scholar] [CrossRef]
- Yoo, J.S.; Cho, K.H.; Hong, J.S.; Jang, H.S.; Chung, Y.H.; Kwon, G.T.; Shin, D.G.; Kim, Y.Y. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas. J. Anim. Sci. 2018, 32, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Kim, M.; Moon, C.; Seo, D.; Han, Y.S.; Jo, Y.H.; Noh, M.Y.; Park, Y.; Kim, S.; Kim, Y.W.; et al. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio Molitor. Entomol. Res. 2018, 48, 227–233. [Google Scholar] [CrossRef]
- Van Broekhoven, S.; Oonincx, D.G.A.B.; Van Huis, A.; Van Loon, J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- IPIFF. Contribution Paper on the Application of the EU Feed Hygiene Package to the Production of Insects; International Platform of Insects for Food and Feed (IPIFF): Brussels, Belgium, 2019; Available online: https://ipiff.org (accessed on 9 June 2025).
- Choi, Y.-H.; Kim, J.-E.; Jung, H.-J.; Cho, E.S.; Kim, D.-W.; Kim, J.-S. Effects of Hermetia illucens supplementation on fecal score, blood profiles, immune response, and small intestinal morphology in weaned pigs. J. Korea Acad.-Ind. Coop. Soc. 2020, 21, 392–399. [Google Scholar] [CrossRef]
- Dörper, A.; Berman, H.M.; Gort, G.; van Harn, J.; Dicke, M.; Veldkamp, T. Effects of different black soldier fly larvae products on slow-growing broiler performance and carcass characteristics. Insects 2024, 15, 103481. [Google Scholar] [CrossRef]
- Boontiam, W.; Hong, J.; Kitipongpysan, S.; Wattanachai, S. Full-fat field cricket (Gryllus bimaculatus) as a substitute for fish meal and soybean meal for weaning piglets: Effects on growth performance, intestinal health, and redox status. J. Anim. Sci. 2022, 100, skac080. [Google Scholar] [CrossRef]
- Hervás, G.; Toral, P.G.; Labbouz, Y.; Baila, C.; Boussalia, Y.; Frutos, P. Replacing soybean meal with house cricket (Acheta domesticus) meal in ruminant diet: Effects on ruminal fermentation, degradation, and biohydrogenation. J. Insects Food Feed 2024, 11, 921–936. [Google Scholar] [CrossRef]
- Cotton, R.T. The Meal Worms; U.S. Department of Agriculture: Washington, DC, USA, 1929. [CrossRef]
- Ichikawa, T.; Kurauchi, T. Larval cannibalism and pupal defense against cannibalism in two species of tenebrionid beetles. Zoolog. Sci. 2009, 26, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Rashidi Ilzoleh, R.; Akmali, V. Cannibalistic behavior of the yellow mealworm (Tenebrio molitor Linnaeus, 1758) under laboratory condition. Appl. Biol. 2023, 36, 62–80. [Google Scholar] [CrossRef]
- Asendorf, T.; Wind, C.; Rullmann, A.; Vilcinskas, A. Comparison of DNA-based methods for the detection of meat feeding in Alphitobius diaperinus larvae. J. Insects Food Feed 2025, 1, 1–12. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; González, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Entomol. Circ. 2002, 95, 214–220. [Google Scholar] [CrossRef]
- Ruschioni, S.; Loreto, N.; Foligni, R.; Mannozzi, C.; Raffaelli, N.; Zamporlini, F.; Pasquini, M.; Roncolini, A.; Cardinali, F.; Osimani, A.; et al. Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio molitor L.) larvae. Foods 2020, 9, 317. [Google Scholar] [CrossRef]
- Aguilar-Miranda, E.D.; López, M.G.; Escamilla-Santana, C.; Barba de la Rosa, A.P. Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. J. Agric. Food Chem. 2002, 50, 192–195. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Rojas, M.G.; Coudron, T.A.; Huynh, M.P.; Zou, D.; Shelby, K.S. Artificial diet development for entomophagous arthropods. In Mass Production of Beneficial Organisms; Elsevier: Amsterdam, The Netherlands, 2023; pp. 233–260. [Google Scholar] [CrossRef]
- Akiyama, D.; Kaewplik, T.; Sasaki, Y. Investigation of the usefulness of two-spotted cricket (Gryllus bimaculatus) feed using two-spotted cricket (Gryllus bimaculatus) powder to replace fishmeal. J. Insects Food Feed 2024, 10, 1037–1041. [Google Scholar] [CrossRef]
- Dobermann, D.; Swift, J.A.; Field, L.M. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017, 42, 293–308. [Google Scholar] [CrossRef]
- Mancini, S.; Moruzzo, R.; Riccioli, F.; Paci, G. European consumers’ readiness to adopt insects as food. A review. Food Res. Int. 2019, 122, 661–678. [Google Scholar] [CrossRef]
- Garino, C.; Zagon, J.; Tavoletti, S.; Roncolini, A.; Milanović, V.; Cardinali, F.; Maoloni, A.; Ndagijimana, M.; Pasquini, M.; Clementi, F. Development and validation of a novel real-time PCR protocol for the detection of buffalo worm (Alphitobius diaperinus) in food. Food Control 2022, 140, 109138. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, J.-H.; Kim, H.-Y. Development and validation of ultrafast PCR assays to detect six species of edible insects. Food Control 2019, 103, 21–26. [Google Scholar] [CrossRef]
- Köppel, R.; Ruf, J.; Rentsch, J.; Zimmerli, F. Multiplex real-time PCR for the detection of insect DNA and determination of contents of Tenebrio molitor, Locusta migratoria and Acheta domestica in food. Eur. Food Res. Technol. 2019, 245, 559–567. [Google Scholar] [CrossRef]
- Sadykova, E.O.; Tyshko, N.V.; Nikitin, N.S.; Trebukh, M.D.; Shestakova, S.I. Monitoring methods for novel insect-derived food: The PCR protocol for the detection and identification of Hermetia illucens insects based on the HEI-COI probe and primer system. Vopr. Pitan. 2022, 92, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Tramuta, C.; Gallina, S.; Bellio, A.; Bianchi, D.M.; Chiesa, F.; Rubiola, S.; Romano, A.; Decastelli, L. A set of multiplex polymerase chain reactions for genomic detection of nine edible insect species in foods. J. Insect Sci. 2018, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Zagon, J.; Di Rienzo, V.; Potkura, J.; Lampen, A.; Braeuning, A. A real-time PCR method for the detection of black soldier fly (Hermetia illucens) in feedstuff. Food Control 2018, 91, 440–448. [Google Scholar] [CrossRef]
- Daniso, E.; Tulli, F.; Cardinaletti, G.; Cerri, R.; Tibaldi, E. Molecular approach for insect detection in feed and food: The case of Gryllodes sigillatus. Eur. Food Res. Technol. 2020, 246, 2373–2381. [Google Scholar] [CrossRef]
- Jilkova, D.; Marien, A.; Hulin, J.; Zdenkova, K.; Fumiere, O.; Cermakova, E.; Berben, G.; Debode, F. Detection of Acheta domesticus by real-time PCR in food and feed. J. Insects Food Feed 2024, 10, 1645–1660. [Google Scholar] [CrossRef]
- Hillinger, S.; Weitzel, J.; Meyer, M.; Pabel, J.; Busch, U.; Hochegger, R. Development of a DNA metabarcoding method for the identification of insects in food. Foods 2023, 12, 1086. [Google Scholar] [CrossRef]
- Debode, F.; Janssen, E.; Bragard, C.; Berben, G. Development of real-time PCR tests for the detection of Tenebrio molitor in food and feed. Food Addit. Contam. Part A 2017, 34, 1421–1426. [Google Scholar] [CrossRef]
- Marien, A.; Hulin, J.; Zdenkova, K.; Cermakova, E.; Fumiere, O.; Berben, G.; Debode, F. Detection of Alphitobius diaperinus by real-time polymerase chain reaction with a single-copy gene target. Front. Vet. Sci. 2022, 9, 718806. [Google Scholar] [CrossRef] [PubMed]
- Marien, A.; Dewulf, J.; Huyghebaert, B.; Mertens, J.; Smagghe, G. Detection of Bombyx mori as a Protein Source in Feedingstuffs by Real-Time PCR with a Single-Copy Gene Target. Agriculture 2024, 14, 1996. [Google Scholar] [CrossRef]
- Pava-Ripoll, M.; Miller, A.K.; Loechelt-Yoshioka, H.K.; Ziobro, G.C.; Ferguson, M. Detection limits of insect fragments in spiked whole wheat flour using multiplex polymerase chain reaction (PCR). J. Food Prot. 2024, 87, 100348. [Google Scholar] [CrossRef] [PubMed]
- Wildbacher, M.; Andronache, J.; Pühringer, K.; Dobrovolny, S.; Hochegger, R.; Cichna-Markl, M. Authentication of EU-authorized edible insect species in food products by DNA barcoding and high-resolution melting (HRM) analysis. Foods 2025, 14, 751. [Google Scholar] [CrossRef]
- McNair, J.N.; Frobish, D.; Rediske, R.; Hart, J.; Jamison, M.; Szlag, D. The theoretical basis of qPCR and ddPCR copy number estimates: A critical review and exposition. Water 2025, 17, 381. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, W.; Cai, H.; Cao, G.; Li, Z. Current progress and future trends of genomics-based techniques for food adulteration identification. Foods 2025, 14, 1116. [Google Scholar] [CrossRef]
- Zink, F.A.; Tembrock, L.R.; Timm, A.E.; Farris, R.E.; Perera, O.P.; Gilligan, T.M. A droplet digital PCR (ddPCR) assay to detect Helicoverpa armigera (Lepidoptera: Noctuidae) in bulk trap samples. PLoS ONE 2017, 12, e0178704. [Google Scholar] [CrossRef]
- Zink, F.A.; Tembrock, L.R.; Timm, A.E.; Gilligan, T.M. A duplex ddPCR assay for simultaneously detecting Ips sexdentatus and Ips typographus (Coleoptera: Curculionidae) in bulk trap samples. Can. J. For. Res. 2019, 48, 903–914. [Google Scholar] [CrossRef]
- Cottenet, G.; Blancpain, C.; Chuah, P.F.; Cavin, C. Evaluation and application of a next generation sequencing approach for meat species identification. Food Control 2020, 110, 107003. [Google Scholar] [CrossRef]
- Haynes, E.; Jimenez, E.; Pardo, M.A.; Helyar, S.J. The future of NGS (next generation sequencing) analysis in testing food authenticity. Food Control 2019, 101, 134–143. [Google Scholar] [CrossRef]
- Mann, D.; Crowley, L.M.; Recalde, N.M.; Darwin Tree of Life Consortium. The genome sequence of the yellow mealworm beetle, Tenebrio molitor Linnaeus, 1758. Wellcome Open Res. 2024, 9, 459. [Google Scholar] [CrossRef] [PubMed]
- Dossey, A.T.; Oppert, B.; Chu, F.C.; Lorenzen, M.D.; Scheffler, B.; Simpson, S.; Ide, K. Genome and genetic engineering of the house cricket (Acheta domesticus): A resource for sustainable agriculture. Biomolecules 2023, 13, 589. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.D.; Zhu, P.; Zhao, Z.; Yang, C.; Duan, Y.; Zhou, J.; Cai, W. Metabarcoding of gut content reveals the trophic interactions and dietary breadth of an artificially released generalist predator in agricultural landscapes. arXiv 2024, arXiv:5177103. [Google Scholar] [CrossRef]
- Sacco-Martret de Préville, A.; Staudacher, K.; Traugott, M.; Bohan, D.A.; Plantegenest, M.; Canard, E. Prey switching and natural pest control potential of carabid communities over the winter wheat cropping season. Insects 2024, 15, 610. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Messing, J. New M13 Vectors for Cloning. Methods Enzymol. 1983, 101, 20–78. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Brister, J.R.; Chan, J.; Connor, R.; Feldgarden, M.; Fine, A.M.; Funk, K.; Hoffman, J.; et al. Database resources of the National Center for Biotechnology Information in 2025. Nucleic Acids Res. 2025, 53, D20–D29. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 23 July 2025).
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Park, J.B.; Choi, W.H.; Kim, S.H.; Jin, H.J.; Han, Y.S.; Lee, Y.S.; Kim, N.J. Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. Int. J. Ind. Entomol. Biomater. 2014, 28, 5–9. [Google Scholar] [CrossRef]
- Mirzaeva, D.A.; Khujamshukurov, N.A.; Zokirov, B.; Soxibov, B.O.; Kuchkarova, D. Influence of temperature and humidity on the development of Tenebrio molitor L. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3544–3559. [Google Scholar] [CrossRef]
- Jankauskienė, A.; Aleknavičius, D.; Kiseliovienė, S.; Antanaitis, Š.; Falkauskas, R.; Šumskienė, M.; Kabašinskienė, A. The influence of different sustainable substrates on the nutritional value of Tenebrio molitor larvae. Foods 2024, 13, 365. [Google Scholar] [CrossRef] [PubMed]
- Molnár, Á.; Abigeal, T.O.; Fehér, M. Investigation of the production parameters, nutrient and mineral composition of mealworm (Tenebrio molitor) larvae grown on different substrates. Acta Agrar. Debr. 2022, 1, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Lienhard, A.; Rehorska, R.; Pöllinger-Zierler, B.; Mayer, C.; Grasser, M.; Berner, S. Future proteins: Sustainable diets for Tenebrio molitor rearing composed of food by-products. Foods 2023, 12, 4092. [Google Scholar] [CrossRef] [PubMed]
- Ferri, I.; Dell’Anno, M.; Spano, M.; Canala, B.; Petrali, B.; Dametti, M.; Rossi, L. Characterisation of Tenebrio molitor reared on substrates supplemented with chestnut shell. Insects 2024, 15, 512. [Google Scholar] [CrossRef]
- Tsochatzis, E.; Berggreen, I.E.; Tedeschi, F.; Ntrallou, K.; Gika, H.; Corredig, M. Gut microbiome and degradation product formation during biodegradation of expanded polystyrene by mealworm larvae under different feeding strategies. Molecules 2021, 26, 7568. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert, P.D.N. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef]
- Larsen, W.J. Genesis of mitochondria in insect fat body. J. Cell Biol. 1970, 47, 373–383. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, S.; Zheng, Y.; Zheng, X.; Lin, J.M. Droplet-based digital PCR (ddPCR) and its applications. TrAC Trends Anal. Chem. 2023, 158, 116897. [Google Scholar] [CrossRef]
- Basanisi, M.G.; La Bella, G.; Nobili, G.; Coppola, R.; Damato, A.M.; Cafiero, M.A.; La Salandra, G. Application of the novel droplet digital PCR technology for identification of meat species. Int. J. Food Sci. Technol. 2020, 55, 1145–1150. [Google Scholar] [CrossRef]
- He, C.; Bai, L.; Chen, Y.; Jiang, W.; Jia, J.; Pan, A.; Wu, X. Detection and quantification of adulterated beef and mutton products by multiplex droplet digital PCR. Foods 2022, 11, 3034. [Google Scholar] [CrossRef]
- Ren, J.; Deng, T.; Huang, W.; Chen, Y.; Ge, Y. A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food. PLoS ONE 2017, 12, e0173567. [Google Scholar] [CrossRef]
- Hamaguchi, M.; Shimabukuro, H.; Hori, M.; Yoshida, G.; Terada, T.; Miyajima, T. Quantitative real-time polymerase chain reaction (PCR) and droplet digital PCR duplex assays for detecting Zostera marina DNA in coastal sediments. Limnol. Oceanogr. Methods 2018, 16, 253–264. [Google Scholar] [CrossRef]
- Teruel, M.; Ruíz-Ruano, F.J.; Marchal, J.A.; Sánchez, A.; Cabrero, J.; Camacho, J.P.; Perfectti, F. Disparate molecular evolution of two types of repetitive DNAs in the genome of the grasshopper Eyprepocnemis plorans. Heredity 2014, 112, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Sammarco, B.C.; Hinkle, N.C.; Crossley, M.S. Biology and management of lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae) in broiler houses. J. Integr. Pest Manag. 2023, 14, 2. [Google Scholar] [CrossRef]
- Egonyu, J.P.; Labu, S.; Nyangena, D.N.; Khamis, F.; Cheseto, X.; Tanga, C.M.; Subramanian, S. Pre-harvest starvation effects on microbial load, weight loss and proximate composition of edible field cricket (Gryllus bimaculatus) and desert locust (Schistocerca gregaria). Int. J. Trop. Insect Sci. 2025, 1–9. [Google Scholar] [CrossRef]
- Gałęcki, R.; Bakuła, T.; Gołaszewski, J. Foodborne diseases in the edible insect industry in Europe—New challenges and old problems. Foods 2023, 12, 770. [Google Scholar] [CrossRef]
- Inácio, A.C.; Vågsholm, I.; Jansson, A.; Vaga, M.; Boqvist, S.; Fraqueza, M.J. Impact of starvation on fat content and microbial load in edible crickets (Acheta domesticus). J. Insects Food Feed 2021, 7, 1143–1148. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vejl, P.; Čermáková, A.; Melounová, M.; Čílová, D.; Zdeňková, K.; Čermáková, E.; Vašek, J. Detection and Quantification of House Crickets (Acheta domesticus) in the Gut of Yellow Mealworm (Tenebrio molitor) Larvae Fed Diets Containing Cricket Flour: A Comparison of qPCR and ddPCR Sensitivity. Insects 2025, 16, 776. https://doi.org/10.3390/insects16080776
Vejl P, Čermáková A, Melounová M, Čílová D, Zdeňková K, Čermáková E, Vašek J. Detection and Quantification of House Crickets (Acheta domesticus) in the Gut of Yellow Mealworm (Tenebrio molitor) Larvae Fed Diets Containing Cricket Flour: A Comparison of qPCR and ddPCR Sensitivity. Insects. 2025; 16(8):776. https://doi.org/10.3390/insects16080776
Chicago/Turabian StyleVejl, Pavel, Agáta Čermáková, Martina Melounová, Daniela Čílová, Kamila Zdeňková, Eliška Čermáková, and Jakub Vašek. 2025. "Detection and Quantification of House Crickets (Acheta domesticus) in the Gut of Yellow Mealworm (Tenebrio molitor) Larvae Fed Diets Containing Cricket Flour: A Comparison of qPCR and ddPCR Sensitivity" Insects 16, no. 8: 776. https://doi.org/10.3390/insects16080776
APA StyleVejl, P., Čermáková, A., Melounová, M., Čílová, D., Zdeňková, K., Čermáková, E., & Vašek, J. (2025). Detection and Quantification of House Crickets (Acheta domesticus) in the Gut of Yellow Mealworm (Tenebrio molitor) Larvae Fed Diets Containing Cricket Flour: A Comparison of qPCR and ddPCR Sensitivity. Insects, 16(8), 776. https://doi.org/10.3390/insects16080776