Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = single chip microcomputer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3588 KiB  
Article
Design and Experimental Operation of a Swing-Arm Orchard Sprayer
by Zhongyi Yu, Mingtian Geng, Keyao Zhao, Xiangsen Meng, Hongtu Zhang and Xiongkui He
Agronomy 2025, 15(7), 1706; https://doi.org/10.3390/agronomy15071706 - 15 Jul 2025
Abstract
In recent years, the traditional orchard sprayer has had problems, such as waste of liquid agrochemicals, low target coverage, high manual dependence, and environmental pollution. In this study, an automatic swing-arm sprayer for orchards was developed based on the standardized pear orchard in [...] Read more.
In recent years, the traditional orchard sprayer has had problems, such as waste of liquid agrochemicals, low target coverage, high manual dependence, and environmental pollution. In this study, an automatic swing-arm sprayer for orchards was developed based on the standardized pear orchard in Pinggu, Beijing. Firstly, the structural principles of a crawler-type traveling system and swing-arm sprayer were simulated using finite element software design. The combination of a diffuse reflection photoelectric sensor and Arduino single-chip microcomputer was used to realize real-time detection and dynamic spray control in the pear canopy, and the sensor delay compensation algorithm was used to optimize target recognition accuracy and improve the utilization rate of liquid agrochemicals. Through the integration of innovative structural design and intelligent control technology, a vertical droplet distribution test was carried out, and the optimal working distance of the spray was determined to be 1 m; the nozzle angle for the upper layer was 45°, that for the lower layer was 15°, and the optimal speed of the swing-arm motor was 75 r/min. Finally, a particle size test and field test of the orchard sprayer were completed, and it was concluded that the swing-arm mode increased the pear tree canopy droplet coverage by 74%, the overall droplet density by 21.4%, and the deposition amount by 23% compared with the non-swing-arm mode, which verified the practicability and reliability of the swing-arm spray and achieved the goal of on-demand pesticide application in pear orchards. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture—2nd Edition)
Show Figures

Figure 1

23 pages, 11925 KiB  
Article
Design and Field Experiment of Synchronous Hole Fertilization Device for Maize Sowing
by Feng Pan, Jincheng Chen, Baiwei Wang, Ziheng Fang, Jinxin Liang, Kangkang He and Chao Ji
Agriculture 2025, 15(13), 1400; https://doi.org/10.3390/agriculture15131400 - 29 Jun 2025
Viewed by 274
Abstract
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming [...] Read more.
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming to reduce fertilizer application and increase efficiency through the precise alignment technology of the seed and fertilizer. This device integrates an electric drive precision seeding unit, a slot wheel hole fertilization unit, and a multi-sensor coordinated closed-loop control system. An STM32 single-chip micro-computer is used to dynamically analyze the seed–fertilizer timing signal, and a double closed-loop control strategy (the position loop priority is higher than the speed loop) is used to correct the spatial phase difference between the seed and fertilizer in real time to ensure the precise control of the longitudinal distance (40~70 mm) and the lateral distance (50~80 mm) of the seed and fertilizer. Through the Box–Behnken response surface method, a field multi-factor test was carried out to analyze the mechanism of influence of the implemented forward speed (A), per-hole target fertilizing amount (B), and plant spacing (fertilizer hole interval) (C) on the seed–fertilizer alignment qualification rate (Y1) and the coefficient of variation in the hole fertilizing amount (Y2). The results showed that the order of primary and secondary factors affecting Y1 was A > C > B, and that the order affecting Y2 was C > B > A; the comprehensive performance of the device was best with the optimal parameter combination of A = 4.2 km/h, B = 4.4 g, and C = 30 cm, with Y1 as high as 94.024 ± 0.694% and Y2 as low as 3.147 ± 0.058%, which is significantly better than the traditional strip application method. The device realizes the precise regulation of 2~6 g/hole by optimizing the structural parameters of the outer groove wheel (arc center distance of 25 mm, cross-sectional area of 201.02 mm2, effective filling length of 2.73~8.19 mm), which can meet the differentiated agronomic needs of ordinary corn, silage corn, and popcorn. Field verification shows that the device significantly improves the spatial distribution of the concentration of fertilizer, effectively reduces the amount of fertilizer applied, and improves operational stability and reliability in multiple environments. This provides technical support for the regional application of precision agricultural equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

28 pages, 7300 KiB  
Article
Design and Experiment of Electric Control System for Self-Propelled Chinese Herbal Medicine Materials Transplanter
by Qingxu Yu, Xian Zhang, Guangqiao Cao, Yan Gong and Xiao Chen
Agriculture 2025, 15(6), 621; https://doi.org/10.3390/agriculture15060621 - 14 Mar 2025
Cited by 1 | Viewed by 603
Abstract
To address the challenges of low efficiency and poor quality in the transplantation of the roots and stems of Chinese medicinal herbs, an electromechanical control system for Chinese medicinal herb transplantation was studied. The electronic control system employs an STM32 single-chip microcomputer as [...] Read more.
To address the challenges of low efficiency and poor quality in the transplantation of the roots and stems of Chinese medicinal herbs, an electromechanical control system for Chinese medicinal herb transplantation was studied. The electronic control system employs an STM32 single-chip microcomputer as the main controller, utilizes a Hall sensor to capture the movement speed of the transplanter, employs an encoder to monitor the working speed of the DC drum motor and provide feedback to the system, and drives a belt conveyor for transplanter movement using a DC drum motor. The fuzzy PID algorithm is used to adjust the speed of the DC drum in real time based on the difference between the captured speed and the actual monitored speed, ensuring precise matching between the transplanting operation speed and the transplanter movement speed. The control system was simulated using Matlab/Simulink 2022b software. Compared to the traditional PID control algorithm, the steady-state error was reduced by 36.41%, the steady-state time was shortened by 47.26%, the response time was shorter, there was no overshoot, and the robustness was good. Based on the simulation test, a real machine-verification experiment was conducted. The test results indicated that, when operated at the forward speeds corresponding to the low-speed first gear (Low 1) and low-speed second gear (Low 2), the Codonopsis pilosula seedlings exhibited the following characteristics: the exposed seedling rate was 1.1% and 1.5%, the injured seedling rate was 0.5% and 0.7%, the unplanted rate was 1.6% and 2.2%, and the transplant qualification rate was 96.8% and 95.6%, respectively. Similarly, for Astragalus membranaceus seedlings at these speeds, the corresponding rates were as follows: the exposed seedling rate was 1.3% and 1.9%, the injured seedling rate was 0.4% and 0.5%, the unplanted rate was 0.8% and 1.2%, and the transplant qualification rate was 97.5% and 96.4%, respectively. Both results met the design requirements. This study lays a theoretical and technical foundation for controlling the transplanting speed, improving the transplanting accuracy, and promoting the mechanized development of transplantation in traditional Chinese medicine. Full article
Show Figures

Graphical abstract

21 pages, 11228 KiB  
Article
Design and Experiment of Oil-Electric Hybrid Air-Suction Sorghum Plot Seeder
by Xinyu Yuan, Caojun Huang, Guixiang Tao, Shujuan Yi and Yifei Li
Agriculture 2024, 14(3), 432; https://doi.org/10.3390/agriculture14030432 - 7 Mar 2024
Cited by 1 | Viewed by 1712
Abstract
To tackle the issues of low seeding accuracy and seed injury caused by the seeders utilized at a small scale and in the plot seeding of sorghum in mountainous or hilly regions, this study presents the design of an oil–electric hybrid air suction [...] Read more.
To tackle the issues of low seeding accuracy and seed injury caused by the seeders utilized at a small scale and in the plot seeding of sorghum in mountainous or hilly regions, this study presents the design of an oil–electric hybrid air suction sorghum plot seeder. The main working parts of the seeder are described, and the performance of the seed-mixing device is simulated using EDEM software. An oil–electric hybrid drive mode is used to provide power for operation and to the seed-metering device and fan. Additionally, a sowing control and monitoring system is designed using a single-chip microcomputer controller to ensure uniform plant spacing at different forward speeds. A multi-factor experiment is conducted using the central synthesis method to determine the optimal operating parameters of the seed-metering device through bench tests. The results show that a profile hole diameter of 2.5 mm on the seed tray, a negative-pressure chamber vacuum of 8.0 kPa, and a seed-metering device speed of 28 r/min result in a 95.95% pass rate, 0.5% missing rate, and 3.55% reseeding rate. The deviation between the experimental and analytical results that validate the optimum parameters is kept within acceptable limits. Field tests are conducted at different forward speeds using the optimum parameter combinations, and a comparison is made with the widely used duckbill planter. The results show pass, missing, and reseeding rates of 94.41%, 2.3%, and 3.29%, respectively. The missing monitoring error is less than 7.19%. All of the indices of the oil–electric hybrid air suction sorghum plot seeder are superior to those of the duckbill planter; thus, it fulfills the agronomic requirements for seeding a sorghum plot. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 5763 KiB  
Article
A Precise Simultaneous Sowed Control System for Maize Seed and Fertilizer
by Jinxin Liang, Feng Pan, Jincheng Chen, Hui Zhang and Chao Ji
Agriculture 2024, 14(2), 192; https://doi.org/10.3390/agriculture14020192 - 26 Jan 2024
Cited by 2 | Viewed by 1743
Abstract
To improve the utilization rate of maize seed fertilizer, this study aimed to propose a precise co-sowing control system for the real-time control of the relative position of seed fertilizer during the co-sowing operation. According to the operating speed of the machine, the [...] Read more.
To improve the utilization rate of maize seed fertilizer, this study aimed to propose a precise co-sowing control system for the real-time control of the relative position of seed fertilizer during the co-sowing operation. According to the operating speed of the machine, the longitudinal distance between the seed feeder and the outer groove wheel, the height of the seed and fertilizer falling, and the relative position of the seed and fertilizer falling into the soil, the calculation method for the seed and fertilizer falling into the soil was obtained, the precise co-seeding model of the seed fertilizer was constructed, the control algorithm of the precise co-seeding of the seed fertilizer was designed, and the hardware system and software system were designed. Based on the hardware structure and working principle of the motor drive seeding and fertilization control system, a functional circuit based on the STM32F103ZET6 single-chip microcomputer (Zhengdianyuanzi (Guangzhou) Technology Co., Ltd., Guangzhou, China) was built. When the system is working, the satellite speed measurement module collects the operating speed of the machine, the encoder feeds back the motor speed in real time, a Hall sensor detects the time interval between fertilizer and seed discharge at the point of discharge, and the PID algorithm is applied to make the speed regulation system regulate the motor speed and position and adjust the speed and position of the seed discharge tray and fertilizer on the outer slot wheel in real time. The relative position of seed and fertilizer in the soil can be controlled accurately in the process of sowing fertilizer. The test results showed that when the feed speed was 2, 3, and 4 km·h−1, and the grain spacing was 20, 25, and 30 cm, respectively, the seed fertilizer alignment was better and met the requirements of precise sowing, improving fertilizer utilization rate. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 6530 KiB  
Article
Path Planning of Mecanum Wheel Chassis Based on Improved A* Algorithm
by Huimin Xu, Gaohong Yu, Yimiao Wang, Xiong Zhao, Yijin Chen and Jiangang Liu
Electronics 2023, 12(8), 1754; https://doi.org/10.3390/electronics12081754 - 7 Apr 2023
Cited by 15 | Viewed by 3754
Abstract
This study is concerned with path planning in a structured greenhouse, in contrast to much of the previous research addressing applications in outdoor fields. The prototype mainly comprises an independently driven Mecanum wheel, a lidar measuring module, a single-chip microcomputer control board, and [...] Read more.
This study is concerned with path planning in a structured greenhouse, in contrast to much of the previous research addressing applications in outdoor fields. The prototype mainly comprises an independently driven Mecanum wheel, a lidar measuring module, a single-chip microcomputer control board, and a laptop computer. Environmental information collection and mapping were completed on the basis of lidar and laptop computer connection. The path planning algorithm used in this paper expanded the 8-search-neighborhood of the traditional A* algorithm to a 48-search-neighborhood, increasing the search direction and improving the efficiency of path planning. The Floyd algorithm was integrated to smooth the planned path and reduced the turning points in the path. In this way, the problems of the traditional A* algorithm could be solved (i.e., slow the path planning speed and high numbers of redundant points). Tests showed that the turning points, planning path time, and distance of the improved algorithm were the lowest. Compared with the traditional 8-search-neighborhood A* algorithm, the turning point was reduced by 50%, the planning time was reduced by 13.53%, and the planning distance was reduced by 13.96%. Therefore, the improved method of the A* algorithm proposed in this paper improves the precision of the planning path and reduces the planning time, providing a theoretical basis for the navigation, inspection, and standardization construction of greenhouses in the future. Full article
(This article belongs to the Special Issue Path Planning and Control for Robotics)
Show Figures

Figure 1

12 pages, 3668 KiB  
Article
Design of Vehicle Tunnel Illumination Measurement Device Based on STC12C5A60S2 Single-Chip Microcomputer
by Ziyan Wang and Hui Gao
Electronics 2023, 12(2), 443; https://doi.org/10.3390/electronics12020443 - 14 Jan 2023
Cited by 4 | Viewed by 3844
Abstract
In order to measure tunnel illumination with high efficiency and accuracy, a vehicle-mounted tunnel illumination measurement device is designed in this paper. The device comprises a measurement module, a control module, a display module, and a power module. The measurement module is composed [...] Read more.
In order to measure tunnel illumination with high efficiency and accuracy, a vehicle-mounted tunnel illumination measurement device is designed in this paper. The device comprises a measurement module, a control module, a display module, and a power module. The measurement module is composed of a BCE illuminance sensor and an inductive proximity switch, which can realize a single illuminance measurement within a fixed distance. The control module, i.e., the STC12C5A60S2 single-chip microcomputer, sends the single measurement data to the storage module to realize dynamic automatic measurement. The display module is an LCD1602 liquid crystal display, which displays the measured tunnel mileage and real-time illumination. The whole device is fed by the powered module. The man–machine exchange interface of the Visual Basic (VB) host computer and Access database are used to display and store the previous illuminance measurement data, respectively. Extensive experiments show that the device has the advantages of a simple structure, convenient installation, stable operation, and accurate and efficient measurement, and can realize an automatic measurement of illumination in a long tunnel. Full article
Show Figures

Figure 1

20 pages, 8232 KiB  
Article
Development of A Novel Adaptive Range Strain Sensor for Structural Crack Monitoring
by Ziguang Jia, Guangda Ma, Xin Su, Yibo Li, Chenghao Xing, Shuhan Ye, Xuan Yi and Chunxu Qu
J. Mar. Sci. Eng. 2022, 10(11), 1710; https://doi.org/10.3390/jmse10111710 - 9 Nov 2022
Cited by 2 | Viewed by 2477
Abstract
Ocean platforms that are under complex sea conditions and loads for long periods are prone to fatigue cracks. These cracks may lead to large deformations, even displacement, of the platform, and should be monitored to ensure engineering safety. Cracks are not easily detected [...] Read more.
Ocean platforms that are under complex sea conditions and loads for long periods are prone to fatigue cracks. These cracks may lead to large deformations, even displacement, of the platform, and should be monitored to ensure engineering safety. Cracks are not easily detected in the micro stage and small levels of strain measurement are required to ensure high accuracy. Furthermore, cracks are prone to suddenly developing into large deformations, especially in structural connections in practical engineering. This study developed a novel adaptive range strain sensor for structural crack monitoring that can monitor the whole structural crack propagation process in ocean platforms. The strain sensor is used for micro deformation monitoring through its fiber Bragg grating (FBG) sensor with high sensitivity. The sensor can automatically adapt to crack fractures and provide warnings through an STM32 single-chip microcomputer (SCM) system when the structure suddenly cracks, causing large deformation. The experimental results demonstrate that the device has high precision in micro measurement with the ability to capture structural fractures. The field application shows the high strain sensitivity of the sensor in crack monitoring, which indicates that the adaptive range strain sensor is suitable for the structural crack monitoring of ocean platforms. Full article
Show Figures

Figure 1

13 pages, 3946 KiB  
Article
Development of a Three-Dimensional Nerve Stretch Growth Device towards an Implantable Neural Interface
by Xiao Li, Yongguang Chen, Xikai Tu and Hailong Huang
Micromachines 2022, 13(10), 1558; https://doi.org/10.3390/mi13101558 - 20 Sep 2022
Cited by 3 | Viewed by 2285
Abstract
Because of rising traumatic accidents and diseases, the number of patients suffering from nerve injury is increasing. Without effective rehabilitation therapy, the patients will get motor or sensory function losses or even a lifelong disability. As for amputees, neural interface technology can be [...] Read more.
Because of rising traumatic accidents and diseases, the number of patients suffering from nerve injury is increasing. Without effective rehabilitation therapy, the patients will get motor or sensory function losses or even a lifelong disability. As for amputees, neural interface technology can be used to splice nerves and electrical wires together in a way that allows them to control an artificial limb as if it was a natural extension of the body. However, the means the need for an autologous nerve to stimulate axonal regeneration and extension into target tissues, which are limited by the supply of donor nerves. Based on the principle of mechanical force regulating axon growth, in this paper, we developed a three-dimensional nerve stretch growth device for an implantable neural interface. The device consists of three motors controlled by single chip microcomputer and some mechanical parts. The stability and reliability of the device were tested. Then, we used neurons derived from human pluripotent stem cells by small chemical molecules to explore the optimal three-dimensional stretch culture parameters. Furthermore, we found that the axons were intact through 10 rotations per day and 1 mm of horizontal pulling per day. The results of this research will provide convenience for patients treated through an implantable neural interface. Full article
(This article belongs to the Special Issue Progress and Challenges of Implantable Neural Interfaces)
Show Figures

Figure 1

22 pages, 9787 KiB  
Article
Controller Design of a Brake-By-Wire System Based on Giant-Magnetostrictive Material for an Intelligent Vehicle
by Changbao Chu, Renjie Zhu and Xingjian Jia
Sustainability 2022, 14(17), 11057; https://doi.org/10.3390/su141711057 - 5 Sep 2022
Cited by 3 | Viewed by 2487
Abstract
Mechatronics control technology can not only improve the performance of vehicles but also solve traditional automotive braking system problems such as long brake pipeline, lots of valve components, slow response and so on. In this paper, a giant-magnetostrictive actuator and a disc brake [...] Read more.
Mechatronics control technology can not only improve the performance of vehicles but also solve traditional automotive braking system problems such as long brake pipeline, lots of valve components, slow response and so on. In this paper, a giant-magnetostrictive actuator and a disc brake structure were used to build a drive control system, and the control system module was designed with a single-chip microcomputer as the core. Combined with sensor selection, software programming control was used to build the experimental test platform, and the maximum output displacement of the control system was 0.112156 mm, which was basically consistent with the theoretical calculation. The maximum output force was 3883 N, which exceeded the minimum output force of 3631 N calculated theoretically. According to the results of the test platform, the relevant test parameters were highly consistent with the theoretical calculation, which verified the correctness and effectiveness of the theoretical calculation and bench testbed design. It contributes to the improvement of vehicle active safety performance and can provide a new way for the development of an intelligent vehicle brake-by-wire system. Full article
(This article belongs to the Special Issue Sustainable Development of Automotive Engineering)
Show Figures

Figure 1

15 pages, 2539 KiB  
Article
Design and Experimental Testing of a Control System for a Solid-Fertilizer-Dissolving Device Based on Fuzzy PID
by Xiuhua Song, Hong Li, Chao Chen, Huameng Xia, Zhiyang Zhang and Pan Tang
Agriculture 2022, 12(9), 1382; https://doi.org/10.3390/agriculture12091382 - 3 Sep 2022
Cited by 15 | Viewed by 3002
Abstract
To overcome the problem of poor uniformity of solid-fertilizer-dissolving devices due to lag of fertilizer dissolution, a closed-loop control system based on fuzzy proportional-integral-derivative (PID) was designed and tested. A fertilizer concentration regulation model was then established according to the results. In this [...] Read more.
To overcome the problem of poor uniformity of solid-fertilizer-dissolving devices due to lag of fertilizer dissolution, a closed-loop control system based on fuzzy proportional-integral-derivative (PID) was designed and tested. A fertilizer concentration regulation model was then established according to the results. In this system, the control core was an STM32 used to feed back the fertilization concentration by detecting the electrical conductivity. For real-time adjustment of the fertilizer flow rate and water flow rate, a fuzzy PID control algorithm was utilized to compare the detected concentrations with the set concentrations. The linear relationships between quantities such as the fertilizer rate and PWM frequency, water flow rate and PWM duty ratio of the direct-current pump, and fertilizer concentration and electrical conductivity were all established to calibrate the system. The influence of the fertilizer flow rate and water flow rate on fertilizer concentration was determined by the control variable test method. The results showed a positive linear relationship between fertilizer concentration and fertilizer flow rate, while a reverse linear relationship was established between fertilizer concentration and water flow rate. After the introduction of the control system into the self-developed solid-fertilizer-dissolving device, the fertilizer concentration fluctuated near the set concentration in a range of no more than 1 g/L. After the disturbance of the fertilization device, the control system fine-tuned the device with a steady-state error of about 0.55 g/L after the system reached stability. The control system designed in this study was shown to run normally with good stability, speed, and accuracy, and with improved fertilization uniformity of the solid-fertilizer-dissolving device. This study lays the foundation for further study of fertilization control systems. It also provides a reference for the development of precise and intelligent fertigation. Full article
(This article belongs to the Special Issue Advances in Agricultural Engineering Technologies and Application)
Show Figures

Figure 1

9 pages, 2114 KiB  
Article
Intelligent Target Design Based on Complex Target Simulation
by Jiaxing Hao, Xuetian Wang, Sen Yang, Hongmin Gao, Cuicui Yu and Wentao Xing
Appl. Sci. 2022, 12(16), 8010; https://doi.org/10.3390/app12168010 - 10 Aug 2022
Cited by 2 | Viewed by 2016
Abstract
The emergence and popularization of various fifth-generation fighter jets with supersonic cruise, super maneuverability, and stealth functionalities have raised higher and more comprehensive challenges for the tactical performance and operational indicators of air defense weapon systems. The training of air defense systems requires [...] Read more.
The emergence and popularization of various fifth-generation fighter jets with supersonic cruise, super maneuverability, and stealth functionalities have raised higher and more comprehensive challenges for the tactical performance and operational indicators of air defense weapon systems. The training of air defense systems requires simulated targets; however, the traditional targets cannot simulate the radar cross-section (RCS) distribution characteristics of fifth-generation fighter aircrafts. In addition, the existing target aircrafts are expensive and cannot be mass-produced. Therefore, in this paper, a corner reflector and a Luneburg ball reflector with RCS distribution characteristics of a fifth-generation fighter in a certain spatial area are designed for target simulation. Several corner reflectors and Luneburg balls are used to form an array to realize the simulations. The RCS value and distribution characteristics of the target can be combined with fuzzy clustering and a single-chip microcomputer to design an intelligent switching system, which improves the practicability of the intelligent target design proposed in this paper. Full article
(This article belongs to the Special Issue AI-Based Image Processing)
Show Figures

Figure 1

10 pages, 2414 KiB  
Communication
Measurement of Linear Springs’ Stiffness Factor Using Ultrasonic Sensing
by Zhongwei Zhang, Xiyan Zhang, Bohui Ma, Mengyao Ding, Bowen Zhu and Dezheng Tong
Sensors 2022, 22(15), 5878; https://doi.org/10.3390/s22155878 - 5 Aug 2022
Cited by 4 | Viewed by 2341
Abstract
We designed an ultrasonic testing instrument that consisted of a single-chip microcomputer module, a digital display module, and an ultrasonic sensor module, which conveniently eliminated the troubles faced by the traditional Jolly’s scale. For comparison purpose, three linear springs’ stiffness factors were measured [...] Read more.
We designed an ultrasonic testing instrument that consisted of a single-chip microcomputer module, a digital display module, and an ultrasonic sensor module, which conveniently eliminated the troubles faced by the traditional Jolly’s scale. For comparison purpose, three linear springs’ stiffness factors were measured by Jolly’s scale and by our ultrasonic testing instrument. We found that our instrument could more conveniently and in real time display the distance values between the ultrasonic ranging module and the horizontal bottom plate when loading different weights. By processing these distance data, we found that our instrument was more convenient for obtaining the linear springs’ stiffness factors and that the results were more accurate than those of Jolly’s scale. This study verified that our instrument can accurately realize the performance of Jolly’s scale under diverse temperatures and humidity levels with high data reliability and perfect stability. Full article
(This article belongs to the Collection Instrument and Measurement)
Show Figures

Figure 1

17 pages, 11273 KiB  
Technical Note
Space Environment Evaluation and Low-Earth-Orbit Demonstration of a Communication Component with a Commercial Transceiver Integrated Circuit
by Toshihiro Kameda, Akihiro Nagata, Yohei Kimura, Ryujin Imai, Pragyan Shrestha, Keisuke Kimura, Atsushi Yasuda and Hiromasa Watanabe
Aerospace 2022, 9(6), 280; https://doi.org/10.3390/aerospace9060280 - 24 May 2022
Cited by 2 | Viewed by 3152
Abstract
A software-controllable, consumer-grade, single-chip transceiver integrated circuit (IC) has multiple applications because it can generate a continuous-wave beacon while providing the basic functions of frequency shift keying digital communication as well. In addition, such ICs are low-cost. The above characteristics are advantageous for [...] Read more.
A software-controllable, consumer-grade, single-chip transceiver integrated circuit (IC) has multiple applications because it can generate a continuous-wave beacon while providing the basic functions of frequency shift keying digital communication as well. In addition, such ICs are low-cost. The above characteristics are advantageous for CubeSats with limited space and for university satellites with development cost constraints. In this study, we conduct radiation tolerance evaluation and Doppler shift tolerance tests to evaluate the feasibility of a single-chip consumer transceiver IC for space applications. In the radiation tolerance evaluation test, we compare the IC radiation tolerance to that of a single-chip microcomputer implemented in space and confirm the good resistance of the former based on the predictive analysis of the single-event upset incidence. Through the Doppler frequency shift tolerance test, we confirm suitable receiving sensitivity. Furthermore, we develop a transceiver IC as a CubeSat-class satellite component and successfully establish communication in an in-orbit demonstration, where the transceiver IC is employed as a CubeSat communication module released from the International Space Station. Thus, the feasability of space utilization of the consumer communication IC is demonstrated, which has implications for the development of more flexible and challenging system designs using newly introduced consumer devices. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

21 pages, 66142 KiB  
Article
Low-Cost and High-Efficiency Electromechanical Integration for Smart Factories of IoT with CNN and FOPID Controller Design under the Impact of COVID-19
by Chang-Hung Hsu, Shan-Jen Cheng, Te-Jen Chang, Yi-Mei Huang, Chin-Ping Fung and Shih-Feng Chen
Appl. Sci. 2022, 12(7), 3231; https://doi.org/10.3390/app12073231 - 22 Mar 2022
Cited by 9 | Viewed by 3697
Abstract
This study proposes a design for unmanned chemical factories and implementation based on ultra-low-cost Internet of Things technology, to combat the impact of COVID-19 on industrial factories. A safety and private blockchain network architecture was established, including a three-layer network structure comprising edge, [...] Read more.
This study proposes a design for unmanned chemical factories and implementation based on ultra-low-cost Internet of Things technology, to combat the impact of COVID-19 on industrial factories. A safety and private blockchain network architecture was established, including a three-layer network structure comprising edge, fog, and cloud calculators. Edge computing uses a programmable logic controller and a single-chip microcomputer to transmit and control the motion path of a four-axis robotic arm motor. The fog computing architecture is implemented using Python software. The structure is integrated and applied using a convolutional neural network (CNN) and a fractional-order proportional-integral-derivative controller (FOPID). In addition, edge computing and fog computing signals are transmitted through the blockchain, and can be directly uploaded to the cloud computing controller for signal integration. The integrated application of the production line sensor and image recognition based on the network layer was addressed. We verified the image recognition of the CNN and the robot motor signal control of the FOPID. This study proposes that a CNN + FOPID method can improve the efficiency of the factory by more than 50% compared with traditional manual operators. The low-cost, high-efficiency equipment of the new method has substantial contribution and application potential. Full article
(This article belongs to the Topic Modern Technologies and Manufacturing Systems)
Show Figures

Figure 1

Back to TopTop