
Citation: Zhang, Z.; Zhang, X.; Ma,

B.; Ding, M.; Zhu, B.; Tong, D.

Measurement of Linear Springs’

Stiffness Factor Using Ultrasonic

Sensing. Sensors 2022, 22, 5878.

https://doi.org/10.3390/s22155878

Academic Editor: Marco Carratù

Received: 5 June 2022

Accepted: 3 August 2022

Published: 5 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

Measurement of Linear Springs’ Stiffness Factor Using
Ultrasonic Sensing
Zhongwei Zhang * , Xiyan Zhang, Bohui Ma, Mengyao Ding, Bowen Zhu and Dezheng Tong

Department of Optical Engineering, College of Optical, Mechanical and Electrical, Zhejiang A & F University,
Hangzhou 311300, China
* Correspondence: zzw3535@zafu.edu.cn

Abstract: We designed an ultrasonic testing instrument that consisted of a single-chip microcomputer
module, a digital display module, and an ultrasonic sensor module, which conveniently eliminated
the troubles faced by the traditional Jolly’s scale. For comparison purpose, three linear springs’
stiffness factors were measured by Jolly’s scale and by our ultrasonic testing instrument. We found
that our instrument could more conveniently and in real time display the distance values between
the ultrasonic ranging module and the horizontal bottom plate when loading different weights. By
processing these distance data, we found that our instrument was more convenient for obtaining
the linear springs’ stiffness factors and that the results were more accurate than those of Jolly’s scale.
This study verified that our instrument can accurately realize the performance of Jolly’s scale under
diverse temperatures and humidity levels with high data reliability and perfect stability.
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1. Introduction

The linear spring stiffness factor k, also known as the stubbornness coefficient, is an
important property that indicates the ability of the linear spring to resist deformation [1–3].
Being a kind of elastic object that stores energy, linear springs are widely used in many fields,
such as furniture, architecture, machinery, and electronics [4–8]. Depending on the purpose
for their usage, different types of linear springs should have different stiffness factors.

Generally, k is measured by Jolly’s scale [9] and then calculated based on Hooke’s
law [10–12]. However, when using the Jolly’s scale, it is necessary to first “align the three
lines” (note: the first line L1 is on the surface of the glass tube, the second line L2 is on
the surface of the mirror, and the third line L3 is a reflection image of L1 in the mirror).
Next, the readout on the Vernier Caliper must be manually identified after each addition of
equal weight, and the measurement results must be evaluated. These will incur artificial
accidental errors and lead to inaccurate measurement results.

The term ultrasonic wave refers to sound waves with frequencies higher than 20 kHz,
and common ultrasonic frequencies range from tens of kHz to tens of MHz. It is a type of
mechanical wave that has the advantages of a strong penetrating force, good directionality,
and easy access to concentrated sound energy [13–16]. Due to its advantages of non-contact
measurement, low cost, easy operation, and rapid measurement, it has been widely used
in industrial measurements, safety warnings, scientific obstacle avoidance by robots, and
ultrasonic motors [17–23]. Particularly in distance measurement, as researchers continue
to explore and further expand the ultrasonic ranging technology [24–28], measurement
accuracy and the stability of ultrasonic ranging are more suitable for industrial control and
high-level instruments.

After searching on the Web of Science, we found very few studies on the measurement of
the linear spring stiffness factor using ultrasonic sensing, and there was no one instrument
using ultrasonic sensing to measure the linear spring stiffness factor. In this study, we used
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an ultrasonic testing instrument that consisted of a single-chip microcomputer module, a
digital display module, and an ultrasonic sensor module to measure displacement. For
comparison purposes, three linear springs’ stiffness factors were measured by Jolly’s scale
and by the ultrasonic testing instrument. We found that our ultrasonic testing instrument
could more conveniently eliminate the troubles faced by the traditional Jolly’s scale and
displayed the distance values in real time between the ultrasonic ranging module and
horizontal bottom plate when loading different weights. By processing these distance
data, we found that our ultrasonic testing instrument was more convenient for obtaining
the linear springs’ stiffness factors and that the measurement results were more accurate
than those of Jolly’s scale. This study verified that our instrument can accurately realize
the performance of Jolly’s scale under diverse temperatures and humidity levels and also
excelled in other quantitative ranging measurements.

2. Experimental Method
2.1. Linear Spring Stiffness Factor k

The linear spring stiffness factor k complies with Hooke’s law as follows:

F = k · ∆x (1)

In Equation (1), F is the elastic force received by the linear spring, and ∆x is the
deformation quantity of the spring once it is deformed.

In general, we can find the linear spring stiffness factor k by following three steps with
our ultrasonic testing instrument. First, the weights of different masses are applied to the
oscillator to produce a series of forces of known magnitude. Next, the ultrasonic sensor
module measures the corresponding deformations of the spring. Finally, in line with the
successive differentiation method, the linear spring stiffness factor k can easily be obtained
from Equation (1).

2.2. Device Composition

Our ultrasonic testing instrument consisted of a single-chip microcomputer (MCU)
module (Model: 51 HC-SR04), a digital display module (digital tube), and an integrated
ultrasonic sensor module (fixed together with the vibration module during use; referred to
as the ultrasonic ranging module in context). The vibration change of the vibration module
was measured by the ultrasonic sensor module, and the values of the measured distance
parameter were displayed on the digital tube in real time. The photo of our ultrasonic
testing instrument is shown in Figure 1.
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2.2.1. Single-Chip MCU Module

The single-chip MCU module is shown in Figure 2. The function and name of each
component are marked in the figure.
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2.2.2. Digital Display Module

As shown in Figure 3, the digital display module involved an 8-digit tube. It displayed
the measurement data in real time. Using programming techniques, effective data with
different numbers of digits can be implemented in the digital display module.
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2.2.3. Ultrasonic Sensor Module

As shown in Figure 4, the ultrasonic sensor module used an I2C or TTL serial port
interface to communicate with the host and output the distance value in the millimeter
order of magnitude. The range detection with real-time temperature compensation had
high detection accuracy. Moreover, it could transmit multi-range detection instructions
to meet the requirements of short-distance detection, along with quickly and precisely
measuring the temperature and ultrasonic intensity.

2.3. Physical Principle of Ultrasonic Ranging

Ultrasonic waves are generated by the vibration of a transducer wafer under voltage
excitation. When an ultrasonic wave hits an impurity or the interface of an obstacle, either
it will produce a significant reflection to form an echo or the Doppler effect will occur if the
wave meets a moving object.
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Our instrument adopted dual probes: one was the transmitter, and the other was
the receiver, as shown in Figures 4a and 5. The distance between the transmitter and
receiver is d. The relationship between the measured distance LM and actual distance LA is

LM =
√

L2
A + d2

4 . When the value of LA changes, the value of LM can be displayed in real
time on the digital display module through the measurement of the Doppler frequency
shift by the ultrasonic ranging module.
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Figure 5. Physical principle of ultrasonic ranging.

3. Measuring Linear Springs’ Stiffness Factors

As shown in Figures 6 and 7, we selected three linear springs with different stiffness
factors and measured them with the traditional Jolly’s scale and our ultrasonic testing
instrument, respectively. (Note: The three legs of our instrument were strictly locked to
prevent sliding.) In the experiments, we added a fixed mass (5.05 g) to the lower end of
each spring each time in turn, and we recorded the readouts of the two instruments when
their states were stable. The readout li (i = 0, 1, 2, 3, 4, 5) on the Jolly’s scale is a series of
indicators of the vernier caliper when the scale realizes “aligning the three lines”, while the
readout li (i = 0, 1, 2, 3, 4, 5) on the ultrasonic sensor is a series of distance values between
the ranging module and the horizontal bottom plate after the vibration module is stable and
stationary. Our instrument automatically showed these values with the digital display mod-
ule, which ruled out artificial accidental errors. ∆l = |[(l3 − l0) + (l4 − l1) + (l5 − l2)]/3|
is the average difference of spring’s elongation. The measured and processed results are

listed in Table 1. Among them, k = ∆m∆g
∆l

= (15.15 – 0.00)×10−3×9.8
∆l×10−2 , and the standard devi-

ation of the deformation is

√
[(l3−l0)−∆l]

2
+[(l4−l1)−∆l]

2
+[(l5−l2)−∆l]

2

3−1 . The relative error of
k is |k− k0|/k0 × 100%. True value k0 is the linear spring’s stiffness factor provided by
the factory and measured with a dynamometer, according to Hooke’s law. We bought
springs with different stiffness factors from the factory, and the manufacturer marked
the values of the stiffness factors on the outer package. We referred to these as the true
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values. In Chinese university-level physics experiment textbooks, the term ”true value” is
a default regulation.
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For the expression of k, the combinations of l3 and l0, l4 and l1, and l5 and l2 correspond
to 15.15 g and 0.00 g, 20.20 g and 5.05 g, and 25.25 g and 10.10 g, respectively. Thus,
∆m = 15.15 − 0.00 = 20.20 − 5.05 = 25.25 − 10.10 = 15.15 (g), which means that it concerns
a series of measures with the same weight.

In general, the smaller the value of the standard deviation is, the smaller the deviation
of the measurement value is, and the more accurate the measurement is. The smaller the
value of the relative error of k is, the closer the measurement value is to the true one.

Table 1 shows that the stiffness factors of the same group of three springs measured
by our ultrasonic testing instrument and Jolly’s scale were very close, and the standard
deviations of the deformation indications were very small. Clearly, the standard deviations
of the deformation measured by our ultrasonic testing instrument were much smaller than
those of Jolly’s scale, demonstrating the accuracy of our ultrasonic testing instrument’s
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results. In addition, we know their true values. The relative errors between the measured
results by our ultrasonic testing instrument and the true values were 0.26%, 0.00%, and
0.00%, respectively, better than those of Jolly’s scale, which were 1.8%, 0.67%, and 1.6%,
respectively. Using the software Origin Pro 2015 to map, Figure 8 shows the comparison
between the measurement results from our instrument and Jolly’s scale accompanied by
their respective fitting straight lines. It is known from the software that the standard
deviations of the slopes of the fitting straight lines obtained are all within 0.004, exhibiting
perfect linearity in the fitting diagram and high accuracy in the measurement results.
In summary, the results in Table 1 and Figure 8 show clearly that our ultrasonic testing
instrument can accurately measure the stiffness factor of springs, that it can fully realize
the performance of the traditional Jolly’s scale, and that its measurement results are more
accurate than those of Jolly’s scale.

Table 1. Comparison table of the measurement results of the three springs’ stiffness factors.

Mass of Weights (g) 0.00 5.05 10.10 15.15 20.20 25.25

Group Measuring Tool l0(cm) l1(cm) l2(cm) l3(cm) l4(cm) l5(cm) ∆l (cm)
k

(N/m)

Standard Deviation
of the Deformation

(cm)

Relative
Error of

k (%)

Spring 1
Jolly’s scale 1.37 2.67 4.05 5.33 6.54 7.73 3.84 3.87 0.14 1.8

Ultrasonic sensor 35.45 34.16 32.94 31.61 30.26 28.92 3.92 3.79 0.09 0.26
True value k0 / / / / / / / 3.80 / /

Spring 2
Jolly’s scale 6.16 9.50 12.76 16.03 19.27 22.61 9.83 1.51 0.05 0.67

Ultrasonic sensor 45.92 42.64 39.37 36.04 32.69 29.47 9.91 1.50 0.04 0.00
True value k0 / / / / / / / 1.50 / /

Spring 3
Jolly’s scale 1.98 3.90 5.91 7.84 9.78 11.72 5.85 2.54 0.04 1.6

Ultrasonic sensor 38.26 36.27 34.38 32.32 30.34 28.46 5.93 2.50 0.01 0.00
True value k0 / / / / / / / 2.50 / /
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In general, both temperature and humidity have effects on ultrasonic waves [29,30].
To verify the sensitivity and stability of our ultrasonic testing instrument, we measured
the stiffness factors of each spring at different times on the same day (under different
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temperatures and humidity levels). The experiment and processed results are shown in
Tables 2 and 3, respectively.

Table 2. Measurement results of each spring using our ultrasonic testing instrument at different times
on the same day under different temperatures and humidity levels.

Mass of
Weights (g) 0.00 5.05 10.10 15.15 20.20 25.25

Date Time Temperature (◦C) Humidity (%) l0(cm) l1(cm) l2(cm) l3(cm) l4(cm) l5(cm) ki
(N/m)

On the
same
day

9:30 17.2 74 37.51 36.16 34.83 33.55 32.27 30.94 3.794220
13:30 18.1 71 37.29 35.96 34.71 33.34 32.1 30.77 3.791127
17:30 16.4 79 38.68 37.47 36.15 34.73 33.49 32.33 3.791928
21:30 15.2 80 37.41 36.14 34.82 33.44 32.21 30.97 3.791342

True value k0 / / / / / / 3.80

Table 3. Statistics of the stiffness factors of the same spring under different temperatures and
humidity levels.

Temperature (◦C) Humidity (%) ki (N/m) ¯
k Si (N/m) ¯

S (N/m) ReAD (%) EX(%) SE (N/m)

17.2 74 3.794220

3.79

0.04

0.07 1.6 0.26

0.03
18.1 71 3.791127 0.05 0.03
16.4 79 3.791928 0.09 0.05
15.2 80 3.791342 0.07 0.04

True value k0 3.80 / / / / / /

Note: Each stiffness factor of each spring at different times on the same day is ki = ∆m·g
∆li

/3 =[
∆m×10−3×9.8
(l0−l3)×10−2 + ∆m×10−3×9.8

(l1−l4)×10−2 + ∆m×10−3×9.8
(l2−l5)×10−2

]
/3;∆m = 15.15 (g). The mean value of ki is k = 1

4

4
∑

i=1
ki . The standard

deviation of ki is Si =

√
∑4

i=1(ki−k)
2

4−1 . The average standard deviation of ki is S = S1+S2+S3+S4
4 . The relative average

standard deviation of ki is ReAD = S/k. The relative error of ki is EX =
|k−k0|

k0 × 100%. The standard error of ki is
SE = Si/

√
3.

Table 2 shows the comparison of each spring’s stiffness factor with our ultrasonic
testing instrument under different temperatures and humidity levels. To express these data
intuitively, we converted them into Figure 9, which shows perfect linearity in the fitting
diagram and high accuracy in the measurement results. The slopes of these four fitting
lines are exactly equal, and they almost coincide with the exception of the line representing
Time 17:30. For the line representing Time 17:30, we consciously increased the initial height
of the l0 to test the sensitivity of our instrument. As expected, the slope of the fitting line
formed by subsequent measurements was perfectly consistent with the slopes of the other
three. This showed that our instrument was sensitive to the initial value.

Using the values of ki and the stiffness factor of each spring at different times on
the same day, obtained from a series of measures with the same weight, we performed
the uncertainty analysis based on the data in Tables 2 and 3 as follows: Our instrument’s
instrument error value was ∆q = k0 − ki,min = 3.80− 3.791127 = 0.008873 (N/m). The

overall uncertainty is ux =

√
∆q2 + S2

=
√

0.0088732 + 0.072 ≈ 0.07 (N/m). Considering
the overall uncertainty, ki = k± ux = 3.79± 0.07 (N/m). This meant that the probability
of ki was high in the interval (3.72, 3.86), and the probability of true value being outside the
interval was small.

Table 3 showed that the mean value of the measured stiffness factors of each spring
using our ultrasonic testing instrument under different temperatures and humidity levels
was 3.79 N/m. We know the true value of this spring is 3.80 N/m, and the following
data are calculated on the true value. The average standard deviation of the measured
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stiffness factors was 0.06 N/m, and the relative average standard deviation was 1.6%
(<5.0%, confidence interval). The relative error of ki was 0.26%, and the values of the
standard errors are all within the range of 0.00–0.05 N/m. All these data indicate that
the difference extent between the stiffness factors measured by our instrument and the
true value 3.80 N/m was negligible and reflected the high precision of the measurement
results. In summary, our ultrasonic testing instrument measured the linear springs’ stiffness
factors under diverse temperatures and humidity levels, with high data reliability and
perfect stability.Sensors 2022, 22, x FOR PEER REVIEW 8 of 11 
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Figure 9. (Color online) Measurement results of each spring using our instrument at different times
on the same day under different temperatures and humidity levels, accompanied by their respective
fitting lines.

4. Conclusions

We designed an ultrasonic testing instrument that used ultrasonic waves to measure
the stiffness factors of linear springs. We measured the stiffness factors of three different
linear springs with Jolly’s scale and our instrument. By comparison, we found that our
instrument was more convenient to operate than Jolly’s scale. We verified that our instru-
ment had the advantages of accurate results with little error, perfect sensitivity, and stable
performance in measuring the linear springs’ stiffness factors under diverse temperatures
and humidity levels, which precisely surpassed the performance of Jolly’s scale. In ad-
dition, our instrument can also be exploited to measure the surface tension and surface
tension coefficients of liquids, Young’s modulus of a wire, tensile strength of a paper, tiny
deformation of objects, flexibility of a wool wire, and other quantitative measurements.
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