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Abstract: This study proposes a design for unmanned chemical factories and implementation based
on ultra-low-cost Internet of Things technology, to combat the impact of COVID-19 on industrial fac-
tories. A safety and private blockchain network architecture was established, including a three-layer
network structure comprising edge, fog, and cloud calculators. Edge computing uses a programmable
logic controller and a single-chip microcomputer to transmit and control the motion path of a four-axis
robotic arm motor. The fog computing architecture is implemented using Python software. The struc-
ture is integrated and applied using a convolutional neural network (CNN) and a fractional-order
proportional-integral-derivative controller (FOPID). In addition, edge computing and fog computing
signals are transmitted through the blockchain, and can be directly uploaded to the cloud computing
controller for signal integration. The integrated application of the production line sensor and image
recognition based on the network layer was addressed. We verified the image recognition of the
CNN and the robot motor signal control of the FOPID. This study proposes that a CNN + FOPID
method can improve the efficiency of the factory by more than 50% compared with traditional manual
operators. The low-cost, high-efficiency equipment of the new method has substantial contribution
and application potential.

Keywords: smart factory; IoT; machine learning; robot control; COVID-19

1. Introduction

The COVID-19 crisis has had a substantial effect on the economy of many countries
with increased risk to the lives of many people. The Internet of Things (IoT) has the poten-
tial to improve the transformation of manufacturing technology, and it has also attracted
attention from academia and industry. The IoT envisages the seamless integration of the
physical world and cyberspace by being ubiquitous. Devices are widely deployed with
embedded identification (ID), sensing, and driving functions, and can be extended to the
physical field of the IoT [1–4]. Miniature electronic devices are embedded to interact in the
physical world and are connected to the network system to make them intelligent and seam-
lessly integrated into the final network infrastructure. Therefore, the IoT can be extended
to include manufacturing resources/capabilities in different stages of the manufacturing
and business planning processes. In addition, it enables vertical integration at different
hierarchical system levels. This mechanism can provide existing or new manufacturing
services and applications with unprecedented opportunities [5,6].
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An advanced interconnected network system includes connections between smart
machines, storage systems, and production facilities. It can exchange network information
independently, trigger actions, and control systems. In addition, the universal perception
ability of the IoT systems generate a large and diverse amount of data, which can be used
to assist manufacturing engineering in achieving the best decision-making mechanisms
for all aspects of the manufacturing process. For this reason, sensors and driving devices
can cover the entire range of industrial tools. They are still in the early stages of development;
however, manufacturing datasets are growing rapidly, and IoT devices can be deployed quickly.
In addition, cloud-based computing and big data technologies are indispensable [7,8].

These technologies play an important role in the management and large-scale manufac-
turing of resources. They provide users with great flexibility and service opportunities, such
as signal storage, signal processing, visual manufacturing of big data, and other powerful
functions. Modern factories are often equipped with robots that satisfy the requirements of
the production line. The IoT enables users to confirm the position and shape of the robot’s
work, as well as to manage the interactive information transmission of the state of multiple
objects, regardless of the situation.

The robot has a third type of perception ability, which is a sensor system platform. It
is not necessary to communicate unilaterally with other robots [9,10]. To communicate the
signals, the motion behavior of the robot can be monitored and understood at any time.
This is the interaction between handling work and the dimensions of the working space.
The robot itself has multiple signals linked to environmental signals, which poses a great
challenge in obtaining greater performance stability of the robot. Therefore, for a factory
with an automation system, a 3D image detection device with the ability to sense depth is
required, which can be used to enable the interception of data in 3D space for detection
robots. To realize the robot’s operating status, it can immediately allow the robot to reflect
the specific requirements of the working environment in the space, regardless of touch or
the characteristics of the objects to be transported. It includes the properties of weight,
shape, and size, and a suitable and optimized calculation capability for load handling can
be made immediately. Industrial technology must be constructed using a collaborative
system for IoT applications. The following issues must be addressed in advance to enable
industrial manufacturing capabilities.

• Immediate response.

Faster connections for the control of equipment can master the complete production
process and furnish customers with production history information.

• Prevent errors.

To ensure product quality, it is necessary to monitor abnormalities in the production
process. To reduce the loss of defective products, possible equipment failures or errors
must be monitored according to enterprise requirements.

• Ensure the manufacturing process.

The production control process must be correctly implemented, and the human error
rate must be minimized to improve the consistency of the manufacturing process.

• Improve production utilization rate.

Complete equipment production accuracy must be provided to reduce the appearance
of defective products and increase the utilization rate of the equipment. Modern factory
equipment typically uses programmable logic controllers (PLCs) to build robotic manufac-
turing processes. Programming and functions can be developed to satisfy the requirements
of the equipment.

With the advancement of science and technology, equipment must also improve over
time to achieve the required communication technology capabilities and functions. A
da-ta-communication network linking the production equipment is needed. This enables
the robot PLCs on the production line to confirm the location and interaction of multiple
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sur-rounding objects under any circumstance. The situation message can then be delivered.
In other words, the robot PLC should have a higher sensing and perception function, which
ensures that the exchange of signals with the other robots is independent (and event-driven).
The robot’s motion and behavior in the working space is interactive.

In ref [11], a sensing method was proposed to enable the widespread adoption and
development of IoT technology in the manufacturing industry to be close to the user. This
has played an important role in the manufacturing industry. For example, radio frequency
identification (RFID) has been applied to electromagnetic field effects to transmit data for
automatic identification and tracking of tags attached to the target product. The RFID
system is composed of a tag and a reader. The tag stores the information being read. In
other words, tag data can also be obtained through decryption without requiring additional
signals to be provided to other systems. Therefore, the RFID reader can indirectly track the
physical movement state mode of the tag. Therefore, it can indirectly track the physical
movement of the object to which the tag is attached. In industrial manufacturing procedures,
RFID can be applied to the management of the supply chain, production scheduling,
part/vehicle tracking, etc. The sensors, wireless networks, and sensor networks (wire-less
sensor networks, WSNs) can also be configured out of space from a node structure. The
node structure is used to sense the surrounding environment, and can then be manipulated
and other node communication signals obtained. Sensor nodes operate in a self-organizing
and decentralized manner to maintain the best connection status as much as possible. RFID
and WSNs represent two complementary technologies. RFID can be used to discover and
identify the locations of objects that are difficult to detect or distinguish using traditional
sensor technology. However, they cannot monitor the state of the objects. In contrast,
wireless sensor networks not only provide information about objects and environmental
conditions but also support multi-hop wireless communication. Some WSNs may be
equipped with actuators to perform the appropriate actions. Finally, RFID and WSNs could
be combined to facilitate industrial development. In this study, we propose many controllers
for constructing smart factories, including sensors, RFID, and WSN control methods.
However, it is unfortunate that production line process objects are not fully monitored by
lens imaging technology with artificial intelligence (AI) algorithms. In addition, the color
of the production line with the recognition method has rarely been mentioned.

Intelligent manufacturing technology, which is the core concept of the fourth industrial
revolution (Industry 4.0), has received increasing attention worldwide. In recent years,
technologies such as the IoT, big data analysis, AI, cloud computing, and cyber-physical
systems, have been developed to promote intelligent manufacturing [12–14]. In this study,
we discuss research related to intelligent manufacturing, including big data and AI, to
optimize mechanical equipment, the integration of computer numerical controlled machine
tools and robots, and the parameter design and optimization of intelligent factories. Previ-
ous studies have reported on an effective technical solution for integrating and controlling
all joints, driven by hydraulic actuators for heavy robots, in which the robot controller is
constructed based mainly on industrial PLC units. The PLC controller was designed to link
the central control unit and all components of the entire forging station at the same time.
In addition, a hybrid robot that establishes a new method for kinematics and dynamics
has been proposed. The main contribution is to demonstrate the hybrid robot system with
generalized velocity analytic relations, and finally, to demonstrate and verify the newly
designed hybrid robot, which is feasible in kinematic and dynamic modelling results.

The main contribution of this study is the research results of the proposed AI image
recognition system constructed for the PLC production line. The organizational structure
of this study is as follows. Section 1 presents an introduction. Section 2 describes the
construction method of the IoT in a smart factory. Section 3 describes the realization of a
smart factory based on a PLC production line. Section 4 presents the experimental results
and discussion, and Section 5 presents the conclusions.
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2. Materials and Methods
2.1. Construction of IoT in the Smart Factory

The IoT devices include hardware and software that can be used to establish and
realize factories. It covers the main physical resource structure, and all manufacturing
resources that are involved in the life cycle of the manufacturing process. These resources
represent the realization of smart manufacturing. Based on the production line, efficient
manufacturing equipment and production lines were developed using data collection
for product development, as shown in Figure 1. The smart factory is a cyber-physical
production system (CPPS) with the characteristics of a network entity, which integrates
smart sensors, embedded terminal systems, smart control systems, and communication
facilities [15]. Through a CPPS, peer-to-peer interactive transmission is realized, including
transmission between users and equipment, between devices, and between services.

Figure 1. Schematic diagram of IoT smart-factory communication system.

Smart Factory Network Construction

The construction of smart factories should consider the characteristics of manufactur-
ing plants to meet rapidly changing market demand. The following planning auto-mated
production was used for a smart-factory laboratory platform, and many typical features of
smart factories were explored. Figure 1 is a prototype mechanical electronic construction
platform for industrial production lines [16]. According to the conceptual smart-factory
architecture, the prototype platform of the intelligent structure has four layers: a physical
resource layer, cloud service layer, terminal layer, and network layer. The prototype layer
is introduced as follows.

• Physical resource layer.

This consists of basic smart sensors or equipment, conveying equipment, and pack-aging
products. It is mainly responsible for performing tasks, such as processing, monitoring, and as-
sembly. After receiving basic analogue/digital data sources, manufacturing process information
is very important to enable the transfer of signals for upper-level applications.

• Cloud surface layer.

This contains a cloud platform (service cluster system based on the Hadoop architec-
ture), which provides data storage and computing resources for data applications. The
ontological model of the packaging line was constructed on a cloud platform, and the
relationship between the two dimensions of structure and interaction was established
objectively. The complex restricted grammar of the Web Rule Language is mainly used to
upload the manufacturing data to the cloud platform and to the data model. A knowledge-
based reasoning system was used for device operations. Resource allocation and factory-
optimized scheduling work are supported to provide a fault alarm [17].

• Terminal layer.
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This mainly includes end-user equipment such as smartphones, computers, and circuit
boards. They are distributed in different manufacturing locations, monitoring centers, and
other areas. Terminal devices are used to visualize the results of cloud processing and
support remote monitoring operations and maintenance. In addition, customers can use
smart terminals to check the order status at any time.

• Network layer.

This connects the networks in a smart factory. Following this rule, the connection
between the distributed control, controller and actuator, Modbus, and EtherCAT is realized.
The connection between the devices is realized through a combination of Ethernet and
a data distribution service, which is a self-organizing network structure. In addition,
the connection between the devices and the cloud platform can be achieved through a
combination of Ethernet and Open Platform Communications (OPC, unified architecture-
automation technology, and machine-to-machine network transmission protocol), which
was used to provide data exchange [16,18].

The design factors of a smart factory must consider parameters such as equipment
availability, equipment performance, and product qualification rate. It has a cloud-assisted
manufacturing system that allows equipment to self-organize the scheduling and optimiza-
tion process and propose effective solutions. Many verification experiments have proposed
a specific time slot to verify the operation of production line equipment. Among them,
power measurement by smart meters is used to evaluate the total power of laboratory
equipment, and to calculate the power parameters and operation cycle values, and upload
the data to the cloud. It is necessary to compare the efficiency improvement rate for the man-
ufacturing and test equipment. This result verifies that the cloud-assisted manufacturing
system and self-organizing scheduling both have a significant positive effect.

The network layer is an important component of a smart factory. The system devices
induced many signals when it started its operation. Such data are typically unstructured
and cannot be used. Big data and IoT occur [19,20]. Unstructured data can be easily
analyzed. This analysis provides valuable information for the factory production lines.
The equipment needs to be ready to intercept the data, transmit it to a platform, and wait
for it to be analyzed. The equipment must be equipped with many sensors and support
international communication standard protocols, such as the Semiconductor Equipment
Materials Initiative, Equipment Communications Standard/Generic Equipment Model,
OPC, and Transmission Control Protocol/Internet Protocol (TCP/IP).

3. PLC Production Line Signal and IoT Connection

A smart factory is required to establish an internal ecosystem in which devices and
applications are connected through standard protocols. Key applications, such as the
manufacturing execution system (MES), enterprise resource planning (ERP), and product
lifecycle management tools, should be integrated with each other. The PLC equipment
core is integrated into the MES to adjust each step, as shown in Figure 2. Devices, such as
handheld scanners, mobile phones, and tablets, should communicate with the applications
in the workshop. This ensured a closed-loop information collection and control system.

The PLC is an industrial-grade device. Therefore, it does not allow direct connection
to the Internet, as it can only communicate with other devices through a special protocol de-
veloped by the PLC manufacturer. Furthermore, these protocols have limited functionality,
and require specific additional knowledge and different software to be fully functional. The
main purpose of this study is to recommend a simple, efficient, and low-cost technique to
connect any type of PLC to the Internet, thereby moving data to high-performance servers
where it can be processed quickly and easily. This adds a new dimension to data storage,
processing, and interpretation as data moves from limited-resource devices such as PLCs
to unlimited-capacity devices such as cloud servers. The device that plays a major role in
the entire framework is the Raspberry PI, which helps to transfer data from the PLC to the
cloud server by facilitating the conversion between the PLC and the server. The Raspberry
PI establishes a connection with the PLC through the Modbus TCP. The main function of
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the Raspberry PI is to map data from the PLC and encapsulate it in a hypertext transfer
protocol (HTTP) request that the server can handle. After the connection is established, the
following steps are repeated for signal processing at specific time intervals.

Figure 2. The smart factory uses PLC devices to monitor various equipment signals.

• Step 1: The PLC performs electromechanical integration through drivers and sensors
to form the basic edge computing controller (edge layer) of the smart factory and stores
parameters for electrical devices such as motor speed, current, operating temperature,
machine operating status, and alarms in temporary storage in the memory.

• Step 2: Machine image recognition uses convolutional neural network (CNN) tech-
nology to detect the status of the unmanned factory, sends its information through
the Raspberry PI fog computing controller (fog layer) conversion and uploads it to
the cloud.

• Step 3: The Raspberry PI connects to the PLC through an analogue and digital signal
converter, reads data from the I/O port of the PLC, and sends it to the server through
an HTTP request.

• Step 4: Raspberry PI reads these values and wraps them into HTTP requests with
a machine ID and timestamp before sending them to the cloud server. To obtain
real-time information, the interval of the Raspberry PI loop is adjusted to 100 ms.

• Step 5: When the server receives a request from the Raspberry PI, it stores the received
data, machine ID, and timestamp in a database. Authorised users can view the infor-
mation collected in a secure network environment using an Internet-connected device.

• Step 6: The cloud controller was a dual-core MT7697 (using Cortex-M4 with a FPU
Max frequency @192 MHz, with a UART/I2C/SPI/I2S/PWM/ADC/IrDA function.
CNN technology passes a video signal, and a PLC intercept signal is used for terminal
monitoring. A general view of the proposed system architecture is shown in Figure 2.

3.1. Realization of Smart Factory Based on PLC Production Line

The design concept of the smart factory in the production line using an automated
PLC monitoring system is shown in Figure 3. The main module has many integrated
systems and the smart factory has a high degree of complexity. It involves a combination of
connected systems, automation, the IoT, and cloud computing. This is a key module of a
smart factory, which is distinguished by the following items.
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Figure 3. Schematic diagram of the physical architecture of the automated production line.

3.2. Smart-Factory with Data Security and Models

The smart-factory architecture must meet several requirements: confidentiality, in-
tegrity, and availability [21–25]. Device confidentiality ensures that only authorized users
can read the emails. The integrity message ensures that the received and sent messages
are unchanged. The availability of the device is for every available data service. The basic
model architecture properties are defined as follows:

S = {S1, S2, S3, . . . , Sn,},
O = {O1, O2, O3, . . . , On,},
µ = {M1, M2, M3, . . . , Mn,},

A = {w, r, c},
p = {l1, l2},

(1)

where S is the theme set; O is the set of objects; µ is the set of access matrices, which
represents the subject’s access privileges to the object; A is a set of access attributes, w
represents storage, r represents read, and c represents control; and p represents different
privilege levels, where l1 < l2.

The architecture contains three entities: device nodes, management center, and user
nodes. Device nodes and management hubs belong to l2; and user nodes belong to l1. Data
can flow from device nodes and management hubs to user nodes. The user node has no
right to write or modify data. However, both the device node and the management center
provide all each other’s permissions. This is an effective data interaction realization. The
formula defines the determination of the current state as a safety condition [21–25].

V = S×O×A× µ× p (2)

where S×O×A indicates that the object uses a certain method to access the object [24–28].
Once all elements are safe and trusted, a safe state can be ensured.

3.3. Implementation of Smart-Production Configuration in the Manufacturing Plant

For a smart factory, the architecture system is extended from the IoT. This section
de-scribes the design architecture during the operation of the processed object between the
processes of data interaction in the production line. Therefore, the state of the processed
object must be monitored. This study provides specific electromechanical integration
experimental equipment and image-recognition algorithms to validate the experimental
results, as shown in Figure 3. First, the proposed architecture implements data collection,
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which depends on the PLC using the edge/sensing-computing method. Normally, the PLC
arranges one or more sensors and connects them to the hub management center. After
receiving the data, fog computing is directly uploaded to the cloud computing system
to register the ID, which is added to the whitelist of the connected management center.
During the operation of a production line, management is obtained based on the essence of
the IoT. According to the concept of IoT, the production line establishes edge computing
for basic layer sensor data collection, such as infrared or electromagnetic sensors, and is
used to control the production line scheduling signals. The fog-computing controller was
applied to the CNN to analyze the signals. Based on IoT cloud system, the signal can be
referred to as the basic requirement for the end-user needs [26–28].

The original production line can auto-change to a new production line when faulty
equipment is on standby waiting for maintenance work. Meanwhile, the sensing (edge)
computer is reconfigured with nearby production lines to reconstruct a new production
capacity. To achieve continuous operation, the production capacity should be maintained
until the production line breaks back to the system, as shown in the flowchart in Figure 3.
The configuration of the automated production line for IoT method is presented in Table 1.

Table 1. IoT method for production line rearrangement.

IoT Interaction for Smart Factory

1 begin
2 for i←1 to mComputer[1 . . . a]

3 find the connected mComputer[j] for
mComputer[i]

4 register ID
5 end for
6 Wait //wait for application
7 if RequestReceived == true)

8 if compare the mComputer with
whitelist[1 . . . a] == true)

9 if execute production work == true)

10

start the production manufacturing work and record subsequent data
to upload the data to the database directly, including:
Manufacture procedure optimization
Smart factory with face ID of CNN method
Edge-, fog-, and cloud-computing data communication

11 Else

12
Detect the whether the production status is running or break; if a break occurs, then arrange
other production line to continuous fabrication and upload the situation to the cloud
computer and record

13 end if
14 if Repair production can back to work == true); Run origin setting
15 end if
16 else

17 deny, wait for new production block to be
generated

18 end if
19 end if
20 end

Neural Algorithm Image-Recognition Application

A CNN is a feedforward neural network. Artificial neurons respond to some of the
surrounding units in the coverage area. It exhibits excellent performance in large-scale
image processing. The CNN is composed of one or more convolutional layers with the top
fully connected layer (corresponding to the classic neural network). It also includes the
associated weights and pooling layer, as shown in Figure 4. This structure allows CNNs
to use the 2D structure of the input data. Compared with other deep learning structures,
CNNs can provide better results in image and speech recognition. This model can also be
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trained using back-propagation algorithms. Thus, for other methods, feed-forward neural
networks and CNNs are necessary to consider certain parameters. The CNN yielded an
attractive deep-learning structure in this study. Some related structures are listed below.

Figure 4. The proposed architecture for CNN algorithm.

• Convolutional layer.

By using a small kernel, the entire image and the intermediate feature map can be
convolved. This step allows the kernel to learn the functions in the image. The convolutional
layer is a set of parallel feature maps that are composed of different sliding convolution
kernels on the input image and perform certain operations. In addition, an element-
corresponding product and summation operation at each sliding position are performed
between the convolution kernel and the input image, which sets the project information in
the receptive field to an element in the feature map.

• Pooling layer.

This layer typically follows one or several convolutional layers to reduce the size of
the feature map and the risk of overfitting. The pooling layer is another important concept
in CNNs, which is a nonlinear form of down sampling. There are many different forms of
nonlinear pooling functions, and max pooling is the most common. It divides the input
image into several rectangular regions and outputs the maximum value for each sub region.

• Fully connected layer.

The final connected layer uses one or several convolution and pooling layers, and the
2D feature maps are converted into 1D vectors for classification or other processes. After
several convolution and max-pooling layers, advanced reasoning in the neural network is
completed by the fully connected layers.

This is like a conventional non-convolutional artificial neural network, and the neu-
rons in the fully connected layer are connected to all activations in the previous layer.
Therefore, their activation could be calculated as an affine transformation. The result was
first calculated by multiplying it by a matrix. Subsequently, a bias offset was added to shift
the values.

• Total connection layer.

For our application concept, CNN (machine learning) is widely used as a common
image-recognition system. The image-recognition problem is much more difficult in video
analysis than in still images. CNNs are often used to solve such problems. There is also
natural language processing, for which CNNs are often used. The CNN model has been
proven to be able to effectively deal with various natural-language-processing problems,
such as semantic analysis, search result extraction, and sentence modelling.

• CNN algorithm.
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Image recognition is highly challenging in smart factories. A high recognition perfor-
mance is proposed, which is faced with the effects of changes in non-linear parameters,
such as changing illumination, posture, facial expressions, and occlusion. This study pro-
poses a four-layer convolutional neural network architecture. The CNN is proposed as a
solution to this problem which includes face and morphological recognition of production
artefacts of a smart factory. This study establishes an applicable method which has more
than 1000 image recognition problems. A partial connection was introduced between the
first two layers to ensure that different functions were learned during the training process.
The results of the proposed CNN method. The general method requires two stages to
perform convolution and subsampling, whereas the fusion method requires only one stage.

The artificial neural network training process was as follows. The artificial neural
network model is a multi-layer perceptron (MLP), in which a feedforward neural network
is used to map the input dataset to a set of appropriate outputs. MLP is characterized by the
LC2 layer of neurons (input layer, hidden layer L, and output layer), which has a non-linear
activation function at the hidden layer unit. To describe the non-linear relationship between
different impact factors and reflectivity, feedforward MLP is used for the impact factor (x)
into a single predicted value y. In the MLP, the in-put layer is composed of the 1D vector
of the region of interest in the original depth image and the authenticity image on which
they are based. The characteristic of the hidden layer is that the hidden neuron has an
integer linear unit function, and the output layer is composed of only one output neuron
(non-linear value y). The number of hidden neurons is determined by a simple method of
trial and error. The input variable vector x is mapped to the neurons in the hidden layer, as
shown below: {

hi = ReLU(Wi × x + bi), (i = 1)
hi = ReLU(Wi·hi−1 + bi), (i = 2, 3 . . . , L)

(3)

where hi is the output value of the i-th layer, L is the number of hidden layers, Wi is the
weight matrix between the previous layer i− 1 and the current layer i, and bi is the bias
parameter vector of the previous layer i − 1 and the current layer i. Additionally, the y
value represents the distance obtained from the depth image, which is also the output of
each sample, which is obtained from the linear combination of the hidden neuron vector hi,
as follows:

y = f (x; W) = hL(hL−1(. . . h2(h1(x; w1); w2); . . . ; wL−1);)wL (4)

The final cost function can be calculated as follows:

Loss =
1
n

n

∑
j=1

[
yj − ygt

j

]2
=

1
n

n

∑
j=1

[
f (xj; W

)
− ygt

j ]2 (5)

where loss function is a training set, validation set, or testing set, n is the number of samples,
yj is the output value of sample j, and ygt

j is the true value of sample j (ground truth). The
above formula shows the average error between the predicted value and the true value.
Average-Error (AE) is used to adjust the model.

AE =
√

Loss (6)

3.4. Smart Robot Control and Visual Recognition

This research is based on CNN theory. First, the MediaTek Company constructed
the Linkit-7697 dual-core chip as an IoT information integration device. They also built
a MediaTek Cloud Sandbox (MCS) as a cloud system, as shown in Figure 5. It is a cloud
data-service platform that allows users to connect to IoT. This device uses MCS to quickly
realize the prototype IoT product. Furthermore, the programming function database for
machine vision through OpenCV software was obtained, including the users of OpenCV
and Python/C++ to detect faces in the images. The Haar-based cascade classifier in
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OpenCV was used to realize facial recognition in the code. This is an effective object-
detection method. This method is a CNN algorithm in which the cascade function is
trained using numerous positive and negative images. Thus, the images can be detected.
OpenCV contains many retrained classifiers, such as faces, eyes, and smiles.

Figure 5. The neural network’s design and structure for motor control.

3.4.1. Robot Motor Control with FOPID

This study aimed to establish camera vision with a neural algorithm for image recogni-
tion, combined with the joint module of the robotic arm, to control the motor with a power
feedback method. This method included two sequential processes. First, the CNN was
used for image recognition to apply the output control of the signal. Second, it estimated
the external torque of each joint τ and used the feedback signal for the identification and
detection processes. In addition, an AI method was constructed to control the motor. The
position and speed control method was based on the detection results after deep learning.
To evaluate the performance of self-detection, each joint of the motor was regulated by
an external force. Two performance indicators were introduced to represent safety and
efficiency. The control signal was sent to the cloud system for valuable collection and
observation. The design and structure of the neural network used for motor control are
shown in Figure 5. Momentum-based observers were therefore widely used to estimate the
torque of the external joints (the joint refers to the motor signal being measured) using the
kinetic energy method. For an n degrees-of-freedom rigid-body, the dynamic equations are
as follows:

M(q)
..
q + C

(
q,

.
q
) .
q + g(q) = τm + τexternal (7)

where M(q) ∈ Rn×n is the inertia matrix, C
(
q,

.
q
) .
q ∈ Rn is the vector of Coriolis and

centripetal torque, and g(q) ∈ R is the gravitational vector, τm is the control torque, τexternal
is the external torque. The position control applied to the model is expressed as follows:

τm = M̂(q)
..
qr + Ĉ

(
q,

.
q
) .
qr + ĝ(q) + τre f erence (8)

The parameters of the M̂, Ĉ and ĝ are marked as nominal model,
.

qr =
.
q+Kp +KI

∫
edt

represents the reference trajectory, e = qd − q is the position error, and qd represents the
required trajectory, and τre f erence is the control input, which is defined as follows:

τre f erence = −
(

K +
1
r2

)(
.
e + Kpe + Ki

∫
edt
)

(9)

where r > 0, and K, Kp and Ki > 0 in the PID controller are symmetric gain matrices and
satisfy K2

p > 2Ki. The following observers are designed to evaluate the external torque
as follows:

τ̂external = L
(
−pe(t) + pe(0) +

∫ t

0

(
se(t)− τre f .

)
ds
)

(10)
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where pe = M̂(q)
.
er, se = −τre f erence + Ĉ

(
q,

.
q
) .
er and

.
er =

.
qr −

.
q, so the dynamic equation

of the observer is rewritten as

τ̂external = L
(
−τ̂external + τexternal)− L(M̃

..
q + C̃

.
q + g̃

)
(11)

Among them, M̃ = M− M̂, C̃ = C − Ĉ, ĝ = g− ĝ and τ̂external refers to the sum of
τexternal and τd. This is the recognition program constructed by the XML model, as shown
in Table 2. Then, the neural network as image recognition results can be applied to the
motor control of the robotic manipulator.

Table 2. Intelligent robot manipulator motor control method with object recognition for light-out
factory control.

Face and Color Detection by Artificial Intelligent Method

1 Input: Linear Velocity and Steering Angle:
2 x1, x2, x3, . . . ., xN . Rn × n
3 Control: Prediction of angle, torque, and direction: Y
4 Measure parameters: motor current i(A), voltage (V), angle, and torque τm
5 Given parameters: NN method W weight matrix and b bias vector
6 Parameter Initialization of M, C, g, τn
7 while t > 0 do
8 Calculating τexternal using Equation (7)
9 Calculating position τm using Equation (8)

10 Calculating FOPID trajectory using Equation (9)
11 Calculating external torque τ̂ external using Equation (10)
16 End
17 Output: motor=[current, voltage, torque, angle]
18 Y = Fully Connected to PLC controller for smart factory machine
19 Result: Prediction of current, voltage, and torque

This follows the design of a basic proportional-integral-derivative (PID) controller
that is used to perform the work piece clamping work of the motor on the production line.
This part can replace a manual configuration. At the same time, the visual monitoring of
a lights-out smart factory can greatly improve the efficiency and reduce the total cost of
the factory in terms of the workforce, and meet faster production delivery requirements.
Therefore, to load the image for face detection, it must be performed as before.

First, the image must be converted into a grey image. Face detection was performed us-
ing the detectMultiscale() function of the cascade classifier: in this case, face_cascade.detect
MultiScale(gray, 1.3, 5), where the scale factor (SF) is 1.3, and parameter 5 is the minNeigh-
bours parameter. Using the SF function before and after the scan process, the search for the
scale factor of the window can be done within two successive scans. The set parameter of
1.3 is expanded by a search window of 30%. In addition, for the minNeighbors function,
the minimum number of adjacent rectangles can detect the target. If the number of small
rectangles used to detect the target is less than that of min-Neighbors, it is excluded. After
this calculation, face shape detection was completed. All face data were found in the image
and stored in the system. A rectangular shape was drawn around the face. Thus, the
face-recognition function was successfully performed.

3.4.2. Robotic Arm Control for Edge Computing Industrial Sensing Intercept Point

The working field node of the production line is a key factor in IoT structure. To
observe the dynamic results, if the system detects the failure condition of the production
line, it will provide information to the user or third-party system of the service endpoint
to address production-line problems. Figure 6 illustrates the physical system used to
implement the industrial network. This is the main component of technology. The system
embeds the CNN model in a pre-set program. First, the physical sensing layer contains an
actual measurement intercept point that is continuously collected. Industrial equipment
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and systems are required. The software and hardware of the embedded system (MediaTek
7697 and Raspberry PI 4S) were developed externally. Therefore, the communication status
between the physical environment and the on-site network environment is determined.
Second, the fog layer contains the technical components required to accept the input
information of the physical layer, which executes and returns the analysis results. Finally,
the cloud layer of back-end users includes maintenance-related factories that need to deploy
and receive network information for each atomization layer.

Figure 6. The sensor extension to the IoT: (a) IoT, (b) cloud, (c) Smart-chip connect to cloud.

In this study, a gripping robot with a control process is used. It remotely collects
physical visual image data continuously day and night. This includes multi-sensor signal
collections uploaded through the cloud-embedded system that connects to a single-chip
component combined with IoT architecture platforms for signal interception and control
functions, as shown in Figure 6. At present, the LinkIt series of development boards are
aimed at IoT applications and mainly provide two series of development boards: LinkIt
Smart 7688 and 7697 Duo, which are used for higher-level IoT nodes or gateways.

This can be performed using Linux kits with high-level languages (Python/Java script).
The Linkit-7697 was positioned as a lighter node. For the application of the robot, rotation
motors and linear actuators with multi-sensing signal processing were constructed. It can be
shown that smart linear actuators and a wisdom factory robotic was built. The networking
architecture of IoT in the device and cloud is shown in Figure 7a,b. The components of the
cloud-embedded system are shown in Figure 7c. The experimental structure is shown as a
diagram of a robotic arm combined with visual images to control an AI motor. Based on
the above-mentioned CNN theory, facial images, objective displacement motion tracking,
and color discrimination are used to control the AI motor actions, as shown in Table 3. It is
an AI motor trend and control program based on the CNN theory.

Figure 7. The platform of a physical construction for IoT of the smart factory: (a) edge, fog, and
cloud controller entities; (b) gripper-type pneumatic power arm and four-dimensional robotic arm;
(c) power and controller architecture.
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Table 3. CNN recognition control robot AI motor.

Robot Motor Control by CNN Method

1 Import cascade calculator
2 Input identification image
3 Conversion image to grayscale
4 Detecting the faces
5 Detect image multi scale
6 Minimize image neighbor
7 Minimize image size
8 Plot the face position shape
9 for (x, y, w, h) in face

10 Plot rectangle shape for face
11 end
12 Results:
13 Showing normal windows size
14 Show up image
15 Export image to NN parameters
16 Control FOPID motor parameters
17 Waiting next instruction
18 Close windows

3.4.3. Four-Axis Robotic Arm

The application of a PLC-gripping lightweight robot with soft material to regulate a
suitable gripping force was designed, which can effectively avoid surface damage to the
production parts and protect the quality of the products. In this study, the entity diagram
of the system architecture is a human-machine interface, as shown in Figure 8. A module
experiment was developed for the controller. After upgrading the different module signals
to the control system, the experiment was continuously conducted to capture the object and
adjust the air pressure and gripping force. The visual entity-monitoring lens intercepted the
day and night images and uploaded them to the cloud server platform. The programmable
controller was expected to be able to formulate a variety of shapes and sizes of objects to
clamp for rapid production line manufacturing. Some important component interfaces are
as follows:

Figure 8. The Raspberry Pi circuit connected to AD signal structure; 4.5 Cloud high-end system.

• Soft-touch gripper design: To establish different parameter modules of the human–
machine interface, the controller parameters can be quickly adjusted.

• Gripping system design: The combination model includes a soft-touch gripper, PLC,
compressed gas, and industrial gripper robot.

• Drive control interface: Standard input-output communication terminals and fast
transmission program interface signal ports are applied.

• Remote visual image-monitoring lens: The visual image is sent to the cloud server
through the network platform to provide users with remote observations of the factory.
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3.5. Edge, Fog, and Cloud Computing Device
3.5.1. Fog System and Edge-Computing Integration

This study proposed a composition of the topology of a fog-computing embedded
system. This topology is based on embedded machine learning. This was used for the phys-
ical structure of the network to interactively realize embedded machine learning. Cloud
platform storage is suitable for different engineering applications, including established
prediction values of the equipment, system prediction results, and processing methods.

To establish production machine learning models, these models are distributed and
executed safely through fog nodes in the local network domain. In each fog node, its
identity and engineering applications are linked to the cloud platform in an uploaded
and synchronized manner to ensure new models and values. Once the machine-learning
model is changed, it can continuously track the actual intercept point value without relying
on external connections and signal services, particularly for user-operation messages
and reminders.

A. Raspberry PI application of fog system.

For the fog controller, choosing a single chip, such as an Arduino computer, to per-
form as the fog (middle) layer of the network is not suitable because it might limit the
performance of the power and storage of the computer. In this study, Raspberry PI 4 Model
B was used in the fog system. This device processor was a 1.5-GHz BCM2711 (quad-core
Cor-tex-A72), the storage memory capacity was increased to 4 GB, and it had Bluetooth
5.0, with four USB 2.0/3.0 interfaces, HDMI vision interfaces, and a power supply with
USB-C interface. These specifications enabled the portability of this device across the entire
supply chain of the factory. However, the original technical decision-making strategy may
have an impact on portability. Fortunately, cloudlets or microcomputer cluster methods
can also be used. It can be faster to solve engineering problems and special requirements
for a larger computer stream source are not then needed. This research uses a Raspberry PI
embedded system for video streaming. First, the test was carried out using a camera lens
and pictures/videos. Image streaming should then be performed to connect to internet ser-
vices. Finally, OpenCV was used to process the images and build a hardware development
platform. The basic image technology of this system is as follows:

• Image transformation: color space and basic image processing; color space (RGB, YUV,
HSV).

• Affine transformation includes translation, rotation, scaling, and cropping. Image-
processing methods include (a) blur, (b) erosion, and (c) dilation.

• Optimal edge path: Canny edge detection, Hough transform, and moment invariance
finish the contour.

• For image applications, except for the above-mentioned color recognition function, a
face-detection (Haar classifier) method was developed as a simulate-type lights-out
smart factory constructed with an application of the machine learning method. Based
on its image-recognition system, Raspberry PI was used with the fog system to create
a smart factory for this study.

B. Fog computing and node control.

A suitable wireless node controller needs to be developed that is used to intercept the
face recognition of the neural algorithm and the color recognition of the processed product
to detect product targets on the production line.

An algorithm, for example, for detecting a signal can be used to detect abnormalities in
a factory. The image detector is shown in Figure 8. The embedded system of the Raspberry
PI is defined as a fog-computing controller, and the general input and output of the node
are extended and connected as a relay to control the terminal node to transmit the status of
the control light. The output was linked to the PLC. The main purpose was to immediately
stop the operation of the production line until no dangerous elimination was expected, at
which point the production line could be restarted.
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3.5.2. Cloud High-End System

A high-level IoT platform can extract data from multiple types, such as application
procedures, sensors, and equipment. It conducts complexation analysis through connectors,
including assuming analysis procedures, and can provide more valuable data. This is
because the numerical value is used to improve the efficiency and reduce the cost of the
optimization design, as shown in Figure 9. This is a simple diagram of IoT architecture.
The foundation of the cloud system is mainly based on IoT chip development by MediaTek.
Meanwhile, MediaTek has established a cloud-data service platform, MCS, that can be
connected to different IoT devices. This is used in the MCS system to quickly realize IoT
prototype. Thus, each test of the prototype device provides multiple definitions of the
data channels.

Figure 9. Low-cost IoT architecture: (a) Cloud computing MediaTek Linkit-7697 structure,
(b) diagram of complete communication link.

Each test device had an independent device ID and device password (device key) to
provide external connections and ID functions. To connect the MCS server, the develop-
ment device communicates with the MCS server through HTTP Restful APIs and other
communication protocols. The MCS library was provided by Linkit-7697 Arduino BSP,
encapsulating these communication protocols into a simple and easy-to-use interface, as
shown in Figure 9. This allows Arduino developers to connect easily to MCS services.
The Arduino BSP of Linkit-7697 provides an MCS library for developers to implement
applications using MCS services. The MCS library encapsulates the operation and com-
munication between Linkit-7697 and the MCS server, including: (a) connecting to the
specified MCS server; (b) creating a data channel (except for the gamepad controller);
(c) specifying the data channel, and the data point is transmitted to the MCS server; (d) the
data point of the specified data channel is received from the MCS server; and (e) the current
communication protocol is supported by the library. The TCP and HTTP communication
links can be connected.

Based on the uncertain nonlinear characteristics of the robot parameters, a robot con-
troller is needed to adjust the motor and follow a predetermined trajectory. The algorithm
tuned the gain using the FOPID controller parameters. The robot manipulator was devel-
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oped to replace the traditional program of the designer’s expertise. Figure 10 shows the
control architecture of the manipulator. In addition, the controller gains need to be properly
optimized to achieve better performance. In this paper, the FOPID with a modified neural
network algorithm is proposed as a novel adaptive adjustment algorithm to optimize the
gain of the controller.

Figure 10. Neural network regulated the fractional order PID controller to feedback the signal of the
motor torque, and transmit the upload of each join datum to the IoT.

4. Results and Discussion

In this study, an IoT solution based on the establishment, installation, testing, and
implementation of experiments in the Robot and Motor Control Laboratory at the Asia
Eastern University of Science and Technology, Mechanical Engineering (AEUST-ME, Tai-
wan), was built. Related experiments to create a solution using IoT are proposed to monitor
the status of workpieces on the production line. As shown in Figure 11, AEUST proposed a
physical map of the electromechanical integration production line platform. The quality
of the product is improved through the relationship between the data of various types of
sensors and the color recognition of the image.

Figure 11. Physical visual image results of the cloud servo platform to remote and monitor:
(a) color-recognition image of the production object, (b) night monitoring image: black and white
image, (c) day monitoring image: color image.

In the first step of the initial construction, the original machine is based on the tra-
ditional PLC architecture, and its speed of operation, product color recognition, self-
inspection, and repair or learning mechanisms are lacking. Therefore, the establishment of
a new IoT in the signal of the existing network communication interception sensor is inte-
grated, which is unified for analogue/digital signal conversion. To avoid excessive surge
signals, the impact of the electronic circuit on the burning out of the electronic components
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is clear. Adding a rectifier and limit-function circuit for signal interception can avoid this
issue. Thus, the converted signal can be sent to the cloud network control system with
assured integrity. Furthermore, the construction and functionality of the PLC equipment
and machines are enhanced. A supervised machine learning mechanism was proposed.

This is a general supervised learning process used to generate a global model that
corresponds to the input objects and the expected output. Based on the case in this study,
the optimized production line transfer mode of similar processes has been solved in the
past, and new inference methods are sought to solve the best path of the current production
line. This is the process of the machine learning method used to solve current production
line problems. Figure 12 shows the face recognition results constructed by applying the
neural theory. The Raspberry PI system is detected by fog computing that outputs the
recognition signal, which includes the human wear mask and motion-tracking detection.
By synchronously uploading data to the cloud computing controller for calculation and
monitoring, the functions of factory population monitoring are achieved. During the
visualization process to repair a rejected product, pre-shipment inspection is necessary. The
system uses real-time location data and shipment urgency to track progress. It can repair
and reduce human costs after required additional delivery procedures. In the future, these
challenges will include image analysis of production-line workers and equipment during
the test and analysis of the relationship between these data and test log data. To use these
results, it is necessary to further reduce the scrap rate of finished products. In addition, it is
difficult to reduce indirect costs and extend the visualization plan to the entire supply chain
and between other factories. To create a solution using an IoT structure, both design and
experiments are proposed to monitor the status of workpieces on a smart factory platform.
As shown in Figure 13, we propose a physical map of the electromechanical integration
platform. The quality of the product is improved through the relationship between the
data of various types of fluxgate sensors, color recognition of the image, and acoustic and
vibration signals.

Figure 12. IoT PLC smart-factory-monitoring field platform: (a) physical layer sensing numerical
platform, (b) detected signal upload to cloud platform.

The converted signal can be sent to the cloud network control system with assured
integrity. Furthermore, the construction and functionality of PLC equipment and ma-chines
are enhanced. A supervised machine-learning mechanism was proposed. This is a general
supervised learning process used to generate a global model that corresponds to the input
objects and expected output, including the flux signal, color vision, and motor-moving
trajectory path.

Optimized PLC production line transfer processes have been previously solved, and
new inference methods have been sought. These methods can provide a better path for the
smart factory of a PLC production line. This is a process of the machine learning method
used to solve current PLC production line problems. Figure 14 shows the face recognition
results constructed by applying the neural theory. The Raspberry PI system is detected by
fog computing, which outputs a recognition signal. We achieved synchronous uploading
of the data to the cloud computing controller for the calculation and monitoring functions
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of factory population monitoring. In this study, the intelligent robot arm integrates the
neural network theory and FOPID controller to evaluate the operating efficiency of the
smart factory in terms of magnetic sensor signals, product image recognition, and motor
signal control, thereby reducing the total cost by at least 50% and measuring the operation
duration of each motor, as shown in Figure 15.

Figure 13. IoT PLC smart-factory-monitoring field in acoustic and vibration with Fog computing
platform: (a) acoustic signal and (b) vibration signal.

Figure 14. Robot motor control performance by using FOPID+NN algorithm: (a) motor operation
duration, (b) operation efficiency.

In this study, the data were collected in the laboratory for more than half a year
for numerical analysis and function adjustment. New research results in IoT and image
transmission have been realized, which can smoothly achieve higher production efficiency
and high quality in a shorter time. At the same time, the installation of the device has a
multifunctional and responsive man–machine-coordinated production system. Figure 15
shows the results of these studies. The lead-time for manufacturing was reduced by 50%.
In addition, the product can be visualized, and the elimination of defects helps to reduce
defective products by 73% in the production of workpieces, which reduces the total cost
of factory work, and enables a faster CNN method to improve the production delivery,
respectively. These improvements have helped reduce the production area and inventory
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by at least 50%. This research has some relative benefits: for example, it can reduce the
material storage space of upstream manufacturers. It can also use the excess space in the
factory for service, business, and production line research and development.

Figure 15. Statistics of benefits and results brought by the IoT in smart factories: (a) Product lead time,
including design, production, logistics and sales process, reduced time, (b) product manufacturing
process and assembly, its failed product components, and reduction result.

5. Conclusions

This research successfully implemented a low-cost small smart factory with CNN, IoT,
and a cloud servo-control experimental system. The core architecture is image recognition
technology and a neural network system, namely, machine learning for face recognition in
lights-out smart factories. The research results included the implementation of machine
learning rules in the production line fog-computing image-monitoring system to establish
the edge-computing sensing signal architecture and synchronously receive the edge- and
fog-computing device modules in the cloud system. We verified the image recognition
of the CNN and the robot motor signal control of the FOPID. This study proposes that
a CNN + FOPID method can improve the efficiency of the factory by more than 50%
compared with traditional manual operators. The low-cost, high-efficiency equipment of
the new method has substantial contribution and application potential.
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