Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,325)

Search Parameters:
Keywords = silver nanoparticles synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 57416 KiB  
Article
Green Synthesis and Characterization of Silver Nanoparticles Using Artemisia terrae-albae Extracts and Evaluation of Their Cytogenotoxic Effects
by Moldyr Dyusebaeva, Dmitriy Berillo, Zhansaya Yesbussinova, Nailya Ibragimova, Daniil Shepilov, Sandugash Sydykbayeva, Almagul Almabekova, Nurzhan Chinibayeva, Adewale Olufunsho Adeloye and Gulzat Berganayeva
Int. J. Mol. Sci. 2025, 26(15), 7499; https://doi.org/10.3390/ijms26157499 (registering DOI) - 3 Aug 2025
Abstract
The development of non-toxic silver nanoparticles (AgNPs) for medical and other diverse applications is steadily increasing. However, this study specifically aims to determine the cytotoxic effects of AgNPs synthesized via a green chemistry approach using aqueous-ethanol and ethyl acetate extracts of Artemisia terrae-albae [...] Read more.
The development of non-toxic silver nanoparticles (AgNPs) for medical and other diverse applications is steadily increasing. However, this study specifically aims to determine the cytotoxic effects of AgNPs synthesized via a green chemistry approach using aqueous-ethanol and ethyl acetate extracts of Artemisia terrae-albae. The photophysical, morphological, and size distribution characteristics of the synthesized AgNPs are analyzed using UV-Vis spectroscopy and transmission electron microscopy (TEM). A modified Allium cepa assay is employed to evaluate biological responses, including root growth, root number, and mitotic index. In this assay, the cell cycles of onion bulbs are synchronized and pre-incubated at 4 °C for 72 h prior to treatment. This study reveals that the AgNPs synthesized from the ethanol extract exhibit notable stability and higher cytotoxicity activity, with a root length of 0.6 ± 0.13 cm, root number of 16 ± 6.88, and mitotic index of 25.0 ± 2.6. These values are significantly more cytogenotoxic than those observed for the ethyl-acetate-derived nanoparticles, which show a root length of 0.8 ± 0.17 cm, root number of 18 ± 6.27, and mitotic index of 36 ± 3.6. These findings highlight the potential of green-synthesized AgNPs as effective cytotoxic agents, especially those obtained from ethanol extract, possibly due to a greater influence of the quantity of diverse phenolic compounds present in the complex mixtures than in the ethyl acetate extract, which otherwise enhanced their morphology, shape, and size. These, overall, contributed to the biological activity. Full article
(This article belongs to the Special Issue Latest Advances in Nanoparticles for Modern Biomedicine (2nd Edition))
Show Figures

Graphical abstract

16 pages, 2239 KiB  
Article
Synthesis of Silver Nanoparticles from Bitter Melon (Momordica charantia) Extracts and Their Antibacterial Effect
by Nanh Lovanh, Getahun Agga, Graciela Ruiz-Aguilar, John Loughrin and Karamat Sistani
Microorganisms 2025, 13(8), 1809; https://doi.org/10.3390/microorganisms13081809 (registering DOI) - 2 Aug 2025
Abstract
We utilized silver nanoparticles synthesized from bitter melon (Momordica charantia) extracts for testing against the common agricultural pathogen Escherichia coli. The synthesized nanoparticles were characterized and confirmed as silver nanoparticles by using ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and scanning [...] Read more.
We utilized silver nanoparticles synthesized from bitter melon (Momordica charantia) extracts for testing against the common agricultural pathogen Escherichia coli. The synthesized nanoparticles were characterized and confirmed as silver nanoparticles by using ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy analysis. The results show that AgNPs were effective against E. coli ATCC25922 strain. The AgNPs had an increased potency against the E. coli strain in optimum culture media compared to silver ions alone. AgNP-treated cultures achieved a kill percentage of 100% in less incubation time and at a lower dosage than those treated with silver ions alone. The powder form of the AgNPs also showed remarkable potency against E. coli in solution. Based on these findings, the current method is suitable for the industrial-scale production of AgNPs from a commonly available edible plant with known medicinal benefits in the fight against foodborne pathogens, including antibiotic-resistant strains. Full article
Show Figures

Figure 1

78 pages, 2585 KiB  
Review
Engineered Metal Nanoparticles: A Possible Small Solution to Big Problems Associated with Toxigenic Fungi and Mycotoxins
by Eva María Mateo, Fernando Mateo, Andrea Tarazona and Misericordia Jiménez
Toxins 2025, 17(8), 378; https://doi.org/10.3390/toxins17080378 - 30 Jul 2025
Viewed by 408
Abstract
Mycotoxins are secondary metabolites produced primarily by certain species of the genera Aspergillus, Fusarium, Penicillium, Alternaria, and Claviceps. Toxigenic fungi and mycotoxins are prevalent in staple foods, resulting in significant economic losses and detrimental impacts on public health [...] Read more.
Mycotoxins are secondary metabolites produced primarily by certain species of the genera Aspergillus, Fusarium, Penicillium, Alternaria, and Claviceps. Toxigenic fungi and mycotoxins are prevalent in staple foods, resulting in significant economic losses and detrimental impacts on public health and food safety. These fungi demonstrate remarkable adaptation to water and heat stress conditions associated with climate change, and the use of synthetic antifungals can lead to the selection of resistant strains. In this context, the development of novel strategies for their prevention and control of food is a priority objective. This review synthesizes the extant knowledge concerning the antifungal and anti-mycotoxin potential of the primary metal nanoparticles (silver, copper) and metal oxide nanoparticles (copper oxide and zinc oxide) studied in the literature. It also considers synthesis methods and the lack of consensus on technical definitions and regulations. Despite methodological gaps and the scarcity of publications analyzing the effect of these NPs on fungal growth and mycotoxin production simultaneously, it can be concluded that these NPs present high reactivity, stability, and the ability to combat these food risks. However, aspects related to their biosafety and consumer acceptance remain major challenges that must be addressed for their implementation in the food industry. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

25 pages, 14674 KiB  
Article
Eco-Friendly Silver Nanoparticles Synthesis Method Using Medicinal Plant Fungal Endophytes—Biological Activities and Molecular Docking Analyses
by Harish Chandra, Sagar Vishwakarma, Nilesh Makwana, Arun S. Kharat, Vijeta Chaudhry, Sumit Chand, Rajendra Prasad, Soban Prakash, Annapurna Katara, Archana Yadav, Manisha Nigam and Abhay Prakash Mishra
Biology 2025, 14(8), 950; https://doi.org/10.3390/biology14080950 - 28 Jul 2025
Viewed by 416
Abstract
The integration of nanotechnology and green synthesis strategies provides innovative solutions in biomedicine. This study focuses on the biofabrication of silver nanoparticles (AgNPs) using Corynespora smithii, an endophytic fungus isolated from Bergenia ciliata. The eco-friendly synthesis process employed fungal extracts as [...] Read more.
The integration of nanotechnology and green synthesis strategies provides innovative solutions in biomedicine. This study focuses on the biofabrication of silver nanoparticles (AgNPs) using Corynespora smithii, an endophytic fungus isolated from Bergenia ciliata. The eco-friendly synthesis process employed fungal extracts as reducing and stabilizing agents thereby minimizing the need for hazardous chemicals. The AgNPs demonstrated strong potent biological activities, showcasing significant antioxidant, antibacterial, and anticancer properties. The antibacterial efficacy was demonstrated against various Gram-positive and Gram-negative bacteria, while cytotoxicity on the A549 lung cancer cell line revealed an IC50 value of 10.46 µg/mL. A molecular docking analysis revealed interactions between the major bioactive compound, dimethylsulfoxonium formylmethylide, and the pathogenic proteins, Staphylococcus aureus and Salmonella typhi, displaying moderate binding affinities. Furthermore, the ADME analysis of dimethylsulfoxonium formylmethylide indicated favourable pharmacokinetic properties, including high gastrointestinal absorption, minimal lipophilicity, and low potential for drug–drug interactions, making it a promising candidate for oral drug formulations. These findings further support the compound’s suitability for biomedical applications. This research emphasizes the potential of C. smithii as a sustainable source for synthesizing bioactive nanoparticles, paving the way for their application in developing novel therapeutic agents. This study highlights the significance of harnessing endophytic fungi from medicinal plants for sustainable nanotechnology advancements. Full article
Show Figures

Graphical abstract

16 pages, 2045 KiB  
Article
The Antimicrobial Activity of Silver Nanoparticles Biosynthesized Using Cymbopogon citratus Against Multidrug-Resistant Bacteria Isolated from an Intensive Care Unit
by Bianca Picinin Gusso, Aline Rosa Almeida, Michael Ramos Nunes, Daniela Becker, Dachamir Hotza, Cleonice Gonçalves da Rosa, Vanessa Valgas dos Santos and Bruna Fernanda da Silva
Pharmaceuticals 2025, 18(8), 1120; https://doi.org/10.3390/ph18081120 - 27 Jul 2025
Viewed by 326
Abstract
Objective: This study aimed to evaluate the in vitro efficacy of silver nanoparticles (AgNPs) synthesized by bioreduction using lemongrass (Cymbopogon citratus) essential oil against multidrug-resistant (MDR) bacteria isolated from an Intensive Care Unit (ICU). Methods: The essential oil was extracted and [...] Read more.
Objective: This study aimed to evaluate the in vitro efficacy of silver nanoparticles (AgNPs) synthesized by bioreduction using lemongrass (Cymbopogon citratus) essential oil against multidrug-resistant (MDR) bacteria isolated from an Intensive Care Unit (ICU). Methods: The essential oil was extracted and characterized by gas chromatography–mass spectrometry (GC-MS). Antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and total phenolic content. AgNPs (3 mM and 6 mM silver nitrate) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. Bacterial isolates were obtained from ICU surfaces and personal protective equipment (PPE). Results: The essential oil presented citral A, citral B, and β-myrcene as major components (97.5% of identified compounds). AgNPs at 3 mM showed smaller size (87 nm), lower Polydispersity Index (0.14), and higher colloidal stability (−23 mV). The 6 mM formulation (147 nm; PDI 0.91; −10 mV) was more effective against a strain of Enterococcus spp. resistant to all antibiotics tested. FTIR analysis indicated the presence of O–H, C=O, and C–O groups involved in nanoparticle stabilization. Discussion: The higher antimicrobial efficacy of the 6 mM formulation was attributed to the greater availability of active AgNPs. Conclusions: The green synthesis of AgNPs using C. citratus essential oil proved effective against MDR bacteria and represents a sustainable and promising alternative for microbiological control in healthcare environments. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition)
Show Figures

Graphical abstract

33 pages, 2018 KiB  
Review
Biogenic Synthesis of Silver Nanoparticles and Their Diverse Biomedical Applications
by Xiaokun Jiang, Shamma Khan, Adam Dykes, Eugen Stulz and Xunli Zhang
Molecules 2025, 30(15), 3104; https://doi.org/10.3390/molecules30153104 - 24 Jul 2025
Viewed by 467
Abstract
Nanoparticles (NPs) synthesised through biogenic routes have emerged as a sustainable and innovative platform for biomedical applications such as antibacterial, anticancer, antiviral, anti-inflammatory, drug delivery, wound healing, and imaging diagnostics. Among these, silver nanoparticles (AgNPs) have attracted significant attention due to their unique [...] Read more.
Nanoparticles (NPs) synthesised through biogenic routes have emerged as a sustainable and innovative platform for biomedical applications such as antibacterial, anticancer, antiviral, anti-inflammatory, drug delivery, wound healing, and imaging diagnostics. Among these, silver nanoparticles (AgNPs) have attracted significant attention due to their unique physicochemical properties and therapeutic potential. This review examines the biogenic synthesis of AgNPs, focusing on microbial, plant-based, and biomolecule-assisted approaches. It highlights how reaction conditions, such as pH, temperature, and media composition, influence nanoparticle size, shape, and functionality. Particular emphasis is placed on microbial synthesis for its eco-friendly and scalable nature. The mechanisms of AgNP formation and their structural impact on biomedical performance are discussed. Key applications are examined including antimicrobial therapies, cancer treatment, drug delivery, and theranostics. Finally, the review addresses current challenges, such as reproducibility, scalability, morphological control, and biosafety, and outlines future directions for engineering AgNPs with tailored properties, paving the way for sustainable and effective next-generation biomedical solutions. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 2983 KiB  
Article
Chnoospora minima Polysaccharide-Mediated Green Synthesis of Silver Nanoparticles: Potent Anticancer and Antimicrobial Activities
by Lakshika Keerthirathna, Sachini Sigera, Milan Rathnayake, Arunoda Senarathne, Hiruni Udeshika, Chamali Kodikara, Narayana M. Sirimuthu, Kalpa W. Samarakoon, Mohamad Boudjelal, Rizwan Ali and Dinithi C. Peiris
Biology 2025, 14(7), 904; https://doi.org/10.3390/biology14070904 - 21 Jul 2025
Viewed by 456
Abstract
Marine algae offer environmentally friendly platforms for green nanoparticle synthesis. This study reports the biosynthesis of silver nanoparticles using polysaccharides isolated from the brown alga Chnoospora minima (PAgNPs) and evaluates their therapeutic potential. Fourier Transform Infrared Spectroscopy (FTIR) confirmed algal polysaccharide functional groups. [...] Read more.
Marine algae offer environmentally friendly platforms for green nanoparticle synthesis. This study reports the biosynthesis of silver nanoparticles using polysaccharides isolated from the brown alga Chnoospora minima (PAgNPs) and evaluates their therapeutic potential. Fourier Transform Infrared Spectroscopy (FTIR) confirmed algal polysaccharide functional groups. Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX) analysis characterized the nanoparticles as spherical (~84 nm average size), stable (zeta potential −18.5 mV), and containing elemental silver without nitrogen. The PAgNPs exhibited potent antioxidant activity (~100% DPPH scavenging) and significant antimicrobial efficacy, particularly against Staphylococcus aureus and Candida species. Crucially, PAgNPs displayed potent antiproliferative activity against human lung cancer cells (A549, IC50: 13.59 µg/mL). In contrast, toxicity to normal Vero cells was significantly lower (IC50: 300.2 µg/mL), demonstrating notable cancer cell selectivity (SI 22.1). Moderate activity was observed against MCF-7 breast cancer cells (IC50: 100.7 µg/mL). These results demonstrate that C. minima polysaccharide facilitates the synthesis of biocompatible AgNPs with promising antimicrobial and selective anticancer capabilities, highlighting their potential for further development as nanotherapeutics. Full article
Show Figures

Graphical abstract

31 pages, 4667 KiB  
Article
Harnessing Plant-Based Nanoparticles for Targeted Therapy: A Green Approach to Cancer and Bacterial Infections
by Mirela Claudia Rîmbu, Daniel Cord, Mihaela Savin, Alexandru Grigoroiu, Mirela Antonela Mihăilă, Mona Luciana Gălățanu, Viorel Ordeanu, Mariana Panțuroiu, Vasilica Țucureanu, Iuliana Mihalache, Oana Brîncoveanu, Adina Boldeiu, Veronica Anăstăsoaie, Carmen Elisabeta Manea, Roxana-Colette Sandulovici, Marinela Chirilă, Adina Turcu-Știolică, Emilia Amzoiu, Victor-Eduard Peteu, Cristiana Tănase, Bogdan Firtat and Carmen-Marinela Mihăilescuadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(14), 7022; https://doi.org/10.3390/ijms26147022 - 21 Jul 2025
Viewed by 476
Abstract
This study investigates the antioxidant, antimicrobial, and antitumor activities of Taraxacum officinale (Dandelion) and Artemisia annua (Sweet Wormwood) extracts, along with their role in the green synthesis of gold (AuNPs) and silver nanoparticles (AgNPs). Bioreduction was achieved using aqueous and ethanolic extracts (100 [...] Read more.
This study investigates the antioxidant, antimicrobial, and antitumor activities of Taraxacum officinale (Dandelion) and Artemisia annua (Sweet Wormwood) extracts, along with their role in the green synthesis of gold (AuNPs) and silver nanoparticles (AgNPs). Bioreduction was achieved using aqueous and ethanolic extracts (100 mg/mL), enabling solvent-dependent comparisons. Nanoparticles were characterized using ultraviolet–visible spectroscopy (UV–Vis), fluorescence spectroscopy, scanning electron microscopy (SEM), dynamic light scattering (DLS), high-resolution transmission electron microscopy (HRTEM), and zeta potential analysis. Each technique revealed complementary aspects of nanoparticle morphology, size, and stability, with UV–Vis indicating aggregation states and DLS confirming solvent-related size variation even at 3–5% ethanol. Gold nanoparticles synthesized from Dandelion showed strong antibacterial activity against Staphylococcus aureus, while silver nanoparticles from both plants were effective against Escherichia coli. Cytotoxicity assays indicated that silver nanoparticles obtained from ethanolic Dandelion extract containing 3% ethanol in aqueous solution (AgNPsEETOH3%-D) significantly reduced LoVo (p = 4.58 × 10−3) and MDA-MB-231 (p = 7.20 × 10−5) cell viability, with high selectivity indices (SI), suggesting low toxicity toward normal cells. Gold nanoparticles synthesized from aqueous Dandelion extract (AuNPsEaq-D) also showed favorable SI values (2.16 for LoVo and 8.41 for MDA-MB-231). Although some formulations demonstrated lower selectivity (SI < 1.5), the findings support the therapeutic potential of these biogenic nanoparticles. Further in vivo studies and pharmacokinetic evaluations are required to validate their clinical applicability. Full article
Show Figures

Figure 1

15 pages, 3095 KiB  
Article
Effect of Silver/Reduced Graphene Oxide@Titanium Dioxide (Ag/rGO@TiO2) Nanocomposites on the Mechanical Characteristics and Biocompatibility of Poly(Styrene-co-Methyl Methacrylate)-Based Bone Cement
by Mohan Raj Krishnan, Reem M. Alshabib and Edreese H. Alsharaeh
Polymers 2025, 17(14), 1970; https://doi.org/10.3390/polym17141970 - 18 Jul 2025
Viewed by 300
Abstract
This study reports the impact of a silver nanoparticles/reduced graphene oxide@titanium dioxide nanocomposite (Ag/rGO@TiO2) on the mechanical and biocompatibility properties of poly(styrene-co-methylmethacrylate)/poly methyl methacrylate (PS-PMMA/PMMA)-based bone cement. The chemical, structural, mechanical, and thermal characteristics of Ag/rGO@TiO2 nanocomposite-reinforced PS-PMMA bone cement [...] Read more.
This study reports the impact of a silver nanoparticles/reduced graphene oxide@titanium dioxide nanocomposite (Ag/rGO@TiO2) on the mechanical and biocompatibility properties of poly(styrene-co-methylmethacrylate)/poly methyl methacrylate (PS-PMMA/PMMA)-based bone cement. The chemical, structural, mechanical, and thermal characteristics of Ag/rGO@TiO2 nanocomposite-reinforced PS-PMMA bone cement ((Ag/rGO@TiO2)/(PS-PMMA)/PMMA) were evaluated using Fourier Transform Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), nano-indentation, and electron microscopy. FT-IR, XRD, and transmission electron microscopy results confirmed the successful synthesis of the nanocomposite and the nanocomposite-incorporated bone cement. The elastic modulus (E) and hardness (H) of the ((Ag/rGO@TiO2)/(PS-PMMA)/PMMA) bone cement were measured to be 5.09 GPa and 0.202 GPa, respectively, compared to the commercial counterparts, which exhibited E and H values of 1.7 GPa to 3.7 GPa and 0.174 GPa, respectively. Incorporating Ag/rGO@TiO2 nanocomposites significantly enhanced the thermal properties of the bone cement. Additionally, in vitro studies demonstrated that the bone cement was non-toxic to the MG63 cell line. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Figure 1

24 pages, 10648 KiB  
Article
Green-Synthesized Silver Nanoparticle-Loaded Antimicrobial Films: Preparation, Characterization, and Food Preservation
by Wenxi Yu, Qin Lei, Jingxian Jiang, Jianwei Yan, Xijian Yi, Juan Cheng, Siyu Ou, Wenjia Yin, Ziyan Li and Yuru Liao
Foods 2025, 14(14), 2509; https://doi.org/10.3390/foods14142509 - 17 Jul 2025
Viewed by 379
Abstract
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and [...] Read more.
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and concentration of AgNO3 were considered using a central composite design coupled with response surface methodology to obtain the optimum AgNPs (2 h, 75 °C, 2 mM). Analysis of substance concentration changes confirmed that the higher phenolic and flavonoid content in MRLE acted as reducing agents and stabilizers in AgNP synthesis, participating in the reaction rather than adsorbing to nanoparticles. TEM, XRD, and FTIR images revealed a spherical shape of the prepared AgNPs, with an average diameter of 8.23 ± 4.27 nm. The incorporation of AgNPs@MMT significantly enhanced the mechanical properties of the films, with the elongation at break and shear strength increasing by 65.19% and 52.10%, respectively, for the PAM2 sample. The films exhibited strong antimicrobial activity against both Escherichia coli (18.56 mm) and Staphylococcus aureus (20.73 mm). The films demonstrated effective food preservation capabilities, significantly reducing weight loss and extending the shelf life of packaged grapes and bananas. Molecular dynamics simulations reveal the diffusion behavior of AgNPs in different matrices, while the measured silver migration (0.25 ± 0.03 mg/kg) complied with EFSA regulations (10 mg/kg), confirming its food safety. These results demonstrate the film’s potential as an active packaging material for fruit preservation. Full article
Show Figures

Figure 1

32 pages, 2479 KiB  
Review
Fungal Biofilm: An Overview of the Latest Nano-Strategies
by Andrea Giammarino, Laura Verdolini, Giovanna Simonetti and Letizia Angiolella
Antibiotics 2025, 14(7), 718; https://doi.org/10.3390/antibiotics14070718 - 17 Jul 2025
Viewed by 533
Abstract
Background/Objectives: There is an increasing incidence of fungal infections in conjunction with the rise in resistance to medical treatment. Antimicrobial resistance is frequently associated with virulence factors such as adherence and the capacity of biofilm formation, which facilitates the evasion of the [...] Read more.
Background/Objectives: There is an increasing incidence of fungal infections in conjunction with the rise in resistance to medical treatment. Antimicrobial resistance is frequently associated with virulence factors such as adherence and the capacity of biofilm formation, which facilitates the evasion of the host immune response and resistance to drug action. Novel therapeutic strategies have been developed to overcome antimicrobial resistance, including the use of different type of nanomaterials: metallic (Au, Ag, Fe3O4 and ZnO), organic (e.g., chitosan, liposomes and lactic acid) or carbon-based (e.g., quantum dots, nanotubes and graphene) materials. The objective of this study was to evaluate the action of nanoparticles of different synthesis and with different coatings on fungi of medical interest. Methods: Literature research was conducted using PubMed and Google Scholar databases, and the following terms were employed in articles published up to June 2025: ‘nanoparticles’ in combination with ‘fungal biofilm’, ‘Candida biofilm’, ‘Aspergillus biofilm’, ‘Cryptococcus biofilm’, ‘Fusarium biofilm’ and ‘dermatophytes biofilm’. Results: The utilization of nanoparticles was found to exert a substantial impact on the reduction in fungal biofilm, despite the presence of substantial variability in minimum inhibitory concentration (MIC) values attributable to variations in nanoparticle type and the presence of capping agents. It was observed that the MIC values were lower for metallic nanoparticles, particularly silver, and for those synthesized with polylactic acid compared to the others. Conclusions: Despite the limited availability of data concerning the stability and biocompatibility of nanoparticles employed in the treatment of fungal biofilms, it can be posited that these results constitute a significant initial step. Full article
Show Figures

Figure 1

20 pages, 1893 KiB  
Article
Acute Dermatotoxicity of Green-Synthesized Silver Nanoparticles (AgNPs) in Zebrafish Epidermis
by Grace Emily Okuthe and Busiswa Siguba
Toxics 2025, 13(7), 592; https://doi.org/10.3390/toxics13070592 - 15 Jul 2025
Viewed by 296
Abstract
Silver nanoparticles (AgNPs), lauded for their unique antibacterial and physicochemical attributes, are proliferating across industrial sectors, raising concerns about their environmental fate, in aquatic systems. While “green” synthesis offers a sustainable production route with reduced chemical byproducts, the safety of these AgNPs for [...] Read more.
Silver nanoparticles (AgNPs), lauded for their unique antibacterial and physicochemical attributes, are proliferating across industrial sectors, raising concerns about their environmental fate, in aquatic systems. While “green” synthesis offers a sustainable production route with reduced chemical byproducts, the safety of these AgNPs for aquatic fauna remains uncertain due to nanoparticle-specific effects. Conversely, mast cells play crucial roles in fish immunity, orchestrating innate and adaptive immune responses by releasing diverse mediators and recognizing danger signals. Goblet cells are vital for mucosal immunity and engaging in immune surveillance, regulation, and microbiota interactions. The interplay between these two cell types is critical for maintaining mucosal homeostasis, is central to defending against fish diseases and is highly responsive to environmental cues. This study investigates the acute dermatotoxicity of environmentally relevant AgNP concentrations (0, 0.031, 0.250, and 5.000 μg/L) on zebrafish epidermis. A 96 h assay revealed a biphasic response: initial mucin hypersecretion at lower AgNP levels, suggesting an early stress response, followed by a concentration-dependent collapse of mucosal integrity at higher exposures, with mucus degradation and alarm cell depletion. A rapid and generalized increase in epidermal mucus production was observed across all AgNP exposure groups within two hours of exposure. Further mechanistic insights into AgNP-induced toxicity were revealed by concentration-dependent alterations in goblet cell dynamics. Lower AgNP concentrations initially led to an increase in both goblet cell number and size. However, at the highest concentration, this trend reversed, with a significant decrease in goblet cell numbers and size evident between 48 and 96 h post-exposure. The simultaneous presence of neutral and acidic mucins indicates a dynamic epidermal response suggesting a primary physical barrier function, with acidic mucins specifically upregulated early on to enhance mucus viscosity, trap AgNPs, and inhibit pathogen invasion, a clear defense mechanism. The subsequent reduction in mucin-producing cells at higher concentrations signifies a critical breakdown of this protective strategy, leaving the epidermis highly vulnerable to damage and secondary infections. These findings highlight the vulnerability of fish epidermal defenses to AgNP contamination, which can potentially compromise osmoregulation and increase susceptibility to threats. Further mechanistic research is crucial to understand AgNP-induced epithelial damage to guide sustainable nanotechnology. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

14 pages, 285 KiB  
Review
Is ‘Green’ Gold and Silver Nanoparticle Synthesis Environmentally Friendly?
by Lucas Reijnders
Nanomaterials 2025, 15(14), 1095; https://doi.org/10.3390/nano15141095 - 14 Jul 2025
Viewed by 292
Abstract
In scientific literature biosynthesis of gold and silver nanoparticles and synthesis of these nanoparticles using small organic molecules such as citrate have been called: ‘green’. It has also been often stated that ‘green’ synthesis of gold and silver nanoparticle is environment(ally) friendly or [...] Read more.
In scientific literature biosynthesis of gold and silver nanoparticles and synthesis of these nanoparticles using small organic molecules such as citrate have been called: ‘green’. It has also been often stated that ‘green’ synthesis of gold and silver nanoparticle is environment(ally) friendly or ecofriendly. The characterization environment(ally) friendly or ecofriendly is commonly comparative. The comparison is between ‘green’ and ‘chemical’ synthesis. The few available comparative life cycle assessments addressing the environmental impacts of ‘green synthesis’ of Ag and Au nanoparticles, if compared with ’chemical’ synthesis, strongly suggest that a ‘green’ synthesis should not be equated with being environment(ally) friendly or ecofriendly. The term ‘green’ for Au and Ag nanoparticles obtained by ‘green’ synthesis is a misnomer. There is a case for only using the terms ecofriendly or environment(ally) friendly for nanoparticle synthesis when there is a firm basis for such characterization in comprehensive comparative cradle-to-nanoparticle life cycle assessment, taking into account the uncertainties of outcomes. Full article
Show Figures

Graphical abstract

13 pages, 2832 KiB  
Article
Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications
by Thangamani Kaliraja, Reddi Mohan Naidu Kalla, Fatimah Ali M. Al-Zahrani, Surya Veerendra Prabhakar Vattikuti and Jaewoong Lee
Nanomaterials 2025, 15(14), 1087; https://doi.org/10.3390/nano15141087 - 14 Jul 2025
Viewed by 363
Abstract
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well [...] Read more.
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well as their further development at the nanoscale, is the most economical, environmentally friendly, and rapid synthesis process compared to physical and chemical processes. Ligustrum ovalifolium flower extract was used for the preparation of AgNPs. The synthesized AgNPs were examined by using UV–visible spectroscopy, XRD, SEM, and TEM analysis. It indicates that AgNPs were formed in good size. AgNPs were applied as a catalyst for the degradation of pollutants, such as methyl orange, Congo red, and methylene blue, which were degraded within 8–16 min. Additionally, the reduction of para-nitrophenol (PNP) to para-aminophenol (PAP) was achieved within 2 min. This work demonstrates a practical, reproducible, and efficient method for synthesizing cost-effective and stable AgNPs, which serve as active catalysts for the rapid degradation of hazardous organic dyes in an aqueous environment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

14 pages, 1180 KiB  
Article
Mycogenic Silver Nanoparticles: Promising Antimicrobials with Fungistatic Properties
by Aleksandra Tończyk, Katarzyna Niedziałkowska, Marta Nowak-Lange, Przemysław Bernat and Katarzyna Lisowska
Int. J. Mol. Sci. 2025, 26(14), 6639; https://doi.org/10.3390/ijms26146639 - 10 Jul 2025
Viewed by 293
Abstract
The antimicrobial activity of silver nanoparticles (AgNPs) makes them a valuable tool in various industries. Recently, biosynthesis has become the preferred method for nanoparticle synthesis, and among organisms that can be used as AgNP producers, filamentous fungi have attracted the greatest interest. In [...] Read more.
The antimicrobial activity of silver nanoparticles (AgNPs) makes them a valuable tool in various industries. Recently, biosynthesis has become the preferred method for nanoparticle synthesis, and among organisms that can be used as AgNP producers, filamentous fungi have attracted the greatest interest. In particular, wood decay fungi are considered promising candidates for AgNP biosynthesis. Biogenic AgNPs have been proven to have strong antibacterial potential and antifungal activity. The aim of this study was to evaluate the antifungal potential of AgNPs synthesized using the brown-rot decay fungus Gloeophyllum striatum DSM 9592 against four pathogenic fungal strains: Candida albicans, Malassezia furfur, Aspergillus flavus and Aspergillus fumigatus. Moreover, changes in the tested strains’ lipidome and cell membrane properties induced by the presence of AgNPs were investigated. The results revealed that the obtained AgNPs exerted fungistatic activity against all the strains tested. M. furfur, with a MIC value of 0.39 μg/mL obtained for all AgNP types, was found to be the most susceptible to the action of AgNPs. The lipidomic analysis revealed that the presence of AgNPs caused an increase in cell membrane fluidity in both A. flavus and C. albicans, and the mechanisms of response to AgNPs differed between the tested strains. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop