Is ‘Green’ Gold and Silver Nanoparticle Synthesis Environmentally Friendly?
Abstract
1. Introduction
2. Method
3. Is ‘Green’ Synthesis of Gold and Silver Nanoparticles Ecofriendly or Environment(ally) Friendly?
4. Conclusions and Future Directions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pati, P.; McGinnis, S.; Vikesland, P.J. Life cycle assessment of green nanoparticle synthesis methods. Environ. Eng. Sci. 2014, 31, 410–420. [Google Scholar] [CrossRef]
- Singh, P.; Kim, Y.; Zhang, D.; Yang, D. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Konwarh, R.; Bhattacharya, S.S.; Das, P.; Devi, K.S.P.; Maiti, T.K.; Mandal, M.; Karak, N. Non-hazardous anticancerous and antibacterial colloidal ‘green’ silver nanoparticles. Colloids Surf. B Biointerface 2013, 105, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Nakkala, J.R.; Mata, R.; Gupta, A.K.; Sadras, S.R. Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur. J. Med. Chem. 2014, 85, 784–794. [Google Scholar] [CrossRef]
- Mohammadlou, M.; Maghsoudi, H.; Jafarizadeh-Malmiri, M. A review of green silver nanoparticles based on plants: Synthesis, potential applications and ecofriendly approach. Int. Food Res. J. 2016, 23, 446–463. [Google Scholar]
- Bin-Jumah, M.N.; Al-Abdan, M.; Al-Basher, G.; Alarifi, S. Effects of green silver nanoparticles on apoptosis and oxidative stress in normal and cancerous human hepatic cells in vitro. Int. J. Nanomed. 2020, 15, 1537–1548. [Google Scholar] [CrossRef]
- Hamida, R.S.; Ali, M.A.; Goda, D.A.; Khalil, M.I.; Redhwan, A. Cytotoxic effect of green silver nanoparticles against ampicillin-resistant Klebsiella pneumoniae. RSC Adv. 2020, 10, 21136–21146. [Google Scholar] [CrossRef]
- Abd-Elsalam, K.A. (Ed.) Green Synthesis of Silver Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-12-324308-8. [Google Scholar]
- Ronavari, A.; Igaz, N.; Adamecz, D.I.; Szerencses, B.; Molnar, C.; Konya, Z.; Pfeiffer, I.; Kiricsi, M. Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules 2021, 26, 844. [Google Scholar] [CrossRef]
- Bapat, M.S.; Singh, H.; Shukla, S.K.; Singh, P.P.; Vo, D.-V.N.; Yadav, A.; Goyal, A.; Sharma, A.; Kumar, D. Evaluating green silver nanoparticles as prospective biopesticides: An environmental standpoint. Chemosphere 2022, 286, 131761. [Google Scholar] [CrossRef]
- Aman, S.; Kaur, N.; Mittal, D.; Sharma, D.; Shukla, K.; Singh, B.; Sharma, A.; Siwal, S.S.; Thakur, V.K.; Joshi, H.; et al. Novel biocompatible green silver nanoparticles efficiently eliminates multidrug resistant nosocomial pathogens and Mycobacterium species. Indian J. Microbiol. 2023, 63, 73–83. [Google Scholar] [CrossRef]
- Sawalha, H.; Ahmad, S.A.; Shaharuddin, N.A.; Sanusi, R.; Azzeme, M.; Naganthran, A.; De Silva, C.; Abiri, R. Antibacterial activity of green silver nanoparticles on the in vitro pathogen infected Eucalyptus pellita plant. Plant Cell Tissue Organ Cult. 2024, 156, 73. [Google Scholar] [CrossRef]
- Abizi-Moqadam, A.; Mortazavi-Derazkola, S.; Zare-Bidaki, M.; Osmani, F.; Alizadeh, L. In vitro investigation of antimicrobial and antioxidant properties of green silver nanoparticles synthesized using Ephedra gerardiana plant extract. Curr. Pharm. Biotechnol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Kaliappan, K.; Nagarajan, P.; Jayabalan, J.; Pushparaj, H.; Elumalai, S.; Paramanathan, B.; Manickam, V.; Jang, H.T.; Mani, G. Systematic antimicrobial, biofilm, free radical inhibition and Tyrosinase inhibition assessments of efficient green silver nanoparticles from the aqueous root extract of Cyphostemma adenocaule (CA). RSC Pharm. 2025, 2, 147–162. [Google Scholar] [CrossRef]
- Koohestani, H.; Nabilu, M.; Balooch, A. Biosynthesis and investigation of antibacterial properties of green silver nanoparticles using fruit extracts of Wild barberry, Medlar (Mespilus germanica L.) and Hawthorn. Food Chem. Adv. 2025, 6, 100850. [Google Scholar] [CrossRef]
- Pattnaik, C.; Mishra, R.; Lenka, A.; Kar, B.P.; Dash, S.K.; Sahoo, L.N.; Tripathy, S.K.; Nayak, G.C.; Sahoo, S. Exploring the versatility of carbohydrate capped green silver nanoparticles as multi-dimensional reagents for targeted applications. J. Mol. Struct. 2025, 1319, 139544. [Google Scholar] [CrossRef]
- Wu, F.; Zhu, J.; Li, G.; Wang, J.; Veeraraghavan, V.P.; Mohan, S.K.; Zhang, Q. Biologically synthesized green gold nanoparticles from Siberian ginseng induce growth-inhibitory effect on melanoma cells (B16). Artif. Cells Nanomed. Biotechnol. 2019, 47, 3297–3305. [Google Scholar] [CrossRef]
- Bin-Jumah, M.N.; Al-Abdan, M.; Al-Basher, G.; Alarifi, S. Molecular mechanism of cytotoxicity, genotoxicity and anticancer potential of green gold nanoparticles on human liver normal and cancerous cells. Dose-Response 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Mikhailova, E. Gold nanoparticles: Biosynthesis and potential of biomedical application. J. Funct. Biomater. 2021, 12, 70. [Google Scholar] [CrossRef]
- De Lima Oliveira, E.G.; Viera, S.A.; Da Silva, F.A.G., Jr.; Da Costa, M.M.; Gomes, A.S.L.; De Oliveira, H.P. Synergistic antibacterial activity of green gold nanoparticles and tannin-based derivatives. BioChem 2022, 2, 269–279. [Google Scholar] [CrossRef]
- Mitri, N.; Rahme, K.; Fracasso, G.; Ghanem, E. Upgrading gold to green nanoparticles: Applications in prostate cancer. Adv. Nat. Sci. Nanosci. Nanotechnol. 2022, 14, 023001. [Google Scholar] [CrossRef]
- Sargazi, S.; Laraib, U.; Er, S.; Rahdar, A.; Hassanisaadi, M.; Zafar, M.N.; Diez-Pascual, A.M.; Bilal, M. Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials 2022, 12, 1102. [Google Scholar] [CrossRef] [PubMed]
- Ariski, R.; Lee, K.K.; Kim, Y.; Lee, C. The impact of pH and temperature on the green gold nanoparticles preparation using Jeju Hallabong peel extract for biomedical applications. RSC Adv. 2024, 14, 14582–14592. [Google Scholar] [CrossRef] [PubMed]
- Kelleci, K. Potential of green gold nanoparticles synthesized from Punica granatum extract on Leishmaniasis and breast cancer treatment. ChemistrySelect 2025, 10, e202404327. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Gorup, L.F.; Longo, E.; Leite, E.R.; Camargo, E.R. Moderating effect of ammonia on particle growth and stability of quasi monodisperse silver nanoparticles synthesized by the Turkevich method. J. Colloid Interface Sci. 2011, 360, 355–358. [Google Scholar] [CrossRef]
- Pourzahedi, L.; Eckelman, M.J. Comparative life cycle assessment of silver nanoparticle synthesis routes. Environ. Sci. Nano 2015, 2, 361–369. [Google Scholar] [CrossRef]
- Bhattarai, B.; Zaker, Y.; Bigioni, T.P. Green synthesis of gold and silver nanoparticles: Challenges and opportunities. Curr. Opin. Green Sustain. Chem. 2018, 12, 91–100. [Google Scholar] [CrossRef]
- Memon, A.G.; Channa, I.A.; Shaikh, A.A.; Ahmad, J.; Soomro, A.F.; Giwa, A.S.; Baig, Z.T.; Mahdi, W.A.; Alshehri, S. Citrate-capped AuNP fabrication, characterization and comparison with commercially produced nanoparticles. Crystals 2022, 12, 1747. [Google Scholar] [CrossRef]
- Firdhouse, M.J.; Lalitha, P. Biogenic green synthesis of gold nanoparticles and their applications: A review of promising properties. Inorg. Chem. Commun. 2022, 143, 109800. [Google Scholar] [CrossRef]
- Tessema, B.; Gonfa, G.; Hailegiorgis, S.M.; Prabhu, S.V.; Manivannan, S. Synthesis and characterization of silver nanoparticles using reducing agents of bitter leaf (Vernonia amygdalina) extract and tri-sodium citrate. Nano-Struct. Nano-Objects 2023, 35, 100983. [Google Scholar] [CrossRef]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef] [PubMed]
- Piella, J.; Bastus, N.G.; Puntes, V. Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater. 2016, 28, 1066–1075. [Google Scholar] [CrossRef]
- Maruyama, T.; Fujimoto, Y.; Maekawa, T. Synthesis of gold nanoparticles using various amino acids. J. Colloid Interface Sci. 2015, 447, 254–257. [Google Scholar] [CrossRef] [PubMed]
- De Matos, R.A.; Courrol, L.C. Biocompatible silver nanoparticles prepared with amino acids and a green method. Amino Acids 2017, 49, 379–388. [Google Scholar] [CrossRef]
- Ghorbani, H.R. Green synthesis of gold nanoparticles. Orient. J. Chem. 2015, 31, 301–305. [Google Scholar] [CrossRef]
- Putri, G.E.; Gusti, F.R.; Sary, A.N.; Zainul, R. Synthesis of silver nanoparticles used chemical reduction method by glucose as reducing agent. J. Phys. Conf. Ser. 2019, 1317, 012027. [Google Scholar] [CrossRef]
- Li, D.; Liu, Z.; Yuan, Y.; Liu, Y.; Niu, F. Green synthesis of gallic acid-coated silver nanoparticles with high anti-microbial activity and low cytotoxicity to normal cells. Process Biochem. 2015, 50, 357–366. [Google Scholar] [CrossRef]
- Nunez, R.N.; Veglia, A.V.; Pacioni, N.L. Improving reproducibility between batches of silver nanoparticles using an experimental design approach. Microchem. J. 2018, 141, 110–117. [Google Scholar] [CrossRef]
- Cumberland, S.A.; Lead, J.R. Synthesis of NOM-capped silver nanoparticles: Size, morphology, stability, and NOM binding characteristics. ACS Sustain. Chem. Eng. 2013, 1, 817–825. [Google Scholar] [CrossRef]
- Pinheiro, L.D.S.M.; Sangoi, G.G.; Vizzotto, B.S.; Ruiz, Y.P.M.; Galembeck, A.; Pavoski, G.; Espinosa, D.C.R.; Machado, A.K.; da Silva, W.L. Silver nanoparticles from ascorbic acid: Biosynthesis, characterization, in vitro safety profile, antimicrobial activity and phytotoxicity. Mater. Chem. Phys. 2024, 325, 129715. [Google Scholar] [CrossRef]
- Carnovale, C.; Bryant, G.; Shukla, R.; Bansal, V. Identifying trends in gold nanoparticle toxicity and uptake: Size, shape, capping ligand, and biological corona. ACS Omega 2019, 4, 242–256. [Google Scholar] [CrossRef]
- Vukoje, I.; Lazic, V.; Sredojevic, D.; Fernandes, M.M.; Lanceros-Mendez, S.; Ahrenkiel, S.P.; Nedeljkovic, J.M. Influence of glucose, sucrose and dextran coatings on the stability and toxicity of silver nanoparticles. Int. J. Biol. Macromol. 2022, 194, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, J.; Nallamuthu, T. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl. Nanosci. 2015, 5, 603–607. [Google Scholar] [CrossRef]
- Banerjee, K.; Rai, V.R. A review on mycosynthesis, mechanism, and characterization of silver and gold nanoparticles. BioNanoScience 2018, 8, 17–31. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; El-Shabasy, R.M.; Khalifa, S.A.M.; Saeed, A.; Shah, A.; Shah, R.; Iftikhar, F.J.; Abdel-Daim, M.M.; Omri, A.; Hajrahand, N.H.; et al. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms and applications. RSC Adv. 2019, 9, 24539–24559. [Google Scholar] [CrossRef]
- Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organisations targeting anti-microbial activity. RSC Adv. 2019, 9, 2673–2702. [Google Scholar] [CrossRef]
- Tepale, N.; Fernandez-Escamilla, V.V.A.; Carreon-Alvarez, C.; Gonzalez-Coronel, V.J.; Luna-Flores, A.; Carreon-Alvarez, A.; Aguilar, J. Nanoengineering of gold nanoparticles: Green synthesis, characterization, and applications. Crystals 2019, 9, 612. [Google Scholar] [CrossRef]
- Bano, S.; Agrawal, M.; Pal, R. A review of green synthesis of silver nanoparticles through plant extract and its medicinal applications. J. Indian Chem. Soc. 2020, 97, 983–988. [Google Scholar]
- Costa, L.H.; Hemmer, J.V.; Wanderlind, E.H.; Gerlach, O.M.S.; Santos, A.L.H.; Tamanaha, M.S.; Bella-Cruz, A.; Correa, R.; Bazani, H.A.G.; Radetski, C.M.; et al. Green synthesis of gold nanoparticles obtained from algae Sargassum cymosum: Optimization, characterization and stability. BioNanoScience 2020, 10, 1049–1062. [Google Scholar] [CrossRef]
- Slepicka, P.; Kasalkova, N.S.; Siegel, J.; Kolska, Z.; Svorcik, V. Methods of gold and silver nanoparticles preparation. Materials 2020, 13, 1. [Google Scholar] [CrossRef]
- Kumar, J.A.; Krithiga, T.; Manigandan, S.; Sathish, S.; Renita, A.A.; Prakash, P.; Prasad, B.S.N.; Kumar, T.R.P.; Rajasimman, M.; Hosseini-Bandegharaei, A.; et al. A focus on green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach. J. Clean. Prod. 2021, 324, 129198. [Google Scholar] [CrossRef]
- Restrepo, C.V.; Villa, C.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environ. Nanotechnol. Monitor. Manag. 2021, 15, 100428. [Google Scholar] [CrossRef]
- Balestri, A.; Cardellini, J.; Berti, D. Gold and silver nanoparticles as tools to combat multidrug-resistant pathogens. Curr. Opin. Colloid Interface Sci. 2023, 66, 101710. [Google Scholar] [CrossRef]
- Salem, S.S.; Soliman, M.K.Y.; Azab, M.S.; Abu-Elghait, M. Optimization growth conditions of Fusarium pseudonygamai for mycosynthesized gold and silver nanoparticles using response surface methodology. BioNanoScience 2024, 14, 5420–5435. [Google Scholar] [CrossRef]
- Ahmed, B.; Tahir, M.B.; Sagir, M.; Hassan, M. Bio-inspired sustainable synthesis of silver nanoparticles as next generation of nanoproduct in antimicrobial and catalytic applications. Mater. Sci. Eng. B 2024, 301, 117165. [Google Scholar] [CrossRef]
- Vadakkan, K.; Rumjit, N.P.; Ngangbam, A.K.; Vijayanand, S.; Nedumpillil, N.K. Novel advancements in the sustainable green synthesis approach of silver nanoparticles (AgNPs) for antibacterial therapeutic applications. Coord. Chem. Rev. 2024, 499, 215528. [Google Scholar] [CrossRef]
- Ohja, S.; Khan, A.; Sahoo, C.R.; Mohapatra, R.K.; Tripathi, D.K.; Mukherjee, M.; Guldhe, A.; Nayak, M. A review on biosynthesis of nanoparticles via microalgal technology and their biomedical applications. BioNanoScience 2025, 15, 225. [Google Scholar] [CrossRef]
- Chugh, G.; Singh, B.R.; Adholeya, A.; Barrow, C.J. Role of proteins in the biosynthesis and functioning of metallic nanoparticles. Crit. Rev. Biotechnol. 2022, 42, 1045–1060. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Zhao, X.; Liu, G.; Pang, B.; Liao, N.; Li, H.; Shi, J. Diversity of fungus mediated synthesis of gold nanoparticles: Properties, mechanisms, challenges, and solving methods. Crit. Rev. Biotechnol. 2024, 44, 924–940. [Google Scholar] [CrossRef]
- Garcia-Quintero, A.; Palencia, M. A critical analysis of environmental sustainability metrics applied to green synthesis of nanomaterials and the assessment of environmental risks associated with the nanotechnology. Sci. Total Environ. 2021, 793, 148524. [Google Scholar] [CrossRef]
- Reijnders, L. Are magnesium alloys applied in cars sustainable and environmentally friendly? A Critical Review. Sustainability 2024, 16, 7799. [Google Scholar] [CrossRef]
- Behzad, F.; Naghib, S.M.; Kouhbanani, M.A.J.; Tabatabaei, S.N.; Zare, Y.; Rhee, K.Y. An overview of the plant mediated green synthesis of noble metal nanoparticles for antibacterial applications. J. Ind. Eng. Chem. 2021, 94, 92–104. [Google Scholar] [CrossRef]
- Hatipoglu, A. Rapid green synthesis of gold nanoparticles: Synthesis, characterization and antimicrobial activity. Progr. Nutr. 2021, 23, e2021242. [Google Scholar] [CrossRef]
- Kim, B.; Song, W.C.; Park, S.Y.; Park, G. Green synthesis of silver and gold nanoparticles via Sargassum serratifolium extract for catalytic reduction of organic dyes. Catalysts 2021, 11, 347. [Google Scholar] [CrossRef]
- Padalia, H.; Chanda, S. Antioxidant and anticancer activities of gold nanoparticles synthesized using aqueous leaf extract of Ziziphus nummularia. BioNanoScience 2021, 11, 281–294. [Google Scholar] [CrossRef]
- Shreyash, N.; Bajpai, S.; Khan, M.A.; Vijay, Y.; Tiwary, S.K.; Sonker, M. Green synthesis of nanoparticles and their biomedical applications: A review. ACS Appl. Nano Mater. 2021, 4, 11428–11457. [Google Scholar] [CrossRef]
- Ankudze, B.; Samlafo, V.B. Repeated use of Cyperus esculentus tubers, towards sustainable green synthesis of silver nanoparticles. BioNanoScience 2022, 12, 1150–1157. [Google Scholar] [CrossRef]
- Bergal, A.; Matar, G.H.; Andac, M. Olive and green tea leaf extracts mediated green synthesis of silver nanoparticles (AgNPs): Comparison investigation on characterization and antibacterial activity. BioNanoScience 2022, 12, 307–321. [Google Scholar] [CrossRef]
- Majoumouo, M.S.; Tincho, M.B.; Yimta, Y.D.; Adekiya, T.A.; Aruleba, R.T.; Ayawei, N.; Boyom, F.F.; Morris, T. Biosynthesis of silver nanoparticles using Bersama engleriana fruits extracts and their potential inhibitory effect on resistant bacteria. Crystals 2022, 12, 1010. [Google Scholar] [CrossRef]
- Mousavi-Khattat, M.; Nourbakhshan, H.; Afrazeh, S.; Aminorroaya, S.H.; Shakeran, Z. Donkey dung-mediated synthesis of silver nanoparticles and evaluation of their antibacterial, antifungal, anticancer, and DNA cleavage activities. BioNanoScience 2022, 12, 877–889. [Google Scholar] [CrossRef]
- Santhosh, P.B.; Genova, J.; Chamati, H. Green synthesis of gold nanoparticles: An eco-friendly approach. Chemistry 2022, 4, 345–369. [Google Scholar] [CrossRef]
- Abuzeid, H.M.; Julien, C.M.; Zhu, L.; Hashem, A.M. Green synthesis of nanoparticles and their energy storage, environmental, and biomedical applications. Crystals 2023, 13, 1576. [Google Scholar] [CrossRef]
- Dharmadhas, J.S.; Danaraj, J.; Packiavathy, I.A.S.V. Green fabrication of Nerium oleander-mediated silver nanomaterials: Synthesis structural, and stability analysis. BioNanoScience 2023, 13, 1177–1183. [Google Scholar] [CrossRef]
- Naser, P.T.N.; Thoppil, J.E. Synthesis, characterisation and antimicrobial efficacy of gold and silver nanoparticles from fruit extracts of Ficus drupacea Thunb. var. pubescens. BioNanoScience 2023, 13, 405–412. [Google Scholar] [CrossRef]
- Patil, T.; Gambhir, R.; Vibhute, A.; Tiwari, A.P. Gold nanoparticles, synthesis methods, functionalization and biological applications. J. Cluster Sci. 2023, 34, 705–725. [Google Scholar] [CrossRef]
- Rabbi, F.; Ahmad, I.; Nisar, A.; Rauf, A.; Alshammari, A.; Alharbi, M.; Suleria, H.A.R. Synthesis, characterization and antibacterial assessment (synergism) of silver nanoparticles prepared with stem bark extract of Sterculia diversifolia. Crystals 2023, 13, 480. [Google Scholar] [CrossRef]
- Rahman, H.; Rauf, A.; Khan, S.A.; Ahmad, Z.; Alshammari, A.; Alharbi, M.; Alam, A.; Suleria, H.A.R. Green synthesis of silver nanoparticles using Rhazya stricta Decne extracts and their anti-microbial and anti-oxidant activities. Crystals 2023, 13, 398. [Google Scholar] [CrossRef]
- Ritu; Verma, K.K.; Das, A.; Chandra, P. Phytochemical-based synthesis of silver nanoparticle: Mechanism and potential applications. BioNanoScience 2023, 13, 1359–1380. [Google Scholar] [CrossRef]
- Rizki, I.N.; Klaypradit, W.; Patmawati. Utilization of marine organisms for the green synthesis of silver and gold nanoparticles and their applications: A review. Sustain. Chem. Pharm. 2023, 31, 100888. [Google Scholar] [CrossRef]
- Arshad, F.; Naikoo, G.A.; Hassan, I.U.; Chava, S.R.; El-Tanani, M.; Aljabali, A.A.; Tambuwala, M.M. Bioinspired and green synthesis of silver nanoparticles for medical applications: A green perspective. Appl. Biochem. Biotechnol. 2024, 196, 3636–3669. [Google Scholar] [CrossRef]
- Asefian, S.; Ghavam, M. Green and environmentally friendly synthesis of silver nanoparticles with antibacterial properties from some medicinal plants. BMC Biotechnol. 2024, 24, 5. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, R.A.; de Assis, G.C.; de Oliveira, R.J.; Costa, J.A.S.; da Silva, C.M.P.; Iqbal, H.M.N.; Ferreira, L.F.R. Metal/metal oxide nanoparticles: A revolution in the biosynthesis and medical applications. Nano-Sruct. Nano-Objects 2024, 37, 101071. [Google Scholar] [CrossRef]
- Fakharzadeh, M.; Fazljoo, S.E. Biosynthesis of silver nanoparticles using Barley straw and Fumaria parviflora extract: Optimization of synthesis, evaluating of nanoparticles stability, antibacterial activities. BioNanoScience 2024, 14, 318–336. [Google Scholar] [CrossRef]
- Jamil, Y.M.S.; Al-Hakimi, A.N.; Al-Maydama, H.M.A.; Almahwiti, G.Y.; Qasem, A.; Saleh, S.M. Optimum green synthesis, characterization and antibacterial activity of silver nanoparticles prepared from an extract of Aloe fleurentinorum. Int. J. Chem. Eng. 2024, 2024, 2804165. [Google Scholar] [CrossRef]
- Khedr, W.E.; Shaheen, M.N.F.; Elmahdy, E.M.; El-Bendary, M.A.; Hamed, A.A.; Mohamedin, A.H. Silver and gold nanoparticles: Ecofriendly synthesis, antibiofilm, antiviral, and anticancer bioactivities. Prep. Biochem. Biotechnol. 2024, 54, 470–482. [Google Scholar] [CrossRef]
- Nejad, M.S.; Tarighi, S.; Taheri, P.; Darroudi, M. Extracellular biosynthesis silver nanoparticles Using Streptomyces spp. and evaluating its effects against important tomato pathogens and cancer cells. BioNanoScience 2024, 14, 4845–4863. [Google Scholar] [CrossRef]
- Paulo, E.A.; de Souza, C.M.; de Souza, N.A.A.; Quirino, J.N.; Furlaneto-Maia, L.; Furlaneto, M.C. One-pot and environmentally friendly biosynthesis of silver nanoparticles from Enterococcus durans: Activity against fluconazole-resistant pathogenic Candida tropicalis. BioNanoScience 2024, 14, 892–902. [Google Scholar] [CrossRef]
- Sakore, P.; Bhattacharya, S.; Belemkar, S.; Prajapati, B.G.; Elossaily, G.M. The theranostic potential of green nanotechnology-enabled gold nanoparticles in cancer: A paradigm shift on diagnosis and treatment approaches. Results Chem. 2024, 7, 101264. [Google Scholar] [CrossRef]
- Edo, G.I.; Mafe, A.N.; Ali, A.B.M.; Akpoghelie, P.O.; Yousif, E.; Isoje, E.F.; Igbuku, U.A.; Ismael, S.A.; Essaghah, A.E.A.; Ahmed, D.S.; et al. Green biosynthesis of nanoparticles using plant extracts, mechanisms, advances, challenges, and applications. BioNanoScience 2025, 15, 267. [Google Scholar] [CrossRef]
- Ghoreishi, S.M.; Mortazavi-Derazkola, S. Ecofriendly synthesis of gold nanoparticles via tangerine peel extract: Unveiling their multifaceted biological and catalytic potential. Heliyon 2025, 11, e40104. [Google Scholar] [CrossRef]
- Omole, R.K.; Agboluaje, E.O.; Torimiro, N.; Xiong, M.P.; Adeyemi, O.I.; George, R.C.; Daramola, O.B.; Muthupandian, S. Intracellular production of gold nanoparticles from Lysinibacillus fusiformis, their spectro-structural characterization and antibacterial potential on MDR bacteria of chronic wounds. BioNanoScience 2025, 15, 286. [Google Scholar] [CrossRef]
- Shahzadi, S.; Fatima, S.; ul ain, Q.; Shafiq, Z.; Janjua, M.R.S.A. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: A multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Adv. 2025, 15, 3858–3903. [Google Scholar] [CrossRef] [PubMed]
- Wehbe, N.; Mesmar, J.E.; El Kurdi, R.; Al-Sawalmih, A.; Badran, A.; Patra, D.; Baydoun, E. Halodule uninervis extract facilitates the green synthesis of gold nanoparticles with anticancer activity. Sci. Rep. 2025, 15, 4286. [Google Scholar] [CrossRef]
- Sivaraman, S.K.; Kumar, S.; Santhanam, V. Room temperature synthesis of gold nanoparticles—Size control by slow addition. Gold Bull. 2010, 43, 275–286. [Google Scholar] [CrossRef]
- Dong, P.V.; Ha, C.H.; Binh, L.T.; Kasbohm, J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int. Nano Lett. 2012, 2, 9. [Google Scholar] [CrossRef]
- Streszewski, B.; Jaworski, W.; Paclawski, K.; Csapó, E.; Dékány, I.; Fitzner, K. Gold nanoparticles formation in the aqueous system of gold (III)chloride complex ions and hydrazinesulfate–kinetic studies. Colloids Surf. A Physicochem. Eng. Asp. 2012, 397, 63–72. [Google Scholar] [CrossRef]
- Leng, W.; Pati, P.; Vikesland, P.J. Room temperature seed-mediated growth of gold nanoparticles: Mechanistic investigations and life cycle assessment. Environ. Sci. Nano 2015, 2, 440–453. [Google Scholar] [CrossRef]
- Mohammadlou, M.; Jafarizadeh-Malmiri, H.; Maghsoudi, H. Hydrothermal green synthesis of silver nanoparticles using Pelargonium/Geranium leaf extract and evaluation of their antifungal activity. Green Process. Synth. 2017, 6, 31–42. [Google Scholar] [CrossRef]
- Satpathi, S.; Patra, A.; Ahirwar, B.; Hussain, M.D. Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. Anders and their biological applications. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 121, 113830. [Google Scholar] [CrossRef]
- Singh, A.; Gaud, B.; Jaybhaye, S. Optimization of synthesis parameters of silver nanoparticles and its anti-microbial activity. Mater Sci. Energy Technol. 2020, 3, 232–236. [Google Scholar] [CrossRef]
- Srivastava, P.; Gunawan, C.; Soeriyadi, A.; Amal, R.; Hoehn, K.; Marquis, C. In vitro coronal protein signatures and biological impact of silver nanoparticles synthesized with different natural polymers as capping agents. Nanoscale Adv. 2021, 3, 4424–4439. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, S.; Dabirian, S.; Kariminejad, F.; Koohi, D.E.; Nemattalab, M.; Majidimoghadam, S.; Zamani, E.; Yousefbeyk, F. Process optimization for green synthesis of silver nanoparticles using Rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells. Sci. Rep. 2024, 14, 4130. [Google Scholar] [CrossRef] [PubMed]
- Saxena, J.; Sharma, P.K.; Sharma, M.M.; Singh, A. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. SpringerPlus 2016, 5, 861. [Google Scholar] [CrossRef]
- Eskandari-Nojedehi, M.; Jafarizadeh-Malmiri, H.; Rahbar-Shahrouzi, J. Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: Physico-chemical characteristics and antifungal activity studies. Green Process. Synth. 2018, 7, 38–47. [Google Scholar] [CrossRef]
- Alves, M.F.; Murray, P.G. Biological synthesis of Monodisperse uniform-size silver nanoparticles (AgNPs) by fungal cell-free extracts at elevated temperature and pH. J. Fungi 2022, 8, 439. [Google Scholar] [CrossRef]
- Aboelfetoh, E.F.; El-Shenody, R.A.; Ghobara, M.M. Ecofriendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata) reaction optimization, catalytic and antibacterial activities. Environ. Monit. Assess. 2017, 189, 349. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Fawzy, E.M.; Shehab, R.A.; Abdel-Salam, M.O.; Salah El Din, R.A.; Abd El Fatah, H.M. Production, characterization and cytotoxicity effects of silver nanoparticles from brown alga (Cystoseira myrica). J. Nanotechnol. 2022, 2022, 6469090. [Google Scholar] [CrossRef]
- Hamida, R.S.; AlMotwaa, S.M.; Al-Otaibi, W.A.; Alqhtani, H.A.; Ali, M.A.; Bin-Meferij, M.M. Apoptotic induction by biosynthesized gold nanoparticles using Phormidesmis communis strain AB_11_10 against osteosarcoma cancer. Biomedicines 2024, 12, 1570. [Google Scholar] [CrossRef]
- Dash, S.S.; Banerjee, J.; Samanta, S.; Giri, B.; Dash, S.K. Microwave-assisted fabrication of silver nanoparticles utilizing seed extract of Areca catechu with antioxidant potency and evaluation of antibacterial efficacy against multidrug resistant pathogenic bacterial strains. BioNanoScience 2022, 12, 210–227. [Google Scholar] [CrossRef]
- Gao, L.; Mei, S.; Ma, H.; Chen, X. Ultrasound-assisted green synthesis of gold nanoparticles using citrus peel extract and their enhanced anti-inflammatory activity. Ultrason. Sonochem. 2022, 83, 105940. [Google Scholar] [CrossRef]
- Bafana, A.; Kumar, S.V.; Temizel-Sekeryan, S.; Dahoumane, S.A.; Haselbach, L.; Jeffryes, C.S. Evaluating microwave-synthesized silver nanoparticles from silver nitrate with life cycle assessment techniques. Sci. Total Environ. 2018, 636, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Garcia, J.A.; Santoyo-Salzar, J.; Rangel-Cortes, E.; Goya, G.F.; Cardozo-Mata, V.; Pescador-Rojas, J.A. Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticles. Utrason. Sonochem. 2021, 70, 105274. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Naseem, I.; Bibi, S.; Ahmad, S.; Altaf, F.; Hafeez, M.; Almoneef, M.M.; Ahmad, K. Green synthesis of silver nanoparticles (Ag-NPs) using Debregeasia Salicifolia for biological applications. Materials 2023, 16, 129. [Google Scholar] [CrossRef]
- Priyadarshini, S.S.; Sethi, S.; Rout, S.; Mishra, P.M.; Pradhan, N. Green synthesis of microalgal biomass-silver nanoparticle composite showing antimicrobial activity and heterogenous catalysis of nitrophenol reduction. Biomass Convers. Biorefin. 2023, 13, 7783–7795. [Google Scholar] [CrossRef]
- Del Pilar Rodriguez-Rojas, M.; Bustos-Terrones, V.; Dias-Cardenas, M.Y.; Vasquez-Vélez, E.; Martinez, H. Life cycle assessment of green synthesis of TiO2 nanoparticles vs chemical synthesis. Sustainability 2024, 16, 7751. [Google Scholar] [CrossRef]
- Hadinoto, K.; Rao, N.R.H.; Astorga, J.B.; Zhou, R.; Biazik, J.; Zhang, T.; Masood, H.; Cullen, P.J.; Prescott, S.; Henderson, R.K.; et al. Hybrid plasma discharges for energy efficient production of plasma-activated water. Chem. Eng. J. 2023, 451, 138643. [Google Scholar] [CrossRef]
- Skiba, M.; Vorobyova, V. Green synthesis and characterization of silver nanoparticles using Prunus persica L. (peach pomace) with natural deep eutectic solvent and plasma liquid process. Chem. Pap. 2022, 76, 5789–5806. [Google Scholar] [CrossRef]
- Skiba, M.; Vorobyova, V. Green alginate-mediated synthesis of gold nanoparticles by liquid-phase plasma for biomedical and environmental applications: Antimicrobial activity and catalytic hydrogenation of organic dyes. Nanotechnol. Environ. Eng. 2025, 10, 36. [Google Scholar] [CrossRef]
- El-Batal, A.I.; Hashem, A.-A.M.; Abdelbaky, N.M. Gamma radiation mediated green synthesis of gold nanoparticles using fermented soybean-garlic aqueous extract and their antimicrobial activity. SpringerPlus 2013, 2, 129. [Google Scholar] [CrossRef]
- Kumar, R.M.; Rao, B.L.; Asha, S.; Narayana, B.; Byrappa, K.; Wang, Y.; Yao, D.; Sangappa, Y. Gamma radiation assisted biosynthesis of silver nanoparticles and their characterization. Adv. Mater. Lett. 2015, 6, 1088–1093. [Google Scholar] [CrossRef]
- Reijnders, L. Recycling of non-product outputs containing rare elements originating in nanomaterial synthesis. Environ. Sci. Nano 2024, 11, 684–687. [Google Scholar] [CrossRef]
- Sierra, M.J.; Herrera, A.P.; Ojeda, K.A. Life cycle analysis of the synthesis of eco-friendly metallic nanoparticles. Contemp. Eng. Sci. 2018, 11, 1227–1234. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; El-Sawah, A.A.; Elmansy, M.F.; Elmessiry, O.T.; El Saidy, M.E.; El-Sherbeny, M.K.; Sarhan, M.T.; Elhefnawy, A.A.; Dalal, S.R. Process optimization for gold nanoparticles biosynthesis by Streptomyces albogriseolus using artificial neural network, characterization and antitumor activities. Sci. Rep. 2024, 14, 4581. [Google Scholar] [CrossRef]
- Jiang, Y.; Salley, D.; Sharma, A.; Keenan, G.; Mullin, M.; Cronin, L. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials. Sci. Adv. 2022, 8, eabo2626. [Google Scholar] [CrossRef]
- Zhu, J.; Kan, C.; Wan, J.; Han, M.; Wang, G. High yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long chain PVP in an improved polyol process. J. Nanomater. 2011, 2011, 982547. [Google Scholar] [CrossRef]
- Desireddy, A.; Conn, B.E.; Guo, J.; Yoon, B.; Barnett, R.N.; Monahan, B.M.; Kirschbaum, K.; Griffith, W.P.; Whetten, R.L.; Landman, U.; et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402. [Google Scholar] [CrossRef]
- Kang, S.; Rahman, A.; McGinnis, S.; Vikesland, P. Toward environmentally favorable nano-sensing by production of reusable gold nanoparticles from gold nanowaste: Life cycle and nanocircular economy implications. Environ. Sci. Nano 2024, 11, 1499–1507. [Google Scholar] [CrossRef]
- Han, Z.; Teah, H.Y.; Hirasawa, I.; Kikuchi, Y. Prospective life cycle assessment of emerging silver nanoparticle synthesis methods: One pot polyethyleneimine chemical reduction and biological reductions. J. Clean. Prod. 2025, 494, 145012. [Google Scholar] [CrossRef]
- Patil, M.P.; Kang, M.; Niyonizigiye, I.; Singh, A.; Kim, J.; Seo, Y.B.; Kim, G. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluations of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloid Surf. B Bionterfaces 2019, 183, 110455. [Google Scholar] [CrossRef]
- Do, J.-M.; Hong, J.W.; Yoon, H.-S. Microalgae-mediated green synthesis of silver nanoparticles: A sustainable approach using extracellular polymeric substances from Graesiella emersonii KNUA204. Front. Micobiol. 2025, 16, 1589285. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, Z.; Hicks, A.L. Life cycle impact of titanium dioxide nanoparticle synthesis through physical, chemical, and biological routes. Environ. Sci. Technol. 2019, 53, 4078–4087. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Kang, S.; McGinnis, S.; Vikesland, P.J. Life cycle impact assessment of iron oxide (Fe3O4/γ-Fe2O3) nanoparticle synthesis routes. ACS Sustain. Chem. Eng. 2022, 10, 3155–3165. [Google Scholar] [CrossRef]
- Braud, L.; McDonnell, K.; Murphy, F. Environmental life cycle assessment of algae systems: Critical review of modelling approaches. Renew. Sustain. Energy Rev. 2023, 179, 113218. [Google Scholar] [CrossRef]
- Gurreri, L.; Rindina, M.C.; Luciano, A.; Falqui, L.; Fino, D.; Mancini, G. Microalgae production in an industrial scale photobioreactor plant: A comprehensive life cycle assessment. Sustain. Chem. Pharm. 2024, 139, 101598. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; MacDonald, D.W. Does organic farming reduce environmental impacts?—A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef]
- Bessou, C.; Basset-Mens, C.; Tran, T.; Benoist, A. LCA applied to perennial cropping systems: A review focussed on the farm stage. Int. J. Life Cycle Assess. 2013, 18, 340–361. [Google Scholar] [CrossRef]
- Hakeem, K.R. Crop Production and Global Environmental Issues; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Reynolds, T.W.; Waddington, S.R.; Anderson, C.L.; Chew, A.; True, Z.; Cullen, A. Environmental impacts and constraints associated with the production of major food crops in sub-Saharan Africa and South Asia. Food Secur. 2015, 7, 795–822. [Google Scholar] [CrossRef]
- Li, Y.; Wu, W.; Yang, J.; Cheng, K.; Smith, P.; Sun, J.; Xu, A.X.; Yue, Q.; Pan, G. Exploring the environmental impact of crop production in China using a comprehensive footprint approach. Sci. Total Environ. 2022, 824, 153898. [Google Scholar] [CrossRef]
- Martin, M.; Bengtsson, E.; Carotti, L.; Orrestig, K.; Orsini, F. Environmental assessment of greenhouse herb production: A case of longitudinal improvement options in Sweden. Resour. Conserv. Recycl. 2023, 193, 106948. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinman, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Viera, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe 2016; Report 2016–0104; RIVM: Bilthoven, The Netherlands, 2016; 191p. [Google Scholar]
- Huijbregts, M.A.J.; Hellweg, S.; Frischknecht, R.; Hendriks, H.W.M.; Hungerbühler, K.; Hendriks, A.J. Cumulative energy demand as predictor for the environmental burden of commodity production. Environ. Sci. Technol. 2010, 44, 2189–2196. [Google Scholar] [CrossRef]
- Nuss, P.; Eckelman, M.J. Life cycle assessment of metals: A scientific synthesis. PLoS ONE 2014, 9, e101298. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, F.; Pucciarelli, M.; Gavriilidis, A.; Dobson, P.; Lettieri, P. Anticipatory life cycle assessment of gold nanoparticles production: Comparison of milli-continuous flow and batch synthesis. J. Clean. Prod. 2020, 269, 122335. [Google Scholar] [CrossRef]
- Thonemann, N.; Schulte, A.; Maga, D. How to conduct prospective life cycle assessment for emerging technologies: A systematic review and methodological guidance. Sustainability 2020, 12, 1192. [Google Scholar] [CrossRef]
- Nizam, N.U.M.; Hanafiah, M.M.; Woon, K.S. A content review of life cycle assessment of nanomaterials: Current practices, challenges and future prospects. Nanomaterials 2021, 11, 3324. [Google Scholar] [CrossRef]
- Abegunde, S.M.; Afolayan, B.O.; Ilesanmi, T.M. Ensuring sustainable plant-assisted nanoparticles synthesis through process standardization and reproducibility: Challenges and future directions—A review. Sustain. Chem. One World 2024, 3, 100014. [Google Scholar] [CrossRef]
- Almatroudi, A. Unlocking the potential of silver nanoparticles: From synthesis to versatile bio applications. Pharmaceutics 2024, 16, 1232. [Google Scholar] [CrossRef]
- Kirubakaran, D.; Wahid, J.B.A.; Karmegam, N.; Jeevika, R.; Sellapillai, L.; Rajkumar, M.; Senthilkumar, K.J. A comprehensive review on the green synthesis of nanoparticles: Advancements in biomedical and environmental applications. Biomed. Mater. Devices 2025. [Google Scholar] [CrossRef]
- Huang, X.; Auffan, M.; Eckelman, M.J.; Elimelech, M.; Kim, J.; Rose, J.; Zuo, K.; Li, Q.; Alvarez, P.J.J. Trends, risks and opportunities in environmental nanotechnology. Nat. Rev. Earth Environ. 2024, 5, 572–587. [Google Scholar] [CrossRef]
- Fuentes, O.P.; Trujillo, D.M.; Sánchez, M.E.; Abrego-Perez, A.L.; Osma, J.F.; Cruz, J.C. Embracing sustainability in the industry: A study of environmental, economic and exergetic performances in large-scale production of magnetite nanoparticles. ACS Sustain. Chem. Eng. 2024, 12, 760–772. [Google Scholar] [CrossRef]
- Han, Z.; Teah, H.Y.; Kikuchi, Y. Global sensitivity analysis on system design parameters of silver nanoparticle production. Comput. Aid. Chem. Eng. 2024, 59, 1333–1338. [Google Scholar] [CrossRef]
Scope of Search | Words Used in Search | Number of Hits |
---|---|---|
Title | ‘green synthesis silver nanoparticles’ | 2184 |
Title | ‘green synthesis gold nanoparticles’. | 648 |
All fields | ‘ecofriendly green synthesis silver nanoparticles’ | 607 |
All fields | ‘environmentally friendly green synthesis silver nanoparticles’ | 1411 |
All fields | ‘ecofriendly green synthesis gold nanoparticles’ | 279 |
All fields | ‘environmentally friendly green synthesis gold nanoparticles’ | 690 |
Type of Synthesis | Nanoparticle | Product Yield (% of Ag or Au Input) | References |
---|---|---|---|
Biosynthesis | Au (mostly spherical) | 62.5–72.7% | [111,124] |
‘Chemical’ synthesis | Au (various shapes) | Up to 95% | [125] |
Citrate-based synthesis, with traces tannins | Au (quasi-spherical) | >90% | [33] |
Biosynthesis | Ag (roughly spherical) | 53.3% | [103] |
‘Chemical’ synthesis | Ag (crystalline nanoparticles, nanowires) | >95%, 99% | [126,127] |
Study | Environmental Impact Categories | Nanoparticles and Scale |
---|---|---|
Pati et al. [1] | Cumulative Energy Demand Global Warming Potential Metal Depletion Potential Agricultural Land Occupation Fresh Water Ecotoxicity | Gold nanoparticles, laboratory-scale |
Pourzahedi and Eckelman [27] | Global Warming Potential Ozone Depletion Potential Oxidizing Smog Formation Respiratory Effects Acidification Human Toxicity Ecotoxicity | Silver nanoparticles, laboratory-scale |
Sierra et al. [123] | Abiotic depletion Global Warming Ozone layer Depletion Human Toxicity Fresh Water Toxicity Terrestrial Ecotoxicity Photochemical Oxidation Acidification Eutrophication | Sliver nanoparticles, laboratory-scale |
Han et al. [129] | Fossil fuel extraction Ore extraction Water consumption Agricultural land occupation Global warming Ozone layer depletion Ionizing radiation Fresh water eutrophication Fresh water ecotoxicity Human carcinogenicity Non-carcinogenic human toxicity Marine eutrophication Marine ecotoxicity Particulate matter formation Photochemical oxidant formation Terrestrial eutrophication Terrestrial ecotoxicity | Silver nanoparticles, prospective industrial scale and laboratory-scale |
Study | Chemical Reductants | Small Organic Molecules (‘Green’) | Organism-Derived Reductants and Organisms (‘Green’) |
---|---|---|---|
Pati et al. [1] | Sodium borohydride Hydrazine | Citrate Vitamin B D-glucose | C. alba extract C. camphora Cinnamon Coriander Cypress leaf extract Ginseng Grape pomace Mushroom extract Soybean seed extract Sugarbeet pulp |
Pourzahedi and Eckelman [27] | Sodium borohydride Ethylene glycol | Citrate | Soluble Starch |
Sierra et al. [123] | Sodium borohydride | Plant extract | |
Han et al. [129] | Polyethyleneimine | Plant extract from Annona glabra Rhodococcus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reijnders, L. Is ‘Green’ Gold and Silver Nanoparticle Synthesis Environmentally Friendly? Nanomaterials 2025, 15, 1095. https://doi.org/10.3390/nano15141095
Reijnders L. Is ‘Green’ Gold and Silver Nanoparticle Synthesis Environmentally Friendly? Nanomaterials. 2025; 15(14):1095. https://doi.org/10.3390/nano15141095
Chicago/Turabian StyleReijnders, Lucas. 2025. "Is ‘Green’ Gold and Silver Nanoparticle Synthesis Environmentally Friendly?" Nanomaterials 15, no. 14: 1095. https://doi.org/10.3390/nano15141095
APA StyleReijnders, L. (2025). Is ‘Green’ Gold and Silver Nanoparticle Synthesis Environmentally Friendly? Nanomaterials, 15(14), 1095. https://doi.org/10.3390/nano15141095