Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (287)

Search Parameters:
Keywords = silicon-rich

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2036 KiB  
Article
Aluminum Extractions by the Alkali Method Directly from Alkali-Acid (NaOH-HCl) Chemical Deashing of Coals
by Lijun Zhao
Materials 2025, 18(15), 3661; https://doi.org/10.3390/ma18153661 (registering DOI) - 4 Aug 2025
Abstract
An advanced alkali-acid (NaOH-HCl) chemical method was used to deash aluminum-rich coals (ARCs) with a high ash content of 27.47 wt% to achieve a low ash content of 0.46 wt%. In the deashing process, aluminum in the coal ashes was dissolved in both [...] Read more.
An advanced alkali-acid (NaOH-HCl) chemical method was used to deash aluminum-rich coals (ARCs) with a high ash content of 27.47 wt% to achieve a low ash content of 0.46 wt%. In the deashing process, aluminum in the coal ashes was dissolved in both alkali solutions and acid solutions. The deashing alkali solutions with dissolved coal ashes were regenerated by adding CaO, and the resulting precipitates were added with sodium bicarbonate for aluminum extraction. High temperatures increased aluminum extraction, and excessive sodium bicarbonate addition decreased aluminum extraction. The deashing acid solutions were concentrated by evaporation, and silica gels formed during the process. The obtained mixtures were calcinated at 350 °C for the decomposition of aluminum chlorides, and soaked with water at 60 °C to remove the soluble chlorides. For the insoluble oxides after soaking, diluted alkali solutions were used to extract the aluminum at 90 °C, and aluminum extraction failed due to the formation of albite in the presence of sodium, aluminum and silicon elements as proved by XRD and SEM/EDS. When silica gels were separated by pressure filtering, aluminum extraction greatly increased. Aluminum extractions were accordingly made in the form of sodium aluminate from the deashing solutions of coals, which could be advantageous for sandy alumina production. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

27 pages, 4169 KiB  
Article
Biostimulatory Effects of Foliar Application of Silicon and Sargassum muticum Extracts on Sesame Under Drought Stress Conditions
by Soukaina Lahmaoui, Rabaa Hidri, Hamid Msaad, Omar Farssi, Nadia Lamsaadi, Ahmed El Moukhtari, Walid Zorrig and Mohamed Farissi
Plants 2025, 14(15), 2358; https://doi.org/10.3390/plants14152358 - 31 Jul 2025
Viewed by 366
Abstract
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications [...] Read more.
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications of silicon (Si), Sargassum muticum (Yendo) Fensholt extracts (SWE), and their combination to enhance drought tolerance and mitigate stress-induced damage in sesame. Plants were grown under well-watered conditions (80% field capacity, FC) versus 40% FC (drought conditions) and were treated with foliar applications of 1 mM Si, 10% SWE, or both. The results showed that the majority of the tested parameters were significantly (p < 0.05) lowered by drought stress. However, the combined application of Si and SWE significantly (p < 0.05) enhanced plant performance under drought stress, leading to improved growth, biomass accumulation, water status, and physiological traits. Gas exchange, photosynthetic pigment content, and photosystem activity (PSI and PSII) all increased significantly when SWE were given alone; PSII was more significantly affected. In contrast, Si alone had a more pronounced impact on PSI activity. These findings suggest that Si and SWE, applied individually or in combination, can effectively alleviate drought stress’s negative impact on sesame, supporting their use as promising biostimulants for enhancing drought tolerance. Full article
(This article belongs to the Special Issue The Role of Exogenous Silicon in Plant Response to Abiotic Stress)
Show Figures

Figure 1

21 pages, 5017 KiB  
Article
Effects of Phase Structure Regulation on Properties of Hydroxyl-Terminated Polyphenylpropylsiloxane-Modified Epoxy Resin
by Yundong Ji, Jun Pan, Chengxin Xu and Dongfeng Cao
Polymers 2025, 17(15), 2099; https://doi.org/10.3390/polym17152099 - 30 Jul 2025
Viewed by 180
Abstract
4,4’-Methylenebis(N,N-diglycidylaniline) (AG80), as a high-performance thermosetting material, holds significant application value due to the enhancement of its strength, toughness, and thermal stability. However, conventional toughening methods often lead to a decrease in material strength, limiting their application. Modification of AG80 epoxy resin was [...] Read more.
4,4’-Methylenebis(N,N-diglycidylaniline) (AG80), as a high-performance thermosetting material, holds significant application value due to the enhancement of its strength, toughness, and thermal stability. However, conventional toughening methods often lead to a decrease in material strength, limiting their application. Modification of AG80 epoxy resin was performed using hydroxy-terminated polyphenylpropylsiloxane (Z-6018) and a self-synthesized epoxy compatibilizer (P/E30) to regulate the phase structure of the modified resin, achieving a synergistic enhancement in both strength and toughness. The modified resin was characterized by Fourier transform infrared analysis (FTIR), proton nuclear magnetic resonance (1H NMR) spectroscopy, silicon-29 nuclear magnetic resonance (29Si NMR) spectroscopy, and epoxy value titration. It was found that the phase structure of the modified resin significantly affects mechanical properties. Thus, P/E30 was introduced to regulate the phase structure, achieving enhanced toughness and strength. At 20 wt.% P/E30 addition, the tensile strength, impact strength, and fracture toughness increased by 50.89%, 454.79%, and 152.43%, respectively, compared to AG80. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses indicate that P/E30 regulates the silicon-rich spherical phase and interfacial compatibility, establishing a bicontinuous structure within the spherical phase, which is crucial for excellent mechanical properties. Additionally, the introduction of Z-6018 enhances the thermal stability of the resin. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

19 pages, 3671 KiB  
Article
Sustainable Benzoxazine Copolymers with Enhanced Thermal Stability, Flame Resistance, and Dielectric Tunability
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(15), 2092; https://doi.org/10.3390/polym17152092 - 30 Jul 2025
Viewed by 275
Abstract
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both [...] Read more.
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both were synthesized using a simple Mannich-type reaction and verified through FT-IR and 1H-NMR spectroscopy. By blending these monomers in different ratios, copolymers with adjustable thermal, dielectric, and surface characteristics were produced. Thermal analysis showed that the materials had broad processing windows and cured effectively, while thermogravimetric testing confirmed excellent heat resistance—especially in AF-rich blends, which left behind more char. The structural changes obtained during curing process were monitored using FT-IR, and XPS verified the presence of key elements like carbon, oxygen, nitrogen, and silicon. SEM imaging revealed that AB-based materials had smoother surfaces, while AF-based ones were rougher; the copolymers fell in between. Dielectric testing showed that increasing AF content raised both permittivity and loss, and contact angle measurements confirmed that surfaces ranged from water-repellent (AB) to water-attracting (AF). Overall, these biopolymers (AB/AF copolymers) synthesized from arbutin combine environmental sustainability with customizability, making them strong candidates for use in electronics, protective coatings, and flame-resistant composite materials. Full article
Show Figures

Figure 1

24 pages, 4347 KiB  
Article
Diatomaceous Earth Supplementation as a Bioavailable Silicon Source Modulates Postprandial Lipid Metabolism in Healthy Female Rats
by Rocío Redondo-Castillejo, Marina Hernández-Martín, Jousef Ángel Issa-García, Aránzazu Bocanegra, Alba Garcimartín, Adrián Macho-González, Sara Bastida, Francisco J. Sánchez-Muniz, Juana Benedí and M. Elvira López-Oliva
Nutrients 2025, 17(15), 2452; https://doi.org/10.3390/nu17152452 - 28 Jul 2025
Viewed by 289
Abstract
Background/Objectives: Diatomaceous earth (DE), a natural substance rich in amorphous silica and recognized as a food additive, is gaining attention as a dietary silicon supplement. However, its bioavailability and impact on lipid digestion and absorption remain poorly characterized. This study aimed to investigate [...] Read more.
Background/Objectives: Diatomaceous earth (DE), a natural substance rich in amorphous silica and recognized as a food additive, is gaining attention as a dietary silicon supplement. However, its bioavailability and impact on lipid digestion and absorption remain poorly characterized. This study aimed to investigate silicon bioavailability after short-term DE supplementation and its effects on postprandial glycemia and triglyceridemia, the expression of lipid metabolism-related proteins, and the modulation of the intestinal mucosal barrier. Methods: Female Wistar rats received daily oral supplementation of DE (equivalent to 2 or 4 mg silicon/kg body weight) for one week. Silicon digestibility, excretion, and hepatic accumulation were quantified. Postprandial glycemia and triglyceridemia were monitored. Lipid profile was analyzed by HPSEC in gastric and intestinal contents. Jejunal morphology and mucin-secreting cells were assessed histologically. Lipid metabolism markers were evaluated by immunohistochemistry and Western blot in both intestinal and hepatic tissues. Results: DE supplementation enhanced silicon absorption and increased hepatic levels. Fecal output and moisture content were also elevated, especially at the higher dose. DE significantly reduced postprandial triglyceridemia and consequently increased luminal triglyceride retention. These changes were associated with decreased jejunal levels of IFABP, ACAT2, and MTP, as well as reduced hepatic levels of MTP and LDLr, alongside increased levels of ABCG5/G8 and LXRα/β, indicating a partial blockage of lipid absorption and enhanced cholesterol efflux. The effects on the intestinal barrier were evidenced by villi shortening and an increase in mucin-producing cells. Conclusion: Food-grade DE is a bioavailable source of silicon with hypolipidemic potential, mainly by reducing intestinal lipid absorption. This is supported by lower postprandial triglycerides, increased luminal lipid retention, and decreased expression of lipid transport proteins. The study in healthy female rats underscores the importance of sex-specific responses and supports DE as a dietary strategy to improve lipid metabolism. Full article
(This article belongs to the Section Lipids)
Show Figures

Graphical abstract

19 pages, 2238 KiB  
Article
Productivity, Biodiversity and Forage Value of Meadow Sward Depending on Management Intensity and Silicon Application
by Barbara Borawska-Jarmułowicz and Grażyna Mastalerczuk
Sustainability 2025, 17(15), 6717; https://doi.org/10.3390/su17156717 - 24 Jul 2025
Viewed by 208
Abstract
The efficiency and quality of meadows is affected by, among others, the botanical composition of the sward and the frequency of cutting. The research was conducted in 2023–2024 on the experiment established in 2014 on arable land, where 3-species mixtures of grasses and [...] Read more.
The efficiency and quality of meadows is affected by, among others, the botanical composition of the sward and the frequency of cutting. The research was conducted in 2023–2024 on the experiment established in 2014 on arable land, where 3-species mixtures of grasses and legumes were sown. During the next three years, the sward was fertilized and cut 3-times per year, and then, for five years, was mown twice a year, without fertilization. On the sward formed at that time, in 2023, an experiment was established to evaluate how management intensity (2- or 3-cuts and rate of fertilizer) and silicon application (Si or 0Si) affect botanical composition, yield, and nutrient content in perennial meadow swards under variable precipitation over two years. Species richness rose in the sward in the second year, especially under 3-cut management (from 15 to 21 species). The share of species sown earlier in the mixtures Dactylis glomerata, Festulolium braunii, and Medicago x varia was very high at both management intensities (66–87% DM). Yield and the content of crude protein and nutrients were higher in the 3-cut system in the second and third regrowths. Silicon supplementation increased plant diversity and yield resilience during drought, with more intensive management supporting sustainable forage production. Moreover, the sward contained more nutrients with 3-cuttings in the second and third regrowths. These findings indicate that intensive meadow management and silicon application enhance productivity, forage value, and biodiversity, providing valuable insights for sustainable meadow management strategies. Full article
Show Figures

Figure 1

28 pages, 4718 KiB  
Article
Analysis and Prospective Use of Local Mineral Raw Materials to Increase the Aesthetic and Recreational Value of the Vyzhyvka River (Western Ukraine)
by Yuliia Trach, Tetiana Tkachenko, Maryna Kravchenko, Viktor Mileikovskyi, Oksana Tsos, Mariia Boiaryn, Olha Biedunkova, Roman Trach and Ihor Statnyk
Environments 2025, 12(7), 235; https://doi.org/10.3390/environments12070235 - 10 Jul 2025
Viewed by 609
Abstract
Macrophytes are important components of aquatic ecosystems performing essential ecological functions. Their species composition and density reflect the ecological status of water bodies. The optimal ratio of morphological types of macrophytes is an important condition for preventing eutrophication. The aim of the study [...] Read more.
Macrophytes are important components of aquatic ecosystems performing essential ecological functions. Their species composition and density reflect the ecological status of water bodies. The optimal ratio of morphological types of macrophytes is an important condition for preventing eutrophication. The aim of the study is to analyse the species composition, distribution, and density of macrophytes in the Vyzhyvka River (Ukraine) in a seasonal aspect (2023–2024) under constant physical and chemical characteristics of water. To assess the seasonal dynamics of water quality, changes in indicators in three representative areas were analysed. The MIR method of environmental indexation of watercourses was used to assess the ecological state of the river. The water quality in the Vyzhyvka River at all test sites corresponds to the second class of the “good” category with the trophic status of “mesotrophic”. This is confirmed by the identified species diversity, which includes 64 species of higher aquatic and riparian plants. Among the various morphological types of macrophytes, submerged rooted forms account for only 10.56% of the total species composition. To ensure a functional balance between submerged and other forms of macrophytes, a scientifically based approach is proposed, which involves the use of mineral raw materials of local origin, in particular, mining and quarrying wastes rich in silicon, calcium and other mineral components. The results obtained are of practical value for water management, environmental protection, and ecological reclamation and can be used to develop effective measures to restore river ecosystems. Full article
Show Figures

Figure 1

26 pages, 5399 KiB  
Article
Microwave-Assisted Pyrolysis of Polyethylene and Polypropylene from End-of-Life Vehicles: Hydrogen Production and Energy Valorization
by Grigore Psenovschi, Ioan Calinescu, Alexandru Fiti, Ciprian-Gabriel Chisega-Negrila, Sorin-Lucian Ionascu and Lucica Barbes
Sustainability 2025, 17(13), 6196; https://doi.org/10.3390/su17136196 - 6 Jul 2025
Viewed by 619
Abstract
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene [...] Read more.
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene (PP) and polyethylene (PE) plastic waste through microwave-assisted pyrolysis, aiming to maximize conversion into gaseous products, particularly hydrogen-rich gas. A monomode microwave reactor was employed, using layered configurations of plastic feedstock, silicon carbide as a microwave susceptor, and activated carbon as a catalyst. The influence of catalyst loading, reactor configuration, and plastic type was assessed through systematic experiments. Results showed that technical-grade PP, under optimal conditions, yielded up to 81.4 wt.% gas with a hydrogen concentration of 45.2 vol.% and a hydrogen efficiency of 44.8 g/g. In contrast, PE and mixed PP + PE waste displayed lower hydrogen performance, particularly when containing inorganic fillers. For all types of plastics studied, the gaseous fractions obtained have a high calorific value (46,941–55,087 kJ/kg) and at the same time low specific CO2 emissions (4.4–6.1 × 10−5 kg CO2/kJ), which makes these fuels very efficient and have a low carbon footprint. Comparative tests using conventional heating revealed significantly lower hydrogen yields (4.77 vs. 19.7 mmol/g plastic). These findings highlight the potential of microwave-assisted pyrolysis as an efficient method for transforming ELV-derived plastic waste into energy carriers, offering a pathway toward low-carbon, resource-efficient waste management. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

18 pages, 8048 KiB  
Article
Silicon Nanoparticles Alter Soybean Physiology and Improve Nitrogen Fixation Potential Under Atmospheric Carbon Dioxide (CO2)
by Jingbo Tong
Plants 2025, 14(13), 2009; https://doi.org/10.3390/plants14132009 - 30 Jun 2025
Viewed by 406
Abstract
The interactive effects between nano-silicon dioxide (n-SiO2) and elevated CO2 (eCO2; 645 ppm) on soybean physiology, nitrogen fixation, and nutrient dynamics under climate stress remain underexplored. This study elucidates their combined effects under ambient (aCO2 [...] Read more.
The interactive effects between nano-silicon dioxide (n-SiO2) and elevated CO2 (eCO2; 645 ppm) on soybean physiology, nitrogen fixation, and nutrient dynamics under climate stress remain underexplored. This study elucidates their combined effects under ambient (aCO2; 410 ppm) and eCO2 conditions. eCO2 + n-SiO2 synergistically enhanced shoot length (30%), total chlorophyll (112.15%), and photosynthetic rate (103.23%), alongside improved stomatal conductance and intercellular CO2 (17.19%), optimizing carbon assimilation. Nodulation efficiency increased, with nodule number and biomass rising by 48.3% and 53.6%, respectively, under eCO2 + n-SiO2 versus aCO2. N-assimilation enzymes (nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase) surged by 38.5–52.1%, enhancing nitrogen metabolism. Concurrently, phytohormones (16–21%) and antioxidant activities (15–22%) increased, reducing oxidative markers (18–22%), and bolstering stress resilience. Nutrient homeostasis improved, with P, K, Mg, Cu, Fe, Zn, and Mn elevating in roots (13–41%) and shoots (13–17%), except shoot Fe and Zn. These findings demonstrate that n-SiO2 potentiates eCO2-driven benefits, amplifying photosynthetic efficiency, nitrogen fixation, and stress adaptation through enhanced biochemical and nutrient regulation. This synergy underscores n-SiO2 role in optimizing crop performance under future CO2-rich climates, advocating nano-fertilizers as sustainable tools for climate-resilient agriculture. Full article
(This article belongs to the Special Issue Silicon and Its Physiological Role in Plant Growth and Development)
Show Figures

Graphical abstract

11 pages, 1410 KiB  
Article
Theoretical Study on Impact of Chemical Composition and Water Content on Mechanical Properties of Stratlingite Mineral
by Daniel Tunega and Ali Zaoui
Minerals 2025, 15(6), 648; https://doi.org/10.3390/min15060648 - 16 Jun 2025
Viewed by 264
Abstract
Stratlingite is known as one of the hydration products of aluminum-rich cements. Its microstructure and, consequently, mechanical properties, depend on the Al/Si ratio and hydration conditions. The layered structure of stratlingite is characterized as defected, with vacancies in the aluminosilicate layer. This study [...] Read more.
Stratlingite is known as one of the hydration products of aluminum-rich cements. Its microstructure and, consequently, mechanical properties, depend on the Al/Si ratio and hydration conditions. The layered structure of stratlingite is characterized as defected, with vacancies in the aluminosilicate layer. This study uses density functional theory calculations on different stratlingite models to show how chemical composition, water content, and structural defects affect its mechanical properties. The developed models represent structures with full occupancy, with little or no content of structural water, and with vacancies in the aluminosilicate layer. It was shown that the full occupancy models have the highest toughness and are strongly anisotropic. The calculated bulk modulus (BH) of the models with full occupancy was about 40 GPa, being in the typical range for calcium aluminosilicate minerals. The water loss led to an increase in BH by approximately 40% compared to the models with full occupancy. In contrast, the models with vacancies exhibited a decrease in BH of about 30%. In models with the high silicon content (Al/Si ratio of 1/4), BH, Young’s (EH), and shear (GH) moduli decreased in a range 15%–30% compared to the models with an Al/Si ratio of 2/3 of Al/Si. Finally, according to Pugh’s ratio (BH/GH), which serves as a criterion for brittle–ductile transition (1.8), the models with full occupancy exhibit a brittle behavior, whereas the defected structures are closer to ductile. This could explain the elastic behavior of stratlingite binder in concretes. Generally, the calculations showed that all investigated parameters (chemical composition, water content, and structural defects) have a significant impact on the mechanical properties of stratlingite minerals. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Graphical abstract

18 pages, 2909 KiB  
Article
Characterization of a Supersonic Plasma Jet by Means of Optical Emission Spectroscopy
by Ruggero Barni, Hanaa Zaka, Dipak Pal, Irsa Amjad and Claudia Riccardi
Photonics 2025, 12(6), 595; https://doi.org/10.3390/photonics12060595 - 10 Jun 2025
Viewed by 956
Abstract
We discuss an innovative thin film deposition method, Plasma Assisted Supersonic Jet Deposition, which combines the chemistry richness of a reactive cold plasma environment and the assembly control of the film growth allowed by a supersonic jet directed at the substrate. Optical Emission [...] Read more.
We discuss an innovative thin film deposition method, Plasma Assisted Supersonic Jet Deposition, which combines the chemistry richness of a reactive cold plasma environment and the assembly control of the film growth allowed by a supersonic jet directed at the substrate. Optical Emission Spectroscopy was used to characterize the plasma state and the supersonic jet, together with its interaction with the substrate. We obtained several results in the deposition of silicon oxide thin films from Hexamethyldisiloxane, with different degrees of organic groups retention. In particular we exploited the features of emission spectra to measure the plasma dissociation and oxidation degree of the organic groups, as a function of the jet parameters. If controlled growth is achieved, such films are nanostructured materials suitable for applications like catalysis, photo catalysis, energy conversion and storage, besides their traditional uses as a barrier or protective coatings. Full article
Show Figures

Figure 1

13 pages, 13959 KiB  
Article
Microstructural Evolution and Wear Resistance of Silicon-Containing FeNiCrAl0.7Cu0.3Six High-Entropy Alloys
by Junhong Li, Xuebing Han, Jiaxin Liu, Xu Wang and Yanzhou Li
Coatings 2025, 15(6), 676; https://doi.org/10.3390/coatings15060676 - 3 Jun 2025
Viewed by 492
Abstract
This study investigates the influence of Si content (x = 0, 0.1, 0.3, 0.5) on the microstructure, mechanical properties, and wear behavior of FeNiCrAl0.7Cu0.3Six high-entropy alloys. With increasing silicon content, the microstructure evolves from a dendritic morphology in [...] Read more.
This study investigates the influence of Si content (x = 0, 0.1, 0.3, 0.5) on the microstructure, mechanical properties, and wear behavior of FeNiCrAl0.7Cu0.3Six high-entropy alloys. With increasing silicon content, the microstructure evolves from a dendritic morphology in the silicon-free FeNiCrAl0.7Cu0.3 alloy to a transitional structure in the FeNiCrAl0.7Cu0.3Si0.1 alloy that retains dendritic features; then to a chrysanthemum-like morphology in the FeNiCrAl0.7Cu0.3Si0.3 alloy, and finally to island-like grains in the FeNiCrAl0.7Cu0.3Si0.5 alloy. This evolution is accompanied by a phase transition from an Fe and Cr-rich body-centered cubic phase to an Al and Ni-rich body-centered cubic phase, with silicon showing a tendency to segregate alongside aluminum and nickel. The microhardness increases from 498.2 ± 15.0 HV for the FeNiCrAl0.7Cu0.3 alloy, to 502.7 ± 32.7 HV for FeNiCrAl0.7Cu0.3Si0.1, 577.3 ± 24.5 HV for FeNiCrAl0.7Cu0.3Si0.3, and 863.2 ± 23.5 HV for FeNiCrAl0.7Cu0.3Si0.5. The average friction coefficients are 0.571, 0.551, 0.524, and 0.468, respectively. The wear mass decreases from 1.31 mg in the FeNiCrAl0.7Cu0.3 alloy to 1.28 mg, 1.11 mg, and 0.78 mg in the FeNiCrAl0.7Cu0.3Si0.1, FeNiCrAl0.7Cu0.3Si0.3, and FeNiCrAl0.7Cu0.3Si0.5 samples, respectively. These trends are consistent with the increase in microhardness, supporting the inverse relationship between hardness and wear. As the silicon content increases, the dominant wear mechanism changes from abrasive wear to adhesive wear, with the high-silicon alloy exhibiting lamellar debris on the worn surface. These findings confirm that silicon addition enhances microstructural refinement, mechanical strength, and wear resistance of the alloy system. Full article
Show Figures

Figure 1

22 pages, 2821 KiB  
Review
Carbazole- Versus Phenothiazine-Based Electron Donors for Organic Dye-Sensitized Solar Cells
by Daria Slobodinyuk and Alexey Slobodinyuk
Molecules 2025, 30(11), 2423; https://doi.org/10.3390/molecules30112423 - 31 May 2025
Viewed by 730
Abstract
Recently, research and development in the field of dye-sensitized solar cells has been actively advanced, as the technology constitutes a potential alternative to silicon-based photovoltaic devices. Modification of the molecular structure of the dye can enhance the adsorption on the TiO2 surface, [...] Read more.
Recently, research and development in the field of dye-sensitized solar cells has been actively advanced, as the technology constitutes a potential alternative to silicon-based photovoltaic devices. Modification of the molecular structure of the dye can enhance the adsorption on the TiO2 surface, improve the light absorption capacity, suppress the charge recombination, increase the electron injection rate, and thereby improve the overall performance of the solar cell. Carbazole and phenothiazine are rigid heterocyclic compounds containing nitrogen as a heteroatom with large π-conjugated skeletons. Phenothiazine differs from carbazole by the presence of sulfur as an additional electron-rich heteroatom. The inclusion of this heteroatom in the structure of the compounds can indeed improve the electron-donating properties, affect the conjugation, and thus affect the optical, electronic, and electrochemical properties of the chromophores as a whole. The difference in planarity when comparing carbazole with phenothiazine can be useful from several points of view. The planar structure of carbazole increases the degree of conjugation and the electron transfer capacity, which can increase the photocurrent of the cell. The nonplanar structure of phenothiazine helps to prevent π-stacking aggregation. This review comprehensively summarizes the progress in the field of synthesis of organic dyes for solar cells with an emphasis on the comparative analysis of two electron-donating moieties, carbazole and phenothiazine. In addition, the review describes in detail the relationship between the structure of the compounds (dyes), their properties, and the performance of solar cells. Full article
Show Figures

Figure 1

20 pages, 8848 KiB  
Article
Study on the Properties and Pore Structure of Geopolymer Foam Concrete Incorporating Lead–Zinc Tailings
by Yifan Yang, Ming Li, Qi He and Chongjie Liao
Buildings 2025, 15(10), 1703; https://doi.org/10.3390/buildings15101703 - 18 May 2025
Viewed by 488
Abstract
Geopolymer foam concrete (GFC) is a green, lightweight material produced by introducing bubbles into the geopolymer slurry. The raw materials for GFC are primarily silicon–aluminum-rich minerals or solid waste. Lead–zinc tailings (LZTs), as an industrial solid waste with high silicon–aluminum content, hold significant [...] Read more.
Geopolymer foam concrete (GFC) is a green, lightweight material produced by introducing bubbles into the geopolymer slurry. The raw materials for GFC are primarily silicon–aluminum-rich minerals or solid waste. Lead–zinc tailings (LZTs), as an industrial solid waste with high silicon–aluminum content, hold significant potential as raw materials for building materials. This study innovatively utilized LZTs to prepare GFC, incorporating MK, GGBS, and alkali activators as silicon–aluminum-rich supplementary materials and using H2O2 as a foaming agent, successfully producing GFC with excellent properties. The effects of different LZT content on the pore structure and various macroscopic properties of GFC were comprehensively evaluated. The results indicate that an appropriate addition of LZT effectively optimizes the pore structure, resulting in uniform pore distribution and pore shapes that are more spherical. Spherical pores exhibit better geometric compactness. The optimal LZT content was determined to be 40%, at which the GFC exhibits the best compressive strength, thermal conductivity, and water resistance. At this content, the dry density of GFC is 641.95 kg/m3, the compressive strength reaches 6.50 MPa after 28 days, and the thermal conductivity is 0.176 (W/(m·K)). XRD and SEM analyses indicate that under the combined effects of geopolymerization and hydration reactions, N–A–S–H gel and C–S–H gel were formed. The preparation of GFC using LZTs shows significant potential and research value. This study also provides a feasible scheme for the recycling and utilization of LZTs. Full article
Show Figures

Figure 1

24 pages, 4411 KiB  
Article
Characterization of Historical Tailings Dam Materials for Li-Sn Recovery and Potential Use in Silicate Products—A Case Study of the Bielatal Tailings Dam, Eastern Erzgebirge, Saxony, Germany
by Kofi Moro, Nils Hoth, Marco Roscher, Fabian Kaulfuss, Johanes Maria Vianney and Carsten Drebenstedt
Sustainability 2025, 17(10), 4469; https://doi.org/10.3390/su17104469 - 14 May 2025
Cited by 1 | Viewed by 627
Abstract
The characterization of historical tailings bodies is crucial for optimizing environmental management and resource recovery efforts. This study investigated the Bielatal tailings dam (Altenberg, Germany), examining its internal structure, material distribution influenced by historical flushing technology, and the spatial distribution of valuable elements. [...] Read more.
The characterization of historical tailings bodies is crucial for optimizing environmental management and resource recovery efforts. This study investigated the Bielatal tailings dam (Altenberg, Germany), examining its internal structure, material distribution influenced by historical flushing technology, and the spatial distribution of valuable elements. To evaluate the tailings resource potential, drill core sampling was conducted at multiple points at a depth of 7 m. Subsequent analyses included geochemical characterization using sodium peroxide fusion, lithium borate fusion, X-ray fluorescence (XRF), and a scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX). Particle size distribution analysis via a laser particle size analyzer and wet sieving was conducted alongside milieu parameter (pH, Eh, EC) analysis. A theoretical assessment of the tailings’ potential for geopolymer applications was conducted by comparing them with other tailings used in geopolymer research and relevant European standards. The results indicated average concentrations of lithium (Li) of 0.1 wt%, primarily hosted in Li-mica phases, and concentrations of tin (Sn) of 0.12 wt%, predominantly occurring in cassiterite. Particle size analysis revealed that the tailings material is generally fine-grained, comprising approximately 60% silt, 32% fine sand, and 8% clay. These textural characteristics influenced the spatial distribution of elements, with Li and Sn enriched in fine-grained fractions predominantly concentrated in the dam’s central and western sections, while coarser material accumulated near injection points. Historical advancements in mineral processing, particularly flotation, had significantly influenced Sn distribution, with deeper layers showing higher Sn enrichment, except for the final operational years, which also exhibited elevated Sn concentrations. Due to the limitations of X-ray fluorescence (XRF) in detecting Li, a strong correlation between rubidium (Rb) and Li was established, allowing Li quantification via Rb measurements across varying particle sizes, redox conditions, and geological settings. This demonstrated that Rb can serve as a reliable proxy for Li quantification in diverse contexts. Geochemical and mineralogical analyses revealed a composition dominated by quartz, mica, topaz, and alkali feldspars. The weakly acidic to neutral conditions (pH 5.9–7.7) and reducing redox potential (Eh, 570 to 45 mV) of the tailings material indicated a minimal risk of acid mine drainage. Preliminary investigations into using Altenberg tailings as geopolymer materials suggested that their silicon-rich composition could serve as a substitute for coal fly ash in construction; however, pre-treatment would be needed to enhance reactivity. This study underscores the dual potential of tailings for element recovery and sustainable construction, emphasizing the importance of understanding historical processing techniques for informed resource utilization. Full article
(This article belongs to the Special Issue Geological Engineering and Sustainable Environment)
Show Figures

Figure 1

Back to TopTop