Study on the Properties and Pore Structure of Geopolymer Foam Concrete Incorporating Lead–Zinc Tailings
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Heavy Metal Leaching Concentration Testing
2.3. Mix Proportion
2.4. Specimens Preparation
2.5. Testing Methods
2.5.1. Identification and Analysis of Pore Structure
2.5.2. Macroscopic Properties
2.5.3. XRD and SEM Characterization
3. Results and Discussion
3.1. Pore Structure
3.2. Fluidity and Dry Density
3.3. Compressive Strength
3.4. Thermal Conductivity
3.5. Water Absorption and Softening Coefficient
3.6. Drying Shrinkage
3.7. XRD and SEM Analysis
4. Conclusions
- The use of LZT for the preparation of GFC holds significant potential and research value. This investigation proposes a feasible scheme for the recycling and reuse of LZT. Furthermore, it provides a reference and further research directions for the preparation of foam concrete from such industrial solid waste.
- Increases in the LZT content result in a gradual rise in the average pore size and porosity of GFC, while the average roundness value initially declines and subsequently rises. At 40% and 50% LZT contents, the pore distribution of GFC is most uniform, with relatively small average roundness values, and most pores are closer to spherical in shape, exhibiting good geometric compactness.
- As the LZT content increases, the flowability, water absorption, and drying shrinkage of GFC gradually increase, while the dry density first decreases and then increases. Appropriately increasing the LZT content has a positive effect on the compressive strength of GFC. At a tailings’ content of 40%, the material’s compressive strength at 28 days reaches its maximum value of 6.50 MPa.
- A comparison of this GFC with foam concrete prepared in other studies reveals that the former possesses not only the characteristics of light weight and high strength, but also ideal thermal insulation properties. The thermal conductivity (K) of GFC is found to be 0.176 W/(m·K) when the optimal LZT content is utilized. This material can effectively reduce building energy consumption, indicating that it has promising application prospects in the field of building insulation.
- The silicon-aluminum precursor material was subjected to an alkaline activator, resulting in the formation of N–A–S–H gel and C–S–H gel. The gel products exhibited a strong bond with the unreacted tailings particles, and the interfaces between different phases were firmly bonded. This resulted in a microstructure with high compactness, which had a positive effect on the development of material strength.
- However, this study still has room for further exploration. The complex service environment places high demands on the durability of GFC, such as freeze resistance and dry–wet cycle performance, which require further in-depth research. Additionally, by further adjusting the amount of foaming agent, foaming method, and curing conditions, GFC with more diverse performance can be prepared.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maruthupandian, S.; Chaliasou, A.; Kanellopoulos, A. Recycling mine tailings as precursors for cementitious binders-Methods, challenges and future outlook. Constr. Build. Mater. 2021, 312, 125333. [Google Scholar] [CrossRef]
- Marín, O.A.; Kraslawski, A.; Cisternas, L.A. Estimating processing cost for the recovery of valuable elements from mine tailings using dimensional analysis. Miner. Eng. 2022, 184, 107629. [Google Scholar] [CrossRef]
- Krishna, R.S.; Shaikh, F.; Mishra, J.; Lazorenko, G.; Kasprzhitskii, A. Mine tailings-based geopolymers: Properties, applications and industrial prospects. Ceram. Int. 2021, 47, 17826–17843. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Deng, R.; Xing, D.; Chen, Q. Research status and significance of comprehensive utilization of lead and zinc tailings in China. Geol. Explor. 2024, 60, 724–734, (In Chinese with English abstract). [Google Scholar]
- Li, R.; Yin, Z.; Lin, H. Research Status and Prospects for the Utilization of Lead–Zinc Tailings as Building Materials. Buildings 2023, 13, 150. [Google Scholar] [CrossRef]
- Dong, L.; Tong, X.; Li, X.; Zhou, J.; Wang, S.; Liu, B. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. J. Clean. Prod. 2019, 210, 1562–1578. [Google Scholar] [CrossRef]
- Li, D.; Andrea, O.R.; Alseny, B.; Li, F. Valorization of lead-zinc mine tailing waste through geopolymerization: Synthesis, mechanical, and microstructural properties. J. Environ. Manag. 2024, 349, 119501. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, J.; Liu, X.; Mu, Y.; Zhang, M.; Zhang, M.; Tian, C.; Ou, J.; Mi, J. Preparation of ceramsite from lead-zinc tailings and coal gangue: Physical properties and solidification of heavy metals. Constr. Build. Mater. 2023, 368, 130426. [Google Scholar] [CrossRef]
- Ou, X.; Guo, Y.; Zhong, G.; Li, B.; Chen, Y.; Cao, X. Manufacture of the Glass-Ceramics from the Lead-Zinc Tailings by Sintering. Adv. Mater. Res. 2014, 955–959, 2818–2823. [Google Scholar] [CrossRef]
- Lin, H.; Li, R.; Li, S. Fabrication of Lead–Zinc Tailings Sintered Brick and Its Effect Factors Based on an Orthogonal Experiment. Materials 2024, 17, 2352. [Google Scholar] [CrossRef]
- Bah, A.; Feng, D.; Kedjanyi, E.A.G.; Shen, Z.; Bah, A.; Li, F. Solidification of (Pb–Zn) mine tailings by fly ash-based geopolymer I: Influence of alkali reagents ratio and curing condition on compressive strength. J. Mater. Cycles Waste Manag. 2022, 24, 351–363. [Google Scholar] [CrossRef]
- Shah, S.N.; Mo, K.H.; Yap, S.P.; Yang, J.; Ling, T.-C. Lightweight foamed concrete as a promising avenue for incorporating waste materials: A review. Resour. Conserv. Recycl. 2021, 164, 105103. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, X.; Wang, L.; Li, Y. Foam Concrete: A State-of-the-Art and State-of-the-Practice Review. Adv. Mater. Sci. Eng. 2020, 2020, 1–25. [Google Scholar] [CrossRef]
- Hassan, A.; Arif, M.; Shariq, M. Use of geopolymer concrete for a cleaner and sustainable environment—A review of mechanical properties and microstructure. J. Clean. Prod. 2019, 223, 704–728. [Google Scholar] [CrossRef]
- Hwalla, J.; El-hassan, H.; Assaad, J.J.; El-maaddawy, T. Performance of cementitious and slag-fly ash blended geopolymer screed composites: A comparative study. Case Stud. Constr. Mater. 2023, 18, e02037. [Google Scholar] [CrossRef]
- Yang, H.; Liu, L.; Yang, W.; Liu, H.; Ahmad, W.; Ahmad, A.; Aslam, F.; Joyklad, P. A comprehensive overview of geopolymer composites: A bibliometric analysis and literature review. Case Stud. Constr. Mater. 2022, 16, e00830. [Google Scholar] [CrossRef]
- Dhasindrakrishna, D.K.; Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J.G. Progress, current thinking and challenges in geopolymer foam concrete technology. Cem. Concr. Compos. 2021, 116, 103886. [Google Scholar] [CrossRef]
- Kočí, V.; Černý, R. Directly foamed geopolymers: A review of recent studies. Cem. Concr. Compos. 2022, 130, 104530. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef]
- Liang, G.; Liu, T.; Li, H.; Dong, B.; Shi, T. A novel synthesis of lightweight and high-strength green geopolymer foamed material by rice husk ash and ground-granulated blast-furnace slag. Resour. Conserv. Recycl. 2022, 176, 105922. [Google Scholar] [CrossRef]
- Samson, G.; Cyr, M.; Gao, X.X. Thermomechanical performance of blended metakaolin GGBS alkali-activated foam concrete. Constr. Build. Mater. 2017, 157, 982–993. [Google Scholar] [CrossRef]
- Raj, S.; Ramamurthy, K. Physical, hydrolytic, and mechanical stability of alkali-activated fly ash-slag foam concrete. Cem. Concr. Compos. 2023, 142, 105223. [Google Scholar] [CrossRef]
- Xu, F.; Gu, G.; Zhang, W.; Wang, H.; Huang, X.; Zhu, J. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method. Ceram. Int. 2018, 44, 19989–19997. [Google Scholar] [CrossRef]
- Ziejewska, C.; Grela, A.; Hebda, M. Influence of Waste Glass Particle Size on the Physico-Mechanical Properties and Porosity of Foamed Geopolymer Composites Based on Coal Fly Ash. Materials 2023, 16, 2044. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Zou, S.; Zhang, G. Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy Build. 2020, 226, 110358. [Google Scholar] [CrossRef]
- Shi, J.; Liu, Y.; Wang, E.; Wang, L.; Li, C.; Xu, H.; Zheng, X.; Yuan, Q. Physico-mechanical, thermal properties and durability of foamed geopolymer concrete containing cenospheres. Constr. Build. Mater. 2022, 325, 126841. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, T.; Li, C.; Wan, M.; Xuan, W.; Wang, X. Effect of Precursor Blending Ratio and Rotation Speed of Mechanically Activated Fly Ash on Properties of Geopolymer Foam Concrete. Buildings 2024, 14, 841. [Google Scholar] [CrossRef]
- Kamseu, E.; Ngouloure, Z.N.M.; Ali, B.N.; Zekeng, S.; Melo, U.C.; Rossignol, S.; Leonelli, C. Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity. Energy Build. 2015, 88, 45–56. [Google Scholar] [CrossRef]
- Dhasindrakrishna, K.; Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J. Rheology and elevated temperature performance of geopolymer foam concrete with varying PVA fibre dosage. Mater. Lett. 2022, 328, 133122. [Google Scholar] [CrossRef]
- Łach, M.; Kozub, B.; Bednarz, S.; Bąk, A.; Melnychuk, M.; Masłoń, A. The Influence of the Addition of Basalt Powder on the Properties of Foamed Geopolymers. Materials 2024, 17, 2336. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Li, X.; Tian, D.; Ma, M.; Wang, T. Optimized pore structure and high permeability of metakaolin/fly-ash-based geopolymer foams from Al– and H2O2–sodium oleate foaming systems. Ceram. Int. 2022, 48, 18348–18360. [Google Scholar] [CrossRef]
- Ahıskalı, A.; Ahıskalı, M.; Bayraktar, O.Y.; Kaplan, G.; Assaad, J. Mechanical and durability properties of polymer fiber reinforced one-part foam geopolymer concrete: A sustainable strategy for the recycling of waste steel slag aggregate and fly ash. Constr. Build. Mater. 2024, 440, 137492. [Google Scholar] [CrossRef]
- Wei, B.; Zhang, Y.; Bao, S. Preparation of geopolymers from vanadium tailings by mechanical activation. Constr. Build. Mater. 2017, 145, 236–242. [Google Scholar] [CrossRef]
- He, X.; Yuhua, Z.; Qaidi, S.; Isleem, H.F.; Zaid, O.; Althoey, F.; Ahmad, J. Mine tailings-based geopolymers: A comprehensive review. Ceram. Int. 2022, 48, 24192–24212. [Google Scholar] [CrossRef]
- Lazorenko, G.; Kasprzhitskii, A.; Shaikh, F.; Krishna, R.S.; Mishra, J. Utilization potential of mine tailings in geopolymers: Physicochemical and environmental aspects. Process Saf. Environ. Prot. 2021, 147, 559–577. [Google Scholar] [CrossRef]
- Ahmari, S.; Zhang, L. Durability and leaching behavior of mine tailings-based geopolymer bricks. Constr. Build. Mater. 2013, 44, 743–750. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, D.; Zhao, J.; Li, D.; Ng, S.; Rui, Y. Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material. J. Build. Eng. 2018, 20, 21–29. [Google Scholar] [CrossRef]
- Yan, S.; Ren, X.; He, C.; Wang, W.; Zhang, M.; Xing, P. Microstructure evolution and properties of red mud/slag-based cenosphere/geopolymer foam exposed to high temperatures. Ceram. Int. 2023, 49, 34362–34374. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Li, X.; Ma, M.; Zhang, Z.; Ji, X. Slurry rheological behaviors and effects on the pore evolution of fly ash/metakaolin-based geopolymer foams in chemical foaming system with high foam content. Constr. Build. Mater. 2023, 379, 131259. [Google Scholar] [CrossRef]
- JG/T 266-2011; Foamed Concrete. Standards Press of China: Beijing, China, 2011.
- JGJ/T 341-2014; Technical Specification for Application of Foamed Concrete. China Building Industry Press: Beijing, China, 2014.
- GB/T 10294-2008; Thermal Insulation Determination of Steady State Thermal Resistance and Related Properties Guarded Hot Plate Apparatus. Standards Press of China: Beijing, China, 2008.
- Liu, Y.; Hu, N.; Yang, S.; Ye, Y.; Li, Q.; Tang, R.; Wu, Y. The hydration behavior and foaming mechanism of foamed concrete prepared by substantial amounts of phosphate tailings. Constr. Build. Mater. 2025, 472, 140799. [Google Scholar] [CrossRef]
- Xiao, L.G.; Liu, C.; Zhang, S.T.; Wang, W.B. Influences of admixtures on properties of foam concrete with iron tailings. Key Eng. Mater. 2014, 599, 61–65. [Google Scholar] [CrossRef]
- Hu, B.; Fu, C.; Li, S. Preparation and properties of high performance foamed concrete. J. Funct. Mater. 2024, 55, 2181–2186, (In Chinese with English abstract). [Google Scholar]
- Chen, X.; Zhang, J.; Lu, M.; Chen, B.; Gao, S.; Bai, J.; Yang, Y. Study on the effect of calcium and sulfur content on the properties of fly ash based geopolymer. Constr. Build. Mater. 2022, 314, 125650. [Google Scholar] [CrossRef]
- He, P.; Wang, M.; Fu, S.; Jia, D.; Zhou, Y. Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram. Int. 2016, 42, 14416–14422. [Google Scholar] [CrossRef]
- Ji, Y.; Ren, Q.; Li, X.; Zhao, P.; Vandeginste, V. On Thermal Insulation Properties of Various Foaming Materials Modified Fly Ash Based Geopolymers. Polymers 2023, 15, 3254. [Google Scholar] [CrossRef]
- Yang, K.; Lee, K.; Song, J.; Gong, M. Properties and sustainability of alkali-activated slag foamed concrete. J. Clean. Prod. 2014, 68, 226–233. [Google Scholar] [CrossRef]
- Novais, R.M.; Ascensão, G.; Buruberri, L.H.; Senff, L.; Labrincha, J.A. Influence of blowing agent on the fresh- and hardened-state properties of lightweight geopolymers. Mater. Des. 2016, 108, 551–559. [Google Scholar] [CrossRef]
- Zhang, D.; Hao, W.; Yang, Q. Experimental Study on the Application of Recycled Concrete Waste Powder in Alkali-Activated Foamed Concrete. Materials 2023, 16, 5728. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H. Preparation and properties of rice husk ash foamed concrete. Bull. Silic. 2020, 39, 2795–2799, (In Chinese with English abstract). [Google Scholar]
- Zhao, Y.; Ye, J.; Lu, X.; Liu, M.; Lin, Y.; Gong, W.; Ning, G. Preparation of sintered foam materials by alkali-activated coal fly ash. J. Hazard. Mater. 2010, 174, 108–112. [Google Scholar] [CrossRef]
- Bilici, S.; Carvalheiras, J.; Labrincha, J.A.; Novais, R.M. Evaluation of the Nature and Concentration of the Surfactant on the Properties of Red Mud/Metakaolin Porous Geopolymers Foamed with Aluminium. Materials 2022, 15, 7486. [Google Scholar] [CrossRef] [PubMed]
- Ruan, S.; Chen, S.; Liu, Y.; Yan, D.; Sun, Z. Investigation on the effect of fiber wettability on water absorption kinetics of geopolymer composites. Ceram. Int. 2022, 48, 36678–36689. [Google Scholar] [CrossRef]
- Chen, W.; Li, B.; Wang, J.; Thom, N. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste. Cem. Concr. Res. 2021, 141, 106322. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Feng, P.; Zhang, P. A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: Effects of chemical additives. J. Build. Eng. 2022, 49, 104056. [Google Scholar] [CrossRef]
- Zhang, M.; Qiu, X.; Shen, S.; Wang, L.; Zang, Y. Mechanical and Thermal Insulation Properties of rGFRP Fiber-Reinforced Lightweight Fly-Ash-Slag-Based Geopolymer Mortar. Sustainability 2023, 15, 7200. [Google Scholar] [CrossRef]
- Agustini, N.K.A.; Triwiyono, A.; Sulistyo, D.; Suyitno, S. Mechanical Properties and Thermal Conductivity of Fly Ash-Based Geopolymer Foams with Polypropylene Fibers. Appl. Sci. 2021, 11, 4886. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Hu, Y.; Li, Y.; Hu, P.; Zhao, Y. Physical and high temperature properties of basalt fiber-reinforced geopolymer foam with hollow microspheres. Constr. Build. Mater. 2024, 411, 134698. [Google Scholar] [CrossRef]
- Dai, B.-B.; Zou, Y.; He, Y.; Lan, M.; Kang, Q. Solidification Experiment of Lithium-Slag and Fine-Tailings Based Geopolymers. Sustainability 2023, 15, 4523. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Adediran, A.; Yliniemi, J.; Ismailov, A.; Levanen, E.; Tanskanen, P.; Kinnunen, P.; Roning, J.; Illikainen, M. Thermal stability of one-part metakaolin geopolymer composites containing high volume of spodumene tailings and glass wool. Cem. Concr. Compos. 2020, 114, 103792. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef]
Ref. | Raw Material | Foaming Agent | Curing Temperature (℃) | Macroscopic Properties | ||
---|---|---|---|---|---|---|
Density (kg/m3) | Compressive Strength (MPa) | Thermal Conductivity (W/m·K) | ||||
[21] | MK + GGBS | H2O2 | 20 | 264–480 | 0.53–3.34 | 0.084–0.139 |
[22] | FA + Slag | Pre-foaming | 27 ± 2 or 75 | 1100–1290 | 0.5–16.5 | — |
[23] | FA + GGBS | H2O2 | Room temperature | 142–1021 | 3.2–44.8 | 0.183–0.646 |
[24] | FA + Waste glass | Pre-foaming | Room temperature | 615–781 | 1.6–3.6 | — |
[25] | MK + rice husk | H2O2 | 70 | 174–813 | 0.26–5.57 | 0.082–0.184 |
[26] | GGBS + FA + cenospheres | H2O2 | 20 ± 2 | 375–410 | 2.0–3.5 | 0.100–0.165 |
[27] | FA + GGBS | Aluminum powder | 20 | 264–634 | 0.3–5.2 | — |
[28] | MK | Aluminum powder | 80 | 360–590 | — | 0.12–0.17 |
[29] | Slag + FA + PVA | Pre-foaming | — | 340–390 | 2.8–3.8 | — |
[30] | FA + Basalt powder | H2O2 | 75 | 300–357 | 0.6–1.5 | 0.093–0.111 |
[31] | FA + MK | Aluminum powder, H2O2 | 40 | 370–820 | 1.4–4.4 | — |
[32] | FA + wastesteel slag | Pre-foaming | 85 | 1142–1541 | 1.6–2.8 | 0.342–0.599 |
Composites | SiO2 | Al2O3 | CaO | Fe2O3 | MgO | SO3 | TiO2 |
---|---|---|---|---|---|---|---|
LZT | 72.47 | 6.18 | 10.74 | 2.67 | 1.46 | 4.45 | 0.20 |
MK | 48.60 | 44.74 | 0.55 | 2.89 | 0.21 | 0.22 | 2.19 |
GGBS | 34.50 | 17.70 | 34.00 | 1.03 | 6.01 | 1.64 | 1.19 |
Composites | Heavy Metal Leaching Values of LZT | Concentration Limits for Harmful Components in Leachate |
---|---|---|
Pb | 3.29 | 5 |
Zn | 1.87 | 100 |
Samples Code | LZT | MK | GGBS | H2O2 | Calcium Stearate | Solvents (Including Alkaline Activators and Water) |
---|---|---|---|---|---|---|
GFC-30 | 90 | 165 | 45 | 4.50 | 3.0 | 165.42 |
GFC-40 | 120 | 135 | 45 | 4.50 | 3.0 | 165.42 |
GFC-50 | 150 | 105 | 45 | 4.50 | 3.0 | 165.42 |
GFC-60 | 180 | 75 | 45 | 4.50 | 3.0 | 165.42 |
GFC-70 | 210 | 45 | 45 | 4.50 | 3.0 | 165.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, M.; He, Q.; Liao, C. Study on the Properties and Pore Structure of Geopolymer Foam Concrete Incorporating Lead–Zinc Tailings. Buildings 2025, 15, 1703. https://doi.org/10.3390/buildings15101703
Yang Y, Li M, He Q, Liao C. Study on the Properties and Pore Structure of Geopolymer Foam Concrete Incorporating Lead–Zinc Tailings. Buildings. 2025; 15(10):1703. https://doi.org/10.3390/buildings15101703
Chicago/Turabian StyleYang, Yifan, Ming Li, Qi He, and Chongjie Liao. 2025. "Study on the Properties and Pore Structure of Geopolymer Foam Concrete Incorporating Lead–Zinc Tailings" Buildings 15, no. 10: 1703. https://doi.org/10.3390/buildings15101703
APA StyleYang, Y., Li, M., He, Q., & Liao, C. (2025). Study on the Properties and Pore Structure of Geopolymer Foam Concrete Incorporating Lead–Zinc Tailings. Buildings, 15(10), 1703. https://doi.org/10.3390/buildings15101703