Theoretical Study on Impact of Chemical Composition and Water Content on Mechanical Properties of Stratlingite Mineral
Abstract
:1. Introduction
2. Computational and Structural Details
2.1. Computational Details
2.2. Structural Models
3. Results and Discussion
3.1. Structural and Bonding Properties
3.2. Mechanical Properties: Silicon and Water Content Effects
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford: London, UK, 1997. [Google Scholar]
- L’Hôpital, E.; Lothenbach, B.; Le Saout, G.; Kulik, D.; Scrivener, K. Incorporation of aluminium in calcium-silicate-hydrates. Cem. Concr. Res. 2015, 75, 91–103. [Google Scholar] [CrossRef]
- Matschei, T.; Lothenbach, B.; Glasser, F.P. Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. Cem. Concr. Res. 2007, 37, 1379–1410. [Google Scholar] [CrossRef]
- Hentschel, G.; Kuzel, H. Stratlingite, 2CaO.AI2O3-SiO2-8H2O, A new mineral. Neues Jahrb. Mineral. Monat. 1976, 326–331. [Google Scholar]
- Jambor, J. New mineral names. Am. Min. 1992, 77, 670–675. [Google Scholar]
- Passaglia, E.; Turconi, B. Silicati e altri minerali di Montalto di Castro (Viterbo). Riv. Miner. Ital. 1982, 4, 97–110. [Google Scholar]
- Rinaldi, R.; Sacerdoti, M.; Passaglia, E. Stratlingite: Crystal structure, chemistry, and a reexamination of its polytype vertumnite. Eur. J. Min. 1990, 2, 841–849. [Google Scholar] [CrossRef]
- Midgley, H.G.; Rao, P.B. Formation of Strätlingite, 2CaO·SiO2 Al2O3 8H2O, in relation to the hydration of high alumina cement. Cem. Concr. Res. 1978, 8, 169–172. [Google Scholar] [CrossRef]
- Kwan, S.; LaRosa, J.; Grutzeck, M.W. 29Si and 27Al MASNMR study of strätlingite. J. Am. Ceram. Soc. 1995, 78, 1921–1926. [Google Scholar] [CrossRef]
- Aranda, M.A.G.; De la Torre, Á.G.; León-Reina, L. Rietveld quantitative phase analysis of OPC clinkers, cement and hydration products. Rev. Miner. Geochem. 2012, 74, 169–209. [Google Scholar] [CrossRef]
- Jackson, M.D.; Landis, E.N.; Brune, P.F.; Vitti, M.; Chena, H.; Lia, Q.; Kunz, M.; Wenk, H.-R.; Monteiro, P.J.M.; Ingraffea, A.R. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar. Proc. Natl. Acad. Sci. USA 2014, 11, 18484–18489. [Google Scholar] [CrossRef]
- Oh, J.E.; Clark, S.M.; Monteiro, P.J.M. Does the Al substitution in C-S-H(I) change its mechanical property? Cem. Concr. Res. 2011, 41, 102–106. [Google Scholar] [CrossRef]
- Matschei, T.; Lothenbach, B.; Glasser, F.P. The AFm phase in Portland cement. Cem. Concr. Res. 2007, 37, 118–130. [Google Scholar] [CrossRef]
- Balonis, M.; Glasser, F.P. The density of cement phases. Cem. Concr. Res. 2009, 39, 733–739. [Google Scholar] [CrossRef]
- Santacruz, I.; De la Torre, Á.G.; Sanz, J.; Alvarez-Pinazo, G.; Aranda, M.A.G.; Cabeza, A. Structure of stratlingite and effect of hydration methodology on microstructure. Adv. Cem. Res. 2016, 28, 13–22. [Google Scholar] [CrossRef]
- Moon, J.; Oh, J.E.; Balonis, M.; Glasser, F.P.; Clark, S.M.; Monteiro, P.J.M. Pressure induced reactions amongst calcium aluminate phases. Cem. Concr. Res. 2012, 41, 571–578. [Google Scholar] [CrossRef]
- Cuesta, A.; Rejmak, P.; Ayuela, A.; De la Torre, A.G.; Santacruz, I.; Carrasco, L.F.; Popescu, C.; Aranda, M.A.G. Experimental and theoretical high pressure study of calcium hydroxyaluminate phases. Cem. Concr. Res. 2017, 97, 1–10. [Google Scholar] [CrossRef]
- Baquerizo, L.G.; Matschei, T.; Scrivener, K.L.; Saeidpour, M.; Wadsö, L. Hydration states of AFm cement phases. Cem. Concr. Res. 2015, 73, 143–157. [Google Scholar] [CrossRef]
- Scholtzová, E.; Tunega, D.; Speziale, S. Mechanical properties of ettringite and thaumasite—DFT and experimental study. Cem. Concr. Res. 2015, 77, 9–15. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Tunega, D.; Bučko, T.; Zaoui, A. Assessment of ten DFT methods in predicting structures of sheet silicates: Importance of dispersion corrections. J. Chem. Phys. 2012, 137, 114105. [Google Scholar] [CrossRef] [PubMed]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Le Page, Y.; Saxe, P. Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations. Phys. Rev. B 2001, 63, 174103. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A User-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Marmier, A.; Lethbridge, Z.A.D.; Walton, R.I.; Smith, C.W.; Parker, S.C.; Evans, K.E. ElAM: A computer program for the analysis and representation of anisotropic elastic properties. Comput. Phys. Commun. 2010, 181, 2102–2115. [Google Scholar] [CrossRef]
- Gaillac, R.; Pullumbi, P.; Coudert, F.-X. ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 2016, 28, 275201. [Google Scholar] [CrossRef]
- Scheiner, S. Hydrogen Bonding. A Theoretical Perspective; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Voigt, W. Lehrbuch der Kristallphysik; Teubner: Berlin, Germany, 1928. [Google Scholar]
- Reuss, A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Greaves, G.N.; Greer, A.L.; Lakes, R.S.; Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 2011, 10, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2009, 45, 823–843. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, B.; Zhao, Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Hard Mater. 2012, 33, 93–106. [Google Scholar] [CrossRef]
- Pettifor, D.G. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 2013, 8, 345–349. [Google Scholar] [CrossRef]
- Kleinman, L. Deformation potentials in silicon. I. Uniaxial strain. Phys. Rev. 1962, 128, 2614. [Google Scholar] [CrossRef]
- Thompson, R.P.; Clegg, W.J. Predicting whether a material is ductile or brittle. Curr. Opin. Solid State Mater. Sci. 2018, 22, 100–108. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
Model | CA Layer Formula | AS Layer Formula | Sum Chem. Formula/UC | Ca:Al:Si Ratio |
---|---|---|---|---|
Str1 | [Ca2Al(OH)6·2H2O] | [(Si3AlO8)·H2O] | Ca6Al6Si9O51H36 | 2:2:3 |
Str2 | [Ca2Al(OH)7·H2O] | [(Si4O8)·H2O] | Ca6Al3Si12O51H33 | 2:1:4 |
Str1-w | [Ca2Al(OH)6·2H2O] | [(Si3AlO8)] | Ca6Al6Si9O48H30 | 2:2:3 |
Str1-a | [Ca2Al(OH)6] | [(Si3AlO8)] | Ca6Al6Si9O42H18 | 2:2:3 |
Str1_d | [Ca8Al4(OH)24·8H2O] | [(Si6Al2O10(OH)12)·4H2O] | Ca24Al18Si18O174H174 | 2:1.5:1.5 |
Str2_d | [Ca8Al4(OH)24·8H2O] | [(Si8O12(OH)10)·4H2O] | Ca24Al12Si24O174H168 | 2:1:2 |
a/Å | b/Å | c/Å | α/° | β/° | γ/° | V/Å3 | dev/% b | |
---|---|---|---|---|---|---|---|---|
Exp. | 5.745 | 5.745 | 37.770 | 90.00 | 90.00 | 120.00 | 1079.587 | 0.0 |
Str1 | 5.509 | 5.503 | 38.064 | 89.67 | 90.09 | 119.94 | 1000.031 | −7.4 |
Str1-w | 5.509 | 5.487 | 38.171 | 89.70 | 98.99 | 119.81 | 1000.973 | −7.3 |
Str1-a | 5.464 | 5.463 | 36.072 | 90.23 | 89.93 | 120.01 | 932.431 | −13.6 |
Str2 | 5.377 | 5.436 | 40.096 | 92.28 | 85.60 | 120.08 | 1011.098 | −6.3 |
Str1_d a | 5.686 | 5.672 | 37.052 | 89.72 | 90.28 | 120.29 | 1031.622 | −4.4 |
Str2_d a | 5.727 | 5.674 | 37.194 | 92.01 | 89.10 | 120.61 | 1039.553 | −3.7 |
Str1 | Interval | Mean ± Std |
---|---|---|
AlIV–O | 1.718–1.763 | 1.743 ± 0.014 |
AlVI–O | 1.885–1.903 | 1.894 ± 0.005 |
Si–O | 1.576–1.723 | 1.653 ± 0.046 |
Ca–O | 2.313–2.419 | 2.369 ± 0.037 |
O–H | 0.969–0.985 | 0.975 ± 0.005 |
H···O | 1.771–2.610 | 2.237 ± 0.230 |
Elastic Constants | Str1 | Str1-w | Str1-a | Str2 | Str1_d | Str2_d |
---|---|---|---|---|---|---|
C11 | 154.1 | 153.8 | 146.3 | 160.1 | 60.4 | 54.6 |
C22 ≈ C11 | 148.4 | 165.1 | 145.8 | 176.2 | 70.9 | 64.3 |
C33 | 32.4 | 44.3 | 135.3 | 20.3 | 60.6 | 48.9 |
C44 | 20.2 | 22.8 | 15.2 | 5.0 | 12.0 | 8.8 |
C55 ≈ C44 | 21.5 | 24.1 | 14.3 | 13.0 | 8.6 | 8.1 |
C66 ≈ 1/2 (C11–C12) | 47.8 | 47.2 | 47.3 | 49.1 | 18.4 | 15.4 |
C12 | 66.0 | 71.4 | 48.9 | 75.2 | 19.3 | 15.3 |
C13 | 9.6 | 14.6 | 4.9 | 0.7 | 13.4 | 12.6 |
C14 | 0.5 | 3.1 | 0.7 | 2.1 | −0.0 | 0.0 |
C15 ≈ 0 | 3.1 | −0.5 | 0.9 | 4.6 | 1.9 | 3.2 |
C16 | 8.6 | 4.5 | −0.7 | 0.3 | 0.6 | 0.1 |
C23 ≈ C13 | 13.2 | 19.6 | 7.3 | 5.6 | 16.6 | 9.9 |
C24 ≈ C14 | 0.6 | 3.1 | 0.0 | −0.6 | 2.0 | 0.6 |
C25 | −4.2 | −5.7 | −1.3 | −1.4 | −1.3 | 1.4 |
C26 | 3.5 | −0.4 | 0.4 | −2.8 | −0.8 | −2.0 |
C34 | −2.4 | 2.1 | 0.6 | 0.4 | 0.6 | 0.2 |
C35 | 0.8 | −2.8 | 1.2 | −2.5 | 1.3 | 3.6 |
C36 | 2.4 | −0.9 | −1.5 | 0.8 | 0.4 | 0.3 |
C45 | 1.8 | 2.7 | 1.1 | 4.6 | −0.5 | −0.8 |
C46 | −4.1 | −4.2 | −0.6 | 1.2 | −2.0 | −1.3 |
C56 ≈ C14 | 0.2 | 0.0 | 1.4 | −0.8 | 0.1 | −1.0 |
Property | Str1 | Str1-w | Str1-a | Str2 | Str1-d | Str2-d |
---|---|---|---|---|---|---|
BH/GPa | 42.6 | 50.8 | 60.3 | 37.5 | 32.0 | 26.3 |
EH/GPa | 72.7 | 80.3 | 83.4 | 52.0 | 40.9 | 34.9 |
GH/GPa | 29.9 | 32.5 | 32.9 | 20.5 | 15.9 | 13.6 |
Poisson’s Ratio νH | 0.215 | 0.236 | 0.269 | 0.269 | 0.287 | 0.279 |
Pugh’s Ratio BH/GH | 1.42 | 1.56 | 1.84 | 1.83 | 2.02 | 1.93 |
Vickers Hardness/GPa | 6.8 | 6.5 | 5.5 | 3.91 | 2.93 | 2.77 |
Universal Elast. Anisotropy | 2.73 | 1.92 | 2.69 | 14.6 | 0.99 | 1.26 |
Cauchy Pressure pC/GPa | −45.7 | −48.6 | −33.6 | −70.2 | −7.4 | −6.5 |
Kleinman parameter ξ | 0.72 | 0.78 | 0.58 | 0.79 | 0.56 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunega, D.; Zaoui, A. Theoretical Study on Impact of Chemical Composition and Water Content on Mechanical Properties of Stratlingite Mineral. Minerals 2025, 15, 648. https://doi.org/10.3390/min15060648
Tunega D, Zaoui A. Theoretical Study on Impact of Chemical Composition and Water Content on Mechanical Properties of Stratlingite Mineral. Minerals. 2025; 15(6):648. https://doi.org/10.3390/min15060648
Chicago/Turabian StyleTunega, Daniel, and Ali Zaoui. 2025. "Theoretical Study on Impact of Chemical Composition and Water Content on Mechanical Properties of Stratlingite Mineral" Minerals 15, no. 6: 648. https://doi.org/10.3390/min15060648
APA StyleTunega, D., & Zaoui, A. (2025). Theoretical Study on Impact of Chemical Composition and Water Content on Mechanical Properties of Stratlingite Mineral. Minerals, 15(6), 648. https://doi.org/10.3390/min15060648