Silicon Nanoparticles Alter Soybean Physiology and Improve Nitrogen Fixation Potential Under Atmospheric Carbon Dioxide (CO2)
Abstract
1. Introduction
2. Results
2.1. n-SiO2 Alters Soybean Physiology Under Elevated CO2
2.2. Enhancement of Photosynthesis Activity in Soybean Under Elevated CO2 Induced by n-SiO2
2.3. Synergistic Effects of Silicon Nanoparticles on Root Morphology and in Soybean Under Elevated CO2
2.4. Modulation in Biochemical Response in Soybean Under n-SiO2-Induced by Elevated CO2
2.5. n-SiO2 Enhances Nodule Health and Biological Nitrogen Fixation Potential in Soybean Under Elevated CO2
2.6. Synergistic Effects of Elevated CO2 and Nano-Silica on Soybean Uptake and Nutrient Homeostasis
3. Materials and Methods
3.1. Experimental Conditions and Plant Growth
3.2. Photosynthetic Pigments and Activity Assessment
3.3. Biochemical Enzymes and Phytohormones Analysis
3.4. Nitrogen Assimilation Enzymes and Nitrogenase Activity
3.5. Quantity of Mineral in Soil-Plant System
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, S.K.; Barnaby, J.Y.; Reddy, V.R.; Sicher, R.C. Varying response of the concentration and yield of soybean seed mineral elements, carbohydrates, organic acids, amino acids, protein, and oil to phosphorus starvation and CO2 enrichment. Front. Plant Sci. 2016, 7, 1967. [Google Scholar] [CrossRef] [PubMed]
- Bredow, M.; Khwanbua, E.; Sartor Chicowski, A.; Qi, Y.; Breitzman, M.W.; Holan, K.L.; Liu, P.; Graham, M.A.; Whitham, S. Elevated CO2 alters soybean physiology and defense responses, and has disparate effects on susceptibility to diverse microbial pathogens. New Phytol. 2025, 246, 2718–2737. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Rodriguez-Vallejo, C.; Silveiro, E.; Hortal, A.; Palacios-Rodríguez, G.; Duque-Lazo, J.; Camarero, J.J. Cumulative Drought Stress Leads to a Loss of Growth Resilience and Explains Higher Mortality in Planted than in Naturally Regenerated Pinus pinaster Stands. Forests 2018, 9, 358. [Google Scholar] [CrossRef]
- Bellaloui, N.; Mengistu, A.; Abbas, H.; Kassem, M.A. Effects of Drought and Elevated Atmospheric Carbon Dioxide on Seed Nutrition and 15N and 13C Natural Abundance Isotopes in Soybean Under Controlled Environments. In Soybean-The Basis of Yield, Biomass and Productivity; Kasai, M., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Shoukat, A.; Pitann, B.; Zafar, M.M.; Farooq, M.A.; Haroon, M.; Nawaz, A.; Wahab, S.W.; Saqib, Z.A. Nanotechnology for climate change mitigation: Enhancing plant resilience under stress environments. J. Plant Nutr. Soil Sci. 2024, 187, 604–620. [Google Scholar] [CrossRef]
- Abuelsoud, W.; Saleh, A.M.; Mohammed, A.E.; Alotaibi, M.O.; AbdElgawad, H. Chitosan nanoparticles upregulate C and N metabolism in soybean plants grown under elevated levels of atmospheric carbon dioxide. Int. J. Biol. Macromol. 2023, 252, 126434. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Sehrish, A.K.; Ai, F.; Zong, X.; Alomrani, S.O.; Al-Ghanim, K.A.; Alshehri, M.A.; Ali, S.; Guo, H. Morphophysiological, biochemical, and nutrient response of spinach (Spinacia oleracea L.) by foliar CeO2 nanoparticles under elevated CO2. Sci. Rep. 2024, 14, 25361. [Google Scholar] [CrossRef]
- Alsherif, E.A.; Hajjar, D.; Aldilami, M.; AbdElgawad, H. Physiological and biochemical responses of wheat to synergistic effects of selenium nanoparticles and elevated CO2 conditions. Front. Plant Sci. 2023, 14, 1183185. [Google Scholar] [CrossRef]
- Nazim, M.; Li, X.; Anjum, S.; Ahmad, F.; Ali, M.; Muhammad, M.; Shahzad, K.; Lin, L.; Zulfiqar, U. Silicon nanoparticles: A novel approach in plant physiology to combat drought stress in arid environment. Biocatal. Agric. Biotechnol. 2024, 58, 103190. [Google Scholar] [CrossRef]
- Ali, A.M.; Bijay-Singh. Silicon: A crucial element for enhancing plant resilience in challenging environments. J. Plant Nutr. 2024, 48, 486–521. [Google Scholar] [CrossRef]
- Johnson, S.N.; Ryalls, J.M.; Gherlenda, A.N.; Frew, A.; Hartley, S.E. Benefits from below: Silicon supplementation maintains legume productivity under predicted climate change scenarios. Front. Plant Sci. 2018, 9, 202. [Google Scholar]
- Thompson, M.; Gamage, D.; Hirotsu, N.; Martin, A.; Seneweera, S. Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk. Front Physiol. 2017, 8, 578. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, H.; Hu, X.; Xu, L.; An, X.; Jin, T.; Ma, R.; Li, Z.; Chen, S.; Du, S.; et al. Comparing the Potential of Silicon Nanoparticles and Conventional Silicon for Salinity Stress Alleviation in Soybean (Glycine max L.): Growth and Physiological Traits and Rhizosphere/Endophytic Bacterial Communities. J. Agric. Food Chem. 2024, 72, 10781–10793. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Guo, J.; Noman, M.; Lv, L.; Manzoor, N.; Qi, X.; Li, B. Metagenomic and biochemical analyses reveal the potential of silicon to alleviate arsenic toxicity in rice (Oryza sativa L.). Environ. Pollut. 2024, 345, 123537. [Google Scholar] [CrossRef]
- Hussain, S.; Mumtaz, M.; Manzoor, S.; Shuxian, L.; Ahmed, I.; Skalicky, M.; Brestic, M.; Rastogi, A.; Ulhassan, Z.; Shafiq, I.; et al. Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiol. Biochem. 2021, 159, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zheng, M.; Bian, Z.; Pan, N.; Tian, H.; Zhang, X.; Qiu, Z.; Xu, J.; Gu, B. Elevated CO2 levels promote both carbon and nitrogen cycling in global forests. Nat. Clim. Change 2024, 14, 511–517. [Google Scholar] [CrossRef]
- Hachiya, T.; Sugiura, D.; Kojima, M.; Sato, S.; Yanagisawa, S.; Sakakibara, H.; Terashima, I.; Noguchi, K. High CO2 triggers preferential root growth of Arabidopsis thaliana via two distinct systems under low pH and low N stresses. Plant Cell Physiol. 2014, 55, 269–280. [Google Scholar] [CrossRef]
- Xu, X.; Guo, Y.; Hao, Y.; Cai, Z.; Cao, Y.; Fang, W.; Zhao, B.; Haynes, C.L.; White, J.C.; Ma, C. Nano-silicon fertiliser increases the yield and quality of cherry radish. Mod. Agric. 2023, 1, 152–165. [Google Scholar] [CrossRef]
- Shamshiripour, M.; Motesharezadeh, B.; Rahmani, H.A.; Alikhani, H.A.; Etesami, H. Optimal Concentrations of Silicon Enhance the Growth of Soybean (Glycine Max L.) Cultivars by Improving Nodulation, Root System Architecture, and Soil Biological Properties. Silicon 2022, 14, 5333–5345. [Google Scholar] [CrossRef]
- Ahsan, M.; Radicetti, E.; Jamal, A.; Ali, H.M.; Sajid, M.; Manan, A.; Bakhsh, A.; Naeem, M.; Khan, J.A.; Valipour, M. Silicon nanoparticles and indole butyric acid positively regulate the growth performance of Freesia refracta by ameliorating oxidative stress under chromium toxicity. Front. Plant Sci. 2024, 15, 1437276. [Google Scholar] [CrossRef]
- Dakora, F.D.; Li, H.; Zhao, J. Exploring the Impacts of Elevated CO2 on Food Security: Nutrient Assimilation, Plant Growth, and Crop Quality. Engineering 2024, 44, 234–244. [Google Scholar] [CrossRef]
- Leakey, A.D.B.; Ainsworth, E.A.; Bernacchi, C.J.; Rogers, A.; Long, S.P.; Ort, D.R. Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. J. Exp. Bot. 2009, 60, 2859–2876. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-G.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef] [PubMed]
- Hopmans, J.W.; Bristow, K.L. Current capabilities and future needs of root water and nutrient uptake modeling. Adv. Agron. 2002, 77, 103–183. [Google Scholar]
- Wang, E.; Smith, C.J. Modelling the growth and water uptake function of plant root systems: A review. Aust. J. Agric. Res. 2004, 55, 501–523. [Google Scholar] [CrossRef]
- Madhu, M.; Hatfield, J. Dynamics of plant root growth under increased atmospheric carbon dioxide. Agron. J. 2013, 105, 657–669. [Google Scholar] [CrossRef]
- Wang, D.; Heckathorn, S.A.; Wang, X.; Philpott, S.M. A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 2012, 169, 1–13. [Google Scholar] [CrossRef]
- Coker, G.T.; Schubert, K.R. Carbon Dioxide Fixation in Soybean Roots and Nodules: I. Characterization and comparison with n2 fixation and composition of xylem exudate during early nodule development. Plant Physiol. 1981, 67, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Mukarram, M.; Khan, M.M.A.; Corpas, F.J. Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield. J. Hazard. Mater. 2021, 412, 125254. [Google Scholar] [CrossRef] [PubMed]
- Kumari, K.; Rani, N.; Hooda, V. Unravelling the effects of nano SiO2, nano TiO2 and their nanocomposites on Zea mays L. growth and soil health. Sci. Rep. 2024, 14, 13996. [Google Scholar] [CrossRef]
- Bach, L.; Gojon, A. Root system growth and development responses to elevated CO2: Underlying signalling mechanisms and role in improving plant CO2 capture and soil C storage. Biochem J 2023, 480, 753–771. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Mashwani, Z.-u.-R.; Hayat, R.; Yasmin, H.; Noureldeen, A.; Ahmad, P. Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physiol. Biochem. 2021, 166, 160–176. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Liu, Q.; Wang, B.; Yuan, F. Roles of phytohormones and their signaling pathways in leaf development and stress responses. J. Agric. Food Chem. 2021, 69, 3566–3584. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Munné-Bosch, S. Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiol. 2021, 185, 1500–1522. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Su, L.; Cong, Y.; Chen, J.; Geng, Y.; Qian, C.; Xu, Q.; Chen, X.; Qi, X. Sugars enhance parthenocarpic fruit formation in cucumber by promoting auxin and cytokinin signaling. Sci. Hortic. 2021, 283, 110061. [Google Scholar] [CrossRef]
- Teng, N.; Wang, J.; Chen, T.; Wu, X.; Wang, Y.; Lin, J. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol. 2006, 172, 92–103. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Ighodaro, O.; Akinloye, O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Hossain, M.A.; Bhattacharjee, S.; Armin, S.-M.; Qian, P.; Xin, W.; Li, H.-Y.; Burritt, D.J.; Fujita, M.; Tran, L.-S.P. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front. Plant Sci. 2015, 6, 420. [Google Scholar] [CrossRef]
- Farooq, T.; Adeel, M.; He, Z.; Umar, M.; Shakoor, N.; da Silva, W.; Elmer, W.; White, J.C.; Rui, Y. Nanotechnology and Plant Viruses: An Emerging Disease Management Approach for Resistant Pathogens. ACS Nano 2021, 15, 6030–6037. [Google Scholar] [CrossRef]
- Sanyal, S.; Chakrabarti, B.; Prasanna, R.; Bhatia, A.; Kumar, S.N.; Purakayastha, T.J.; Joshi, R.; Sharma, A. Influence of cyanobacterial inoculants, elevated carbon dioxide, and temperature on plant and soil nitrogen in soybean. J. Basic Microbiol. 2022, 62, 1216–1228. [Google Scholar] [CrossRef]
- Ilangumaran, G.; Schwinghamer, T.D.; Smith, D.L. Rhizobacteria from root nodules of an indigenous legume enhance salinity stress tolerance in soybean. Front. Sustain. Food Syst. 2021, 4, 617978. [Google Scholar] [CrossRef]
- Etesami, H.; Adl, S.M. Can interaction between silicon and non–rhizobial bacteria help in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review. Rhizosphere 2020, 15, 100229. [Google Scholar] [CrossRef]
- Mali, M.; Aery, C.N. Silicon effects on nodule growth, dry-matter production, and mineral nutrition of cowpea (Vigna unguiculata). J. Plant Nutr. Soil Sci. 2008, 171, 835–840. [Google Scholar] [CrossRef]
- Nelwamondo, A.; Jaffer, M.A.; Dakora, F.D. Subcellular organization of N 2-fixing nodules of cowpea (Vigna unguiculata) supplied with silicon. Protoplasma 2001, 216, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-S.; Das, A.K.; Methela, N.J.; Yun, B.-W. Interaction Between Nitric Oxide and Silicon on Leghaemoglobin and S-Nitrosothiol Levels in Soybean Nodules. Biomolecules 2024, 14, 1417. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Liu, L.; Wei, Z.; Qin, Q.; Bai, Q.; Zhao, C.; Zhang, S.; Wang, H. Silicon Nano-Fertilizer-Enhanced Soybean Resilience and Yield Under Drought Stress. Plants 2025, 14, 751. [Google Scholar] [CrossRef]
- Gojon, A.; Cassan, O.; Bach, L.; Lejay, L.; Martin, A. The decline of plant mineral nutrition under rising CO2: Physiological and molecular aspects of a bad deal. Trends Plant Sci. 2023, 28, 185–198. [Google Scholar] [CrossRef]
- Bouain, N.; Cho, H.; Sandhu, J.; Tuiwong, P.; Zheng, L.; Shahzad, Z.; Rouached, H. Plant growth stimulation by high CO2 depends on phosphorus homeostasis in chloroplasts. Curr. Biol. 2022, 32, 4493–4500.e4. [Google Scholar] [CrossRef]
- Deuchande, T.; Soares, J.; Nunes, F.; Pinto, E.; Vasconcelos, M.W. Short term elevated CO2 interacts with iron deficiency, further repressing growth, photosynthesis and mineral accumulation in soybean (Glycine max L.) and common bean (Phaseolus vulgaris L.). Environments 2021, 8, 122. [Google Scholar] [CrossRef]
- Mali, M.; Aery, N. Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. J. Plant Nutr. 2008, 31, 1867–1876. [Google Scholar] [CrossRef]
- Zhou, P.; Jiang, Y.; Adeel, M.; Shakoor, N.; Zhao, W.; Liu, Y.; Li, Y.; Li, M.; Azeem, I.; Rui, Y.; et al. Nickel Oxide Nanoparticles Improve Soybean Yield and Enhance Nitrogen Assimilation. Environ. Sci. Technol. 2023, 57, 7547–7558. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Sun, G.; Li, G.; Hu, G.; Fu, L.; Hu, S.; Yang, J.; Wang, Z.; Gu, W. Effects of Multi Walled Carbon Nanotubes and Nano-SiO2 on Key Enzymes for Seed Germination and Endogenous Hormone Level in Maize Seedling. Agronomy 2024, 14, 2908. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Guo, Z.; Cao, W.; Gao, L.; Li, Y.; Tian, C.F.; Chen, Q.; Shen, Y.; Ren, F.; et al. Molybdenum Nanofertilizer Boosts Biological Nitrogen Fixation and Yield of Soybean through Delaying Nodule Senescence and Nutrition Enhancement. ACS Nano 2023, 17, 14761–14774. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Deng, C.; Eggleston, I.; Gao, S.; Li, A.; Alvarez Reyes, W.R.; Cai, K.; Qiu, R.; Haynes, C.L.; et al. Optimizing SiO2 Nanoparticle Structures to Enhance Drought Resistance in Tomato (Solanum lycopersicum L.): Insights into Nanoparticle Dissolution and Plant Stress Response. J. Agric. Food Chem. 2025, 73, 9983–9993. [Google Scholar] [CrossRef]
- O’Keefe, T.L.; Deng, C.; Wang, Y.; Mohamud, S.; Torres-Gómez, A.; Tuga, B.; Huang, C.-H.; Alvarez Reyes, W.R.; White, J.C.; Haynes, C.L. Chitosan-Coated Mesoporous Silica Nanoparticles for Suppression of Fusarium virguliforme in Soybeans (Glycine max). ACS Agric. Sci. Technol. 2024, 4, 580–592. [Google Scholar] [CrossRef]
- Murray, V.; Ebi, K.L. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). J. Epidemiol. Community Health 2012, 66, 759–760. [Google Scholar] [CrossRef]
- Azeem, I.; Wang, Q.; Adeel, M.; Shakoor, N.; Zain, M.; khan, A.A.; Li, Y.; Azeem, K.; Nadeem, M.; Zhu, G.; et al. Assessing the combined impacts of microplastics and nickel oxide nanomaterials on soybean growth and nitrogen fixation potential. J. Hazard. Mater. 2024, 480, 136062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, J. Silicon Nanoparticles Alter Soybean Physiology and Improve Nitrogen Fixation Potential Under Atmospheric Carbon Dioxide (CO2). Plants 2025, 14, 2009. https://doi.org/10.3390/plants14132009
Tong J. Silicon Nanoparticles Alter Soybean Physiology and Improve Nitrogen Fixation Potential Under Atmospheric Carbon Dioxide (CO2). Plants. 2025; 14(13):2009. https://doi.org/10.3390/plants14132009
Chicago/Turabian StyleTong, Jingbo. 2025. "Silicon Nanoparticles Alter Soybean Physiology and Improve Nitrogen Fixation Potential Under Atmospheric Carbon Dioxide (CO2)" Plants 14, no. 13: 2009. https://doi.org/10.3390/plants14132009
APA StyleTong, J. (2025). Silicon Nanoparticles Alter Soybean Physiology and Improve Nitrogen Fixation Potential Under Atmospheric Carbon Dioxide (CO2). Plants, 14(13), 2009. https://doi.org/10.3390/plants14132009