Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (163)

Search Parameters:
Keywords = signal duty cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5636 KiB  
Article
Design and Implementation of Novel DC-DC Converter with Step-Up Ratio and Soft-Switching Technology
by Kuei-Hsiang Chao and Thi-Thanh-Truc Bau
Electronics 2025, 14(16), 3335; https://doi.org/10.3390/electronics14163335 - 21 Aug 2025
Abstract
This paper focuses on the development of a high-conversion-efficiency DC/DC boost converter, which features high-voltage boost ratio conversion and employs soft-switching technology to reduce conversion losses. In the proposed design, the conventional energy storage inductor used in traditional boost converters is replaced with [...] Read more.
This paper focuses on the development of a high-conversion-efficiency DC/DC boost converter, which features high-voltage boost ratio conversion and employs soft-switching technology to reduce conversion losses. In the proposed design, the conventional energy storage inductor used in traditional boost converters is replaced with a coupled inductor, and an additional boost circuit is introduced. This configuration allows the converter to achieve a higher voltage conversion ratio under the same duty cycle, thereby enhancing the voltage gain of the converter. Additionally, a resonance branch is incorporated into the converter, and by applying a simple switching signal control, zero-voltage switching (ZVS) of the main switch is realized. To decrease the switching losses typically found in hard-switching high-voltage boost ratio converters, the proposed design enhances overall power conversion efficiency. The operation principle of this novel high-voltage boost ratio soft-switching converter is first examined, followed by the component design process. The converter’s effectiveness is then confirmed through simulation in PSIM. Finally, experimental testing using the TMS320F2809 digital signal processor demonstrates that the main switch achieves ZVS, validating the practical viability of the design. The converter operates under a full load of 340 W, achieving a conversion efficiency of 92.7%, demonstrating the excellent conversion performance of the developed converter. Full article
(This article belongs to the Special Issue New Horizons and Recent Advances of Power Electronics)
Show Figures

Figure 1

22 pages, 3781 KiB  
Article
Fault-Tolerant Trajectory Tracking Control for a Differential-Driven Unmanned Surface Vehicle with Propeller Faults
by Yuanbo Su, Renhai Yu, Wanyu Tang and Tieshan Li
J. Mar. Sci. Eng. 2025, 13(8), 1592; https://doi.org/10.3390/jmse13081592 - 20 Aug 2025
Viewed by 186
Abstract
This article investigates the problem of adaptive fault-tolerant trajectory tracking control for a differential-driven unmanned surface vehicle (USV) with propeller faults. A new USV control system considering a propeller servo loop is established, which is composed of kinematics, kinetics including unhealthy surge force [...] Read more.
This article investigates the problem of adaptive fault-tolerant trajectory tracking control for a differential-driven unmanned surface vehicle (USV) with propeller faults. A new USV control system considering a propeller servo loop is established, which is composed of kinematics, kinetics including unhealthy surge force and yaw moment, and propeller motor shaft speed dynamics. Firstly, the control design of the kinematic level derives the virtual surge speed and yaw rate, which can accurately guide the tracking design of the kinetic level. Secondly, by estimating the bound of the unknown propeller fault parameters, the virtual fault-tolerant control laws are constructed in the kinetic level, which can generate the desired motor angular shaft speeds with an active compensation feature. Thirdly, in the control design of the propeller servo loop, the command duty cycles are designed to force the actual motor shaft speeds to track the desired signals produced from the kinetic level. It can be proven that tracking errors are semiglobally ultimately uniformly bounded based on Lyapunov stability theory. Finally, simulations considering single propeller and twin propeller faults prove the validity of the developed method. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

19 pages, 2954 KiB  
Article
Maximum Power Extraction of Photovoltaic Systems Using Dynamic Sliding Mode Control and Sliding Observer
by Ali Karami-Mollaee and Oscar Barambones
Mathematics 2025, 13(14), 2305; https://doi.org/10.3390/math13142305 - 18 Jul 2025
Viewed by 227
Abstract
In this paper, a robust optimized controller is implemented in the photovoltaic generator system (PVGS). The PVGS is composed of individual photovoltaic (PV) cells, which convert solar energy to electrical energy. To optimize the efficiency of the PVGS under variable solar irradiance and [...] Read more.
In this paper, a robust optimized controller is implemented in the photovoltaic generator system (PVGS). The PVGS is composed of individual photovoltaic (PV) cells, which convert solar energy to electrical energy. To optimize the efficiency of the PVGS under variable solar irradiance and temperatures, a maximum power point tracking (MPPT) controller is necessary. Additionally, the PVGS output voltage is typically low for many applications. To achieve the MPPT and to gain the output voltage, an increasing boost converter (IBC) is employed. Then, two issues should be considered in MPPT. At first, a smooth control signal for adjusting the duty cycle of the IBC is important. Another critical issue is the PVGS and IBC unknown sections, i.e., the total system uncertainty. Therefore, to address the system uncertainties and to regulate the smooth duty cycle of the converter, a robust dynamic sliding mode control (DSMC) is proposed. In DSMC, a low-pass integrator is placed before the system to suppress chattering and to produce a smooth actuator signal. However, this integrator increases the system states, and hence, a sliding mode observer (SMO) is proposed to estimate this additional state. The stability of the proposed control scheme is demonstrated using the Lyapunov theory. Finally, to demonstrate the effectiveness of the proposed method and provide a reliable comparison, conventional sliding mode control (CSMC) with the same proposed SMO is also implemented. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

41 pages, 10836 KiB  
Article
Improved Rectangular Extension of Steinmetz Equation Including Small and Large Excitation Signals with DC Bias
by Piotr Szczerba and Cezary Worek
Electronics 2025, 14(14), 2883; https://doi.org/10.3390/electronics14142883 - 18 Jul 2025
Viewed by 296
Abstract
The core loss of the ferrite-based magnetic components is usually characterized by the well-known Steinmetz equation and its derivatives. This occurs when the magnitude of the excitation signal is high enough; otherwise, the core loss is defined by the complex permeability. These two [...] Read more.
The core loss of the ferrite-based magnetic components is usually characterized by the well-known Steinmetz equation and its derivatives. This occurs when the magnitude of the excitation signal is high enough; otherwise, the core loss is defined by the complex permeability. These two models are based on different assumptions, and thus, this paper aims to combine the large- and small-signal core loss models into a single, unified model. Moreover, the paper presents improvements to the existing state-of-the-art core loss model, specifically regarding the influence of the switching duty-cycle of rectangular excitation signals and the DC bias. Full article
Show Figures

Figure 1

15 pages, 2939 KiB  
Article
Optimization of Process Parameters for WEDM Processing SiCp/Al Based on Graphene Working Fluid
by Zhou Sun, Weining Lei, Linglei Kong and Yafeng He
Processes 2025, 13(7), 2156; https://doi.org/10.3390/pr13072156 - 7 Jul 2025
Viewed by 348
Abstract
In the process of machining an aluminum matrix silicon carbide (SiCp/Al) composite material using wire electric discharge machining (WEDM), the thermal conductivity and dielectric properties of working fluid, such as discharge medium and cool carrier, directly determine the material removal rate (MRR) and [...] Read more.
In the process of machining an aluminum matrix silicon carbide (SiCp/Al) composite material using wire electric discharge machining (WEDM), the thermal conductivity and dielectric properties of working fluid, such as discharge medium and cool carrier, directly determine the material removal rate (MRR) and surface roughness (Ra). In this paper, graphene-working fluid is innovatively used as working medium to optimize the discharge process due to its high thermal conductivity and field emission characteristics. The single-factor experiments show that graphene can increase the MRR by 11.16% and decrease the Ra by 29.96% compared with traditional working fluids. In order to analyze the multi-parameter coupling effect, an L16 (44) orthogonal test is further designed, and the effects of the pulse width (Ton), duty cycle (DC), power tube number (PT), and wire speed (WS) on the MRR and Ra are determined using a signal-to-noise analysis. Based on a gray relational grade analysis, a multi-objective optimization model was established, and the priority of the MRR and Ra was determined using an AHP, and finally the optimal parameter combination (Ton = 22 μs, DC = 1:4, PT = 3, WS = 2) was obtained. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

11 pages, 1699 KiB  
Article
Optimization of the LIBS Technique in Air, He, and Ar at Atmospheric Pressure for Hydrogen Isotope Detection on Tungsten Coatings
by Salvatore Almaviva, Lidia Baiamonte and Marco Pistilli
J. Nucl. Eng. 2025, 6(3), 22; https://doi.org/10.3390/jne6030022 - 1 Jul 2025
Viewed by 383
Abstract
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing [...] Read more.
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing this task directly in situ, without handling or removing PFCs, thus limiting analysis times and increasing the machine’s duty cycle. To increase sensitivity and the ability to discriminate between isotopes, LIBS analysis can be performed under different background gases at atmospheric pressure, such as air, He, and Ar. In this work, we present the results obtained on tungsten coatings enriched with deuterium and/or hydrogen as a deuterium–tritium nuclear fuel simulant, measured with the LIBS technique in air, He, and Ar at atmospheric pressure, and discuss the pros and cons of their use. The results obtained demonstrate that both He and Ar can improve the LIBS signal resolution of the hydrogen isotopes compared to air. However, using Ar has the additional advantage that the same procedure can also be used to detect He implanted in PFCs as a product of fusion reactions without any interference. Finally, the LIBS signal in an Ar atmosphere increases in terms of the signal-to-noise ratio (SNR), enabling the use of less energetic laser pulses to improve performance in depth profiling analyses. Full article
(This article belongs to the Special Issue Fusion Materials with a Focus on Industrial Scale-Up)
Show Figures

Graphical abstract

18 pages, 2325 KiB  
Article
Ultrasound Improves Gallbladder Contraction Function: A Non-Invasive Experimental Validation Using Small Animals
by Run Guo, Tian Chen, Fan Ding, Li-Ping Liu, Fang Chen, Gang Zhao and Bo Zhang
Bioengineering 2025, 12(7), 716; https://doi.org/10.3390/bioengineering12070716 - 30 Jun 2025
Viewed by 591
Abstract
Background: Gallbladder hypomotility is a key pathogenic factor in cholelithiasis. Non-invasive interventions to enhance gallbladder contractility remain limited. Ultrasound therapy has shown promise in various muscular disorders, but its effects on gallbladder function are unexplored. Methods: This study employed low-intensity pulsed ultrasound (LIPUS) [...] Read more.
Background: Gallbladder hypomotility is a key pathogenic factor in cholelithiasis. Non-invasive interventions to enhance gallbladder contractility remain limited. Ultrasound therapy has shown promise in various muscular disorders, but its effects on gallbladder function are unexplored. Methods: This study employed low-intensity pulsed ultrasound (LIPUS) at a 3 MHz frequency and 0.8 W/cm2 intensity with a 20% duty cycle to irradiate the gallbladder region of fasting guinea pigs. Gallbladder contractile function was evaluated through multiple complementary approaches: in vivo assessment via two-dimensional/three-dimensional ultrasound imaging to monitor volumetric changes; quantitative functional evaluation using nuclear medicine scintigraphy (99mTc-HIDA); and ex vivo experiments including isolated gallbladder muscle strip tension measurements, histopathological analysis, α-smooth muscle actin (α-SMA) immunohistochemistry, and intracellular calcium fluorescence imaging. Results: Ultrasound significantly enhanced gallbladder emptying, evidenced by the volume reduction and increased ejection fraction. Scintigraphy confirmed accelerated bile transport in treated animals. Ex vivo analyses demonstrated augmented contractile force, amplitude, and frequency in ultrasound-treated smooth muscle. Histological examination revealed smooth muscle hypertrophy, α-SMA upregulation, and elevated intracellular calcium levels. Extended ultrasound exposure produced sustained functional improvements without tissue damage. Conclusions: Ultrasound effectively enhances gallbladder contractile function through mechanisms involving smooth muscle structural modification and calcium signaling modulation. These findings establish the experimental foundation for ultrasound as a promising non-invasive therapeutic approach to improve gallbladder motility and potentially prevent gallstone formation. Full article
Show Figures

Figure 1

17 pages, 5616 KiB  
Article
A Reduced-Order Small-Signal Model for Four-Switch Buck–Boost Under Soft-Switching Current Shaping Control Strategy
by Lin Tian, Hui Liu, Yan Zhang and Xinke Wu
Electronics 2025, 14(13), 2564; https://doi.org/10.3390/electronics14132564 - 25 Jun 2025
Viewed by 373
Abstract
The four-switch buck–boost (FSBB) converter, which possesses both step-up and step-down capabilities, is highly suitable for applications where input and output voltages have overlapping ranges. Correspondingly, the current shaping control (CSC) strategy is investigated for the FSBB converter, which shapes a quadrilateral inductor [...] Read more.
The four-switch buck–boost (FSBB) converter, which possesses both step-up and step-down capabilities, is highly suitable for applications where input and output voltages have overlapping ranges. Correspondingly, the current shaping control (CSC) strategy is investigated for the FSBB converter, which shapes a quadrilateral inductor current waveform featuring the minimum RMS value to improve efficiency and power density. However, the small-signal model for the CSC algorithm has not yet been established, and the traditional and common modeling method requires considering multiple duty cycles and phase shifts of the FSBB converter, whose calculation is complex and inconvenient to use. For the special case of the CSC strategy using cycle-by-cycle current detection, an additional constraint of the averaged volt-second on the inductor can be regarded as zero, making the inductor current no longer a variable of the state-space, which eliminates the pole generated by the inductor and reduces the order of the small-signal model. Thus, this paper greatly simplifies the computation and design of the compensator by using the constraint condition mentioned above. This one-pole first-order model is simplified, maintains enough accuracy in the low-frequency domain, and can be corrected using only a simple PI controller. Finally, a prototype of the 300 W FSBB converter under the digital CSC algorithm was built to validate the precision and dynamic performance of the proposed first-order small-signal model. Full article
Show Figures

Figure 1

18 pages, 4489 KiB  
Article
Design Methodology and Robustness Analysis of a 13–15 GHz Three-Stage Low-Noise Amplifier in pHEMT GaAs Technology
by Fida Abdalrahman, Patrick E. Longhi, Walter Ciccognani, Sergio Colangeli, Antonio Serino and Ernesto Limiti
Electronics 2025, 14(11), 2206; https://doi.org/10.3390/electronics14112206 - 29 May 2025
Cited by 1 | Viewed by 550
Abstract
This work presents a novel three-stage low-noise amplifier (LNA) design methodology. The first two stages consist of common-source stages with inductive source degeneration, while the third stage consists of an RC network attached before the common-source FET transistor. The input matching network is [...] Read more.
This work presents a novel three-stage low-noise amplifier (LNA) design methodology. The first two stages consist of common-source stages with inductive source degeneration, while the third stage consists of an RC network attached before the common-source FET transistor. The input matching network is designed to meet the optimum noise measurement termination, which results in a noise Figure of less than 1.6 dB. The highest gain level of 25 dB was measured, and the input and output reflection coefficients are better than 10 dB for the operating bandwidth, i.e., 13–15 GHz. The LNA’s large signal performance and robustness against continuous high input power and pulse waves are reported. This LNA can handle up to 15 dBm input pulse of 50 nS width and 10% duty cycle, and 18 dBm continuous wave without noticing an increment in the forward gate current. Full article
Show Figures

Figure 1

16 pages, 3286 KiB  
Article
Tachometric Cup Anemometer with Wind Direction Indicator and Fibre-Optic Signal Transmission
by Paweł Ligęza, Paweł Jamróz and Katarzyna Socha
Sensors 2025, 25(11), 3281; https://doi.org/10.3390/s25113281 - 23 May 2025
Viewed by 607
Abstract
This article presents an innovative design of a tachometric anemometer for measuring wind velocity and direction, which does not contain electronic components and systems or power supply systems in the measurement area. This device can be used in extremely unfavourable environmental operating conditions, [...] Read more.
This article presents an innovative design of a tachometric anemometer for measuring wind velocity and direction, which does not contain electronic components and systems or power supply systems in the measurement area. This device can be used in extremely unfavourable environmental operating conditions, in locations exposed to direct atmospheric discharges, in conditions requiring restrictive and intrinsic safety, in special military applications, and in measurements in the presence of extreme electromagnetic fields. An innovative optical–mechanical transducer is used in the anemometer. This transducer generates a light pulse signal, the frequency of which is a function of the flow velocity, and the duty cycle is a function of the wind direction. This signal is transmitted via optical fibre from the sensor assembly to the measuring station, located outside the measurement area. The design of the device is simple, durable, and resistant to environmental conditions. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

23 pages, 2098 KiB  
Article
Innovative Control Techniques for Enhancing Signal Quality in Power Applications: Mitigating Electromagnetic Interference
by N. Manoj Kumar, Yousef Farhaoui, R. Vimala, M. Anandan, M. Aiswarya and A. Radhika
Algorithms 2025, 18(5), 288; https://doi.org/10.3390/a18050288 - 18 May 2025
Viewed by 449
Abstract
Electromagnetic interference (EMI) remains a difficult task in the design and operation of contemporary power electronic systems, especially in those applications where signal quality has a direct impact on the overall performance and efficiency. Conventional control schemes that have evolved to counteract the [...] Read more.
Electromagnetic interference (EMI) remains a difficult task in the design and operation of contemporary power electronic systems, especially in those applications where signal quality has a direct impact on the overall performance and efficiency. Conventional control schemes that have evolved to counteract the effects of EMI generally tend to have greater design complexity, greater error rates, poor control accuracy, and large amounts of harmonic distortion. In order to overcome these constraints, this paper introduces an intelligent and advanced control approach founded on the signal randomization principle. The suggested approach controls the switching activity of a DC–DC converter by dynamically tuned parameters like duty cycle, switching frequency, and signal modulation. A boost interleaved topology is utilized to maximize the current distribution and minimize ripple, and an innovative space vector-dithered sigma delta modulation (SV-DiSDM) scheme is proposed for cancelling harmonics via a digitalized control action. The used modulation scheme can effectively distribute the harmonic energy across a larger range of frequencies to largely eliminate EMI and boost the stability of the system. High-performance analysis is conducted by employing significant measures like total harmonic distortion (THD), switching frequency deviation, switching loss, and distortion product. Verification against conventional control models confirms the increased efficiency, less EMI, and greater signal integrity of the proposed method, and hence, it can be a viable alternative for EMI-aware power electronics applications. Full article
(This article belongs to the Special Issue Emerging Trends in Distributed AI for Smart Environments)
Show Figures

Figure 1

20 pages, 8537 KiB  
Article
Digital Predictive Peak Current Control Strategy for the High-Order Superbuck Converter
by Yuanxun Wang, Yuchao Huang, Liangliang Lu, Qiao Zhang, Desheng Zhang and Run Min
Electronics 2025, 14(10), 1987; https://doi.org/10.3390/electronics14101987 - 13 May 2025
Viewed by 328
Abstract
This paper proposes a digital predictive peak current control (PPCC) strategy for superbuck converters. The proposed strategy incorporates a current predictor to calculate the output current and a peak current controller to calculate the required duty ratio for the next switching cycle. The [...] Read more.
This paper proposes a digital predictive peak current control (PPCC) strategy for superbuck converters. The proposed strategy incorporates a current predictor to calculate the output current and a peak current controller to calculate the required duty ratio for the next switching cycle. The duty ratio is precalculated ahead of a switching cycle, which creates a switching cycle for signal samplings and digital calculations. At the end of the next switching cycle, the output current peak value is regulated to match the reference value. The proposed strategy regulates the output current peak value to the reference value within two switching cycles. This increases the current loop bandwidth to π/T rad/s, which optimizes the transient performance. Moreover, a new damping parameter design method based on the damping ratio is given. Furthermore, a simplified version is proposed to facilitate digital realization. This version directly calculates the required duty ratio, which significantly reduces digital calculations. Finally, the experimental results demonstrate the effectiveness of the proposed control strategy in improving the transient performance of the superbuck converter. Full article
Show Figures

Figure 1

23 pages, 6425 KiB  
Article
The Feasibility and Performance of Thin-Film Thermocouples in Measuring Insulated Gate Bipolar Transistor Temperatures in New Energy Electric Drives
by Bole Xiang, Guoqiang Li and Zhihui Liu
Micromachines 2025, 16(4), 465; https://doi.org/10.3390/mi16040465 - 14 Apr 2025
Viewed by 580
Abstract
In the new energy electric drive system, the thermal stability of IGBT, a core power device, significantly impacts the system’s overall performance. Accurate IGBT temperature measurement is crucial, but traditional methods face limitations in IGBT’s compact working space. Thin-film thermocouples, with their thin [...] Read more.
In the new energy electric drive system, the thermal stability of IGBT, a core power device, significantly impacts the system’s overall performance. Accurate IGBT temperature measurement is crucial, but traditional methods face limitations in IGBT’s compact working space. Thin-film thermocouples, with their thin and light features, offer a new solution. In this study, Ni 90% Cr 10% and Ni 97% Si 3% thin-film thermocouples were prepared on polyimide substrates via magnetron sputtering. After calibration, the Seebeck coefficient of the thin-film thermocouple temperature sensors reached 40.23 μV/°C, and the repeatability error stabilized at about 0.3% as the temperature rose, showing good stability. Researchers studied factors affecting IGBT temperature. Thin-film thermocouples can accurately monitor IGBT module surface temperature under different conditions. Compared to K-type wire thermocouples, they measure slightly higher temperatures. As the control signal’s switching frequency increases, IGBT temperature first rises then falls; as the duty cycle increases, the temperature keeps rising. This is consistent with RAC’s junction temperature prediction theory, validating the feasibility of thin-film thermocouples for IGBT chip temperature measurement. Thin-film thermocouples have great application potential in power device temperature measurement and may be a key research direction, supporting the optimization and upgrading of new energy electric drive systems. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

22 pages, 9985 KiB  
Article
High-Voltage Gain Single-Switch Quadratic Semi-SEPIC Converters for Powering High-Voltage Sensors Suitable for Renewable Energy Systems and Industrial Automation with Low Voltage Stresses
by Frederick Nana Oppong, Soroush Esmaeili and Ashraf Ali Khan
Sensors 2025, 25(8), 2424; https://doi.org/10.3390/s25082424 - 11 Apr 2025
Viewed by 503
Abstract
This paper presents two new non-isolated DC-DC converters with and without a coupled inductor based on quadratic voltage conversion. Firstly, the coupled inductor-less type is explained in detail. It employs a voltage-boosting cell and a modified SEPIC structure to provide a high voltage [...] Read more.
This paper presents two new non-isolated DC-DC converters with and without a coupled inductor based on quadratic voltage conversion. Firstly, the coupled inductor-less type is explained in detail. It employs a voltage-boosting cell and a modified SEPIC structure to provide a high voltage boost ability with a lower and practical value for the switching duty cycle. This allows for lower power loss compared to conventional DC-DC converters. Having only one switch in the proposed converter simplifies the control and reduces the required number of control signals. Furthermore, the presented transformer-less structure can help avoid producing huge voltage spikes across the power switch. In traditional quadratic SEPIC converters, the voltage-boosting cell’s capacitor experiences relatively high voltage stress due to the voltage multiplication process. In contrast, the proposed converter offers significantly lower voltage stresses. Hence, it becomes possible to utilize a capacitor with a lower voltage rating, leading to cost savings and improved reliability and availability of suitable components. The first topology can be improved for ultrahigh voltage applications by replacing the middle inductor with a coupled transformer. Consequently, a higher voltage range with a lower switching duty cycle can be attained. Theoretical analysis and mathematical derivations are provided, and the comparison section claims the proposed converter’s ability to minimize voltage stress across the switch and output diode. Finally, experimental results are given to verify the effectiveness of the proposed converters at an output power of 260 W. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 4508 KiB  
Article
Three-Channel Fully Integrated Galvanic Isolation Interface in GaN Technology
by Katia Samperi, Nunzio Spina, Alessandro Castorina and Giuseppe Palmisano
Electronics 2025, 14(7), 1403; https://doi.org/10.3390/electronics14071403 - 31 Mar 2025
Viewed by 610
Abstract
This paper presents a three-channel galvanic isolation interface in GaN technology. Driver, diagnostic, and control channels have been implemented in a two-die integrated system to perform an isolation interface for a high-performance power switching system. Chip-to-chip communication has been used, which is based [...] Read more.
This paper presents a three-channel galvanic isolation interface in GaN technology. Driver, diagnostic, and control channels have been implemented in a two-die integrated system to perform an isolation interface for a high-performance power switching system. Chip-to-chip communication has been used, which is based on planar micro-antennas with on–off keying modulated RF carriers. This approach provides a high isolation rating by properly setting the distance between chips. Various innovation aspects are adopted with respect to previously published works. They mainly involve the receiver robustness thanks to the switched-capacitor bias control, a bidirectional data channel implementation for power section diagnostic, and a duty cycle distortion compensation for accurate PWM signal. Driver and control channels use RF carriers of about 2 GHz and 0.9 GHz and achieve 2 MHz and 0.5 MHz measured pulse width modulation signals, respectively. The bidirectional channel adopts an RF carrier of about 400 MHz and exhibits a maximum measured data rate as high as 10 Mb/s. Thanks to the extensive use of switched-capacitor circuit solutions, well-controlled behavior is achieved against the large process tolerances and temperature drifts of the GaN technology. The isolation interface is supplied at 6 V and occupies a die area of 7.6 mm2 for each chip. Full article
(This article belongs to the Special Issue Gallium Nitride (GaN)-Based Power Electronic Devices and Systems)
Show Figures

Figure 1

Back to TopTop