Design Methodology and Robustness Analysis of a 13–15 GHz Three-Stage Low-Noise Amplifier in pHEMT GaAs Technology †
Abstract
:1. Introduction
2. Background
- Comprehensive design details for each stage.
- Noise Figure measurements.
- The LNA’s large-signal performance simulation.
- The LNA robustness under input overdrive for both the continuous-wave (CW) and pulse-wave.
- Comparison with state-of-the-art amplifiers of similar technology.
- Suggestions for improving the proposed amplifier.
3. Proposed Design Methodology
3.1. Device Selection
3.2. Two-Stage LNA Design
- Select the appropriate device for each stage by comparing the performance of available options.
- Perform stability analyses across the entire operating bandwidth.
- Plot vs. and vs. .
- Draw vs. and vs. .
- Choose the desired interstage mismatch level and determine the corresponding values for and .
- Design the input matching network (IMN), the interstage matching network (ISMN), and the output matching network (OMN).
3.3. Third-Stage Amplifier Design
- Determine the appropriate transistor device.
- Perform a stability analysis and insert a stabilization network at the gate terminal if necessary.
- Perform a load-pull simulation to determine the optimum load impedance that maximizes power gain delivered to the load.
- Match the input and output impedances to the system reference impedance to design the IMN and OMN of the final stage.
3.4. Biasing Networks and Optimization
4. LNA Characterization
4.1. Measurement Setups
4.2. EM Simulations and Measurements
5. LNA Robustness
6. State of the Art and Figure of Merit
7. Discussion
- Optimize the biasing points to minimize the total current while maintaining performance. This could involve fine-tuning the VGS and VDS values based on a more detailed optimization process, considering the specific trade-offs for noise, gain, and power efficiency.
- Exploring the use of lower power transistors or alternative technologies that offer similar performance with reduced power requirements.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
pHEMT | Pseudomorphic High Electron Mobility Transistor |
MMIC | Monolithic Microwave Integrated Circuit |
FET | Field Effect Transistor |
References
- Brauer, F.; Sabath, F.; ter Haseborg, J.L. Susceptibility of IT Network Systems to Interferences by HPEM. In Proceedings of the 2009 IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, USA, 17–21 August 2009; pp. 237–242. [Google Scholar]
- Radasky, W.A.; Baum, C.E.; Wik, M.W. Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI). IEEE Trans. Electromagn. Compat. 2004, 46, 314–321. [Google Scholar] [CrossRef]
- Gold, S.; Nusinovich, G.S. Review of high-power microwave source research. Rev. Sci. Instruments 1997, 68, 3945–3974. [Google Scholar] [CrossRef]
- Haus, H.A.; Adler, R.B.; Teichmann, T. Circuit Theory of Linear Noisy Networks; John Wiley & Sons, Inc.: New York, NY, USA, 1959. [Google Scholar]
- Fukui, H. Available Power Gain, Noise Figure, and Noise Measure of Two-Ports and Their Graphical Representations. IEEE Trans. Circuit Theory 1966, 13, 137–142. [Google Scholar] [CrossRef]
- Iversen, S. The effect of feedback on noise figure. Proc. IEEE 1975, 63, 540–542. [Google Scholar] [CrossRef]
- Engberg, J. Simultaneous Input Power Match and Noise Optimization Using Feedback. In Proceedings of the 1974 4th European Microwave Conference, Montreux, Switzerland, 10–13 September 1974; pp. 385–389. [Google Scholar] [CrossRef]
- Vendelin, G. Feedback Effects on the Noise Performance of GaAs MESFETs. In Proceedings of the 1975 IEEE-MTT-S International Microwave Symposium, Palo Alto, CA, USA, 12–14 May 1975; pp. 324–326. [Google Scholar] [CrossRef]
- Abdalrahman, F.; Longhi, P.E.; Limiti, E. A Simple Synthesis Methodology for 3-Stage LNA Design in GaAs Technology. In Proceedings of the 2024 19th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Larnaca, Cyprus, 9–12 June 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave engineering. IEEE Potentials 1989, 8, 11–13. [Google Scholar]
- Abdalrahman, F.; Longhi, P.E.; Colangeli, S.; Ciccognani, W.; Serino, A.; Limiti, E. Insight into Optimally Noise- and Signal-Matched Three-Stage LNAs and Effect of Inter-Stage Mismatch. Electronics 2025, 14, 1967. [Google Scholar] [CrossRef]
- Lee, T. The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed.; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Razavi, B. RF Microelectronics, 2nd ed.; Communications Engineering and Emerging Technologies Series; Prentice Hall: Hoboken, NJ, USA, 2011. [Google Scholar]
- Friis, H.T. Noise Figures of Radio Receivers. Proc. IRE 1944, 32, 419–422. [Google Scholar] [CrossRef]
- Gonzalez, G. Microwave Transistor Amplifiers: Analysis and Design, 2nd ed.; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Salvucci, A.; Longhi, P.E.; Colangeli, S.; Ciccognani, W.; Serino, A.; Limiti, E. A straightforward design technique for narrowband multi-stage low-noise amplifiers with I/O conjugate match. Int. J. Microw. Comput.-Aided Eng. 2019, 29, e21833. [Google Scholar] [CrossRef]
- Jiang, N.; Garcia, D.; Niranjanan, P.; Halman, M.A.; Wevers, I. Extremely Low Noise UHF-Band Amplifiers for Square Kilometer Array. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation Conference, Edinburgh, UK, 26 June–1 July 2016. [Google Scholar]
- Fung, A.; Samoska, L.; Bowen, J.; Montanez, S.; Kooi, J.; Soriano, M.; Jacobs, C.; Manthena, R.; Hoppe, D.; Akgiray, A.; et al. X- to Ka-Band Cryogenic LNA Module for Very Long Baseline Interferometry. In Proceedings of the 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 189–192. [Google Scholar] [CrossRef]
- Engberg, J.; Larsen, T. Noise Theory of Linear and Nonlinear Circuits; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Poole, C.; Grammenos, R. Correct Equations for Minimum Noise Measure of a Microwave Transistor Amplifier. IEEE Trans. Microw. Theory Tech. 2022, 70, 1361–1366. [Google Scholar] [CrossRef]
- Colantonio, P.; Giannini, F.; Limiti, E. Power Amplifier Fundamentals. In High Efficiency RF and Microwave Solid State Power Amplifiers; John Wiley Sons, Ltd.: Hoboken, NJ, USA, 2009; Chapter 1; pp. 1–47. [Google Scholar] [CrossRef]
- Rudolph, M.; Dewitz, M.; Liero, A.; Khalil, I.; Chaturvedi, N.; Wipf, C.C.; Bertenburg, R.; Miller, J.; Wurfl, J.; Heinrich, W.; et al. Highly Robust X-Band LNA with Extremely Short Recovery Time. In Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 781–784. [Google Scholar]
- Klunder, C.; ter Haseborg, J.L. Effects of High-Power and Transient Disturbances on Wireless Communication Systems Operating Inside the 2.4 GHz ISM Band. In Proceedings of the 2010 IEEE International Symposium on Electromagnetic Compatibility, Fort Lauderdale, FL, USA, 25–30 July 2010; pp. 359–363. [Google Scholar]
- Song, I.; Jeon, J.; Jhon, H.S.; Kim, J.; Park, B.G.; Lee, J.D.; Shin, H. A Simple Figure of Merit of RF MOSFET for Low-Noise Amplifier Design. IEEE Electron. Device Lett. 2008, 29, 1380–1382. [Google Scholar] [CrossRef]
- Dong, Q.; Liang, C.; Tan, Y.; Gao, Z.; Zhao, Y.; Dong, X.; Liu, Y.; Tang, B.; Guo, Z.; Xue, Z.; et al. A Ku-Band TRX Front-End with High Performance in 0.15-μm GaAs PHEMT Technology. In Proceedings of the 2024 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Chengdu, China, 28–30 August 2024; pp. 1–3. [Google Scholar] [CrossRef]
- Arican, G.O.; Akcam, N.; Yazgan, E. Ku-Band MMIC LNA Design for Space Applications. In Proceedings of the 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkey, 16–17 April 2019; pp. 274–278. [Google Scholar] [CrossRef]
- Li, Y.; Mou, S. A Ku-Band Self-Biased Bidirectional Amplifier in 0.25 μm PHEMT Technology. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; pp. 1166–1170. [Google Scholar] [CrossRef]
- Rajdev, N.C.; Lasya, V.; Seethur, R. Design of dual-stage Ku-band low noise amplifier for satellite downlink application. EPSTEM 2022, 21, 196–201. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
0.875/−115.5° | |
4.184/104.2° | |
0.144/22.1° | |
0.524/−68.9° | |
0.600/59.9° | |
(dB) | 0.46 |
) | 10.25 |
K | (nH) | [dB] | ||
---|---|---|---|---|
1 | ||||
2 |
Parameter | Value |
---|---|
0.865/−170.2° | |
3.014/75.8° | |
0.083/−7.1° | |
0.481/−159.8° | |
0.553/145.5° | |
(dB) | 0.90 |
) | 3.85 |
12.52–25.25 j | −0.37–0.56 j | 18.5 + 7.27 j |
Power (dBm) | Pulse Width (nS) | Duty Cycle (%) |
---|---|---|
15 | 50 | 10 |
10 | 50 | 15 |
5 | 50 | 20 |
Ref. | Gate Length (nm) | Frequency (GHz) | Gain (dB) | Noise Figure (dB) | Survivability | DC Power (mW) | Area (mm2) | |
---|---|---|---|---|---|---|---|---|
[25] | 150 | – | 20.4 (avg) | 3.4 (avg) | N/A | |||
[26] | 70 | – | >18.8 | <0.9 | N/A | 54 | ||
[27] | 250 | – | 13.1 (avg) | 4.45 (avg) | N/A | 695 | ||
[28] | 200 | N/A | N/A | N/A | ||||
This work | 100 | – | 25 | <1.7 | 18 dBm (CW), 15 dBm (Pulse) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalrahman, F.; Longhi, P.E.; Ciccognani, W.; Colangeli, S.; Serino, A.; Limiti, E. Design Methodology and Robustness Analysis of a 13–15 GHz Three-Stage Low-Noise Amplifier in pHEMT GaAs Technology. Electronics 2025, 14, 2206. https://doi.org/10.3390/electronics14112206
Abdalrahman F, Longhi PE, Ciccognani W, Colangeli S, Serino A, Limiti E. Design Methodology and Robustness Analysis of a 13–15 GHz Three-Stage Low-Noise Amplifier in pHEMT GaAs Technology. Electronics. 2025; 14(11):2206. https://doi.org/10.3390/electronics14112206
Chicago/Turabian StyleAbdalrahman, Fida, Patrick E. Longhi, Walter Ciccognani, Sergio Colangeli, Antonio Serino, and Ernesto Limiti. 2025. "Design Methodology and Robustness Analysis of a 13–15 GHz Three-Stage Low-Noise Amplifier in pHEMT GaAs Technology" Electronics 14, no. 11: 2206. https://doi.org/10.3390/electronics14112206
APA StyleAbdalrahman, F., Longhi, P. E., Ciccognani, W., Colangeli, S., Serino, A., & Limiti, E. (2025). Design Methodology and Robustness Analysis of a 13–15 GHz Three-Stage Low-Noise Amplifier in pHEMT GaAs Technology. Electronics, 14(11), 2206. https://doi.org/10.3390/electronics14112206