Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = sigma-2 receptor ligands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1954 KiB  
Article
Isolation and Bioassay of Linear Veraguamides from a Marine Cyanobacterium (Okeania sp.)
by Stacy-Ann J. Parker, Andrea Hough, Thomas Wright, Neil Lax, Asef Faruk, Christian K. Fofie, Rebekah D. Simcik, Jane E. Cavanaugh, Benedict J. Kolber and Kevin J. Tidgewell
Molecules 2025, 30(3), 680; https://doi.org/10.3390/molecules30030680 - 4 Feb 2025
Viewed by 1024
Abstract
Marine cyanobacteria have gained momentum in recent years as a source of novel bioactive small molecules. This paper describes the structure elucidation and pharmacological evaluation of two new (veraguamide O (1) and veraguamide P (2)) and one known (veraguamide [...] Read more.
Marine cyanobacteria have gained momentum in recent years as a source of novel bioactive small molecules. This paper describes the structure elucidation and pharmacological evaluation of two new (veraguamide O (1) and veraguamide P (2)) and one known (veraguamide C (3)) analogs isolated from a cyanobacterial collection made in the Las Perlas Archipelago of Panama. We hypothesized that these compounds would be cytotoxic in cancer cell lines. The compounds were screened against HEK-293, estrogen receptor positive (MCF-7), and triple-negative breast cancer (MDA-MB-231) cells as well as against a broad panel of membrane-bound receptors. The planar structures were determined based on NMR and MS data along with a comparison to previously isolated veraguamide analogs. Phylogenetic analysis of the collection suggests it to be an Okeania sp., a similar species to the cyanobacterium reported to produce other veraguamides. Veraguamide O shows no cytotoxicity (greater than 100 μM) against ER-positive cells (MCF-7) with 13 μM IC50 against MDA-MB-231 TNBC cells. Interestingly, these compounds show affinity for the sigma2/TMEM-97 receptor, making them potential leads for the development of non-toxic sigma 2 targeting ligands. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

17 pages, 2708 KiB  
Article
HDAC/σ1R Dual-Ligand as a Targeted Melanoma Therapeutic
by Claudia Giovanna Leotta, Carla Barbaraci, Jole Fiorito, Alessandro Coco, Viviana di Giacomo, Emanuele Amata, Agostino Marrazzo and Giovanni Mario Pitari
Pharmaceuticals 2025, 18(2), 179; https://doi.org/10.3390/ph18020179 - 28 Jan 2025
Cited by 2 | Viewed by 2635
Abstract
Background: In melanoma, multiligand drug strategies to disrupt cancer-associated epigenetic alterations and angiogenesis are particularly promising. Here, a novel dual-ligand with a single shared pharmacophore capable of simultaneously targeting histone deacetylases (HDACs) and sigma receptors (σRs) was synthesized and subjected to phenotypic in [...] Read more.
Background: In melanoma, multiligand drug strategies to disrupt cancer-associated epigenetic alterations and angiogenesis are particularly promising. Here, a novel dual-ligand with a single shared pharmacophore capable of simultaneously targeting histone deacetylases (HDACs) and sigma receptors (σRs) was synthesized and subjected to phenotypic in vitro screening. Methods: Tumor cell proliferation and spreading were investigated using immortalized human cancer and normal cell lines. Angiogenesis was also evaluated in mouse endothelial cells using a tube formation assay. Results: The dual-ligand compound exhibited superior potency in suppressing both uveal and cutaneous melanoma cell viability compared to other cancer cell types or normal cells. Melanoma selectivity reflected inhibition of the HDAC-dependent epigenetic regulation of tumor proliferative kinetics, without involvement of σR signaling. In contrast, the bifunctional compound inhibited the formation of capillary-like structures, formed by endothelial cells, and tumor cell spreading through the specific regulation of σ1R signaling, but not HDAC activity. Conclusions: Together, the present findings suggest that dual-targeted HDAC/σ1R ligands might efficiently and simultaneously disrupt tumor growth, dissemination and angiogenesis in melanoma, a strategy amenable to future clinical applications in precision cancer treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

30 pages, 12638 KiB  
Review
Multitarget-Directed Ligands Hitting Serotonin Receptors: A Medicinal Chemistry Survey
by Imane Ghafir El Idrissi, Angela Santo, Enza Lacivita and Marcello Leopoldo
Pharmaceuticals 2024, 17(9), 1238; https://doi.org/10.3390/ph17091238 - 19 Sep 2024
Viewed by 2584
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a ubiquitous neurotransmitter in the human body. In the central nervous system, 5-HT affects sleep, pain, mood, appetite, and attention, while in the peripheral nervous system, 5-HT modulates peristalsis, mucus production, and blood vessel dilation. Fourteen membrane receptors mediate [...] Read more.
Serotonin (5-hydroxytryptamine, 5-HT) is a ubiquitous neurotransmitter in the human body. In the central nervous system, 5-HT affects sleep, pain, mood, appetite, and attention, while in the peripheral nervous system, 5-HT modulates peristalsis, mucus production, and blood vessel dilation. Fourteen membrane receptors mediate 5-HT activity. In agreement with the crucial roles played by 5-HT, many drugs target 5-HT receptors (5-HTRs). Therefore, it is unsurprising that many efforts have been devoted to discovering multitarget-directed ligands (MTDLs) capable of engaging one or more 5-HTRs plus another target phenotypically linked to a particular disease. In this review, we will describe medicinal chemistry efforts in designing MTDLs encompassing activity for one or more 5-HTRs, starting with atypical antipsychotics and moving to dual 5-HT1AR/serotonin transporter ligands, 5-HT6R antagonists/acetyl cholinesterases inhibitors, and 5-HT4R agonists/acetyl cholinesterases inhibitors. We will also provide an outlook on the most recent efforts made in the field. Full article
Show Figures

Figure 1

20 pages, 5755 KiB  
Article
The Sigma-1 Receptor Exacerbates Cardiac Dysfunction Induced by Obstructive Nephropathy: A Role for Sexual Dimorphism
by Francisco Javier Munguia-Galaviz, Alejandra Guillermina Miranda-Diaz, Yanet Karina Gutierrez-Mercado, Marco Ku-Centurion, Ricardo Arturo Gonzalez-Gonzalez, Eliseo Portilla-de Buen and Raquel Echavarria
Biomedicines 2024, 12(8), 1908; https://doi.org/10.3390/biomedicines12081908 - 20 Aug 2024
Viewed by 1800
Abstract
The Sigma-1 Receptor (Sigmar1) is a stress-activated chaperone and a promising target for pharmacological modulation due to its ability to induce multiple cellular responses. Yet, it is unknown how Sigmar1 is involved in cardiorenal syndrome type 4 (CRS4) in which renal damage results [...] Read more.
The Sigma-1 Receptor (Sigmar1) is a stress-activated chaperone and a promising target for pharmacological modulation due to its ability to induce multiple cellular responses. Yet, it is unknown how Sigmar1 is involved in cardiorenal syndrome type 4 (CRS4) in which renal damage results in cardiac dysfunction. This study explored the role of Sigmar1 and its ligands in a CRS4 model induced by unilateral ureteral obstruction (UUO) in male and female C57BL/6 mice. We evaluated renal and cardiac dysfunction markers, Sigmar1 expression, and cardiac remodeling through time (7, 12, and 21 days) and after chronically administering the Sigmar1 agonists PRE-084 (1 mg/kg/day) and SA4503 (1 mg/kg/day), and the antagonist haloperidol (2 mg/kg/day), for 21 days after UUO using colorimetric analysis, RT-qPCR, histology, immunohistochemistry, enzyme-linked immunosorbent assay, RNA-seq, and bioinformatics. We found that obstructive nephropathy induces Sigmar1 expression in the kidneys and heart, and that Sigmar1 stimulation with its agonists PRE-084 and SA4503 aggravates cardiac dysfunction and remodeling in both sexes. Still, their effects are significantly more potent in males. Our findings reveal essential differences associated with sex in the development of CRS4 and should be considered when contemplating Sigmar1 as a pharmacological target. Full article
(This article belongs to the Special Issue Sigma-1 Receptor in Health and Disease)
Show Figures

Graphical abstract

19 pages, 7120 KiB  
Article
The Effect of KSK-94, a Dual Histamine H3 and Sigma-2 Receptor Ligand, on Adipose Tissue in a Rat Model of Developing Obesity
by Magdalena Kotańska, Monika Zadrożna, Monika Kubacka, Kamil Mika, Katarzyna Szczepańska, Barbara Nowak, Alessio Alesci, Anthea Miller, Eugenia Rita Lauriano and Katarzyna Kieć-Kononowicz
Pharmaceuticals 2024, 17(7), 858; https://doi.org/10.3390/ph17070858 - 1 Jul 2024
Cited by 1 | Viewed by 1353
Abstract
Background: Numerous studies highlight the critical role that neural histamine plays in feeding behavior, which is controlled by central histamine H3 and H1 receptors. This is the fundamental motivation for the increased interest in creating histamine H3 receptor antagonists as [...] Read more.
Background: Numerous studies highlight the critical role that neural histamine plays in feeding behavior, which is controlled by central histamine H3 and H1 receptors. This is the fundamental motivation for the increased interest in creating histamine H3 receptor antagonists as anti-obesity medications. On the other hand, multiple other neurotransmitter systems have been identified as pharmacotherapeutic targets for obesity, including sigma-2 receptor systems. Interestingly, in our previous studies in the rat excessive eating model, we demonstrated a significant reduction in the development of obesity using dual histamine H3/sigma-2 receptor ligands. Moreover, we showed that compound KSK-94 (structural analog of Abbott’s A-331440) reduced the number of calories consumed, and thus acted as an anorectic compound. Therefore, in this study, we extended the previous research and studied the influence of KSK-94 on adipose tissue collected from animals from our previous experiment. Methods: Visceral adipose tissue was collected from four groups of rats (standard diet + vehicle, palatable diet + vehicle, palatable diet + KSK-94, and palatable diet + bupropion/naltrexone) and subjected to biochemical, histopathological, and immunohistochemical studies. Results: The obtained results clearly indicate that compound KSK-94 prevented the hypertrophy and inflammation of visceral adipose tissue, normalized the levels of leptin, resistin and saved the total reduction capacity of adipose tissue, being more effective than bupropion/naltrexon in these aspects. Moreover, KSK-94 may induce browning of visceral white adipose tissue. Conclusion: Our study suggests that dual compounds with a receptor profile like KSK-94, i.e., targeting histamine H3 receptor and, to a lesser extent, sigma-2 receptor, could be attractive therapeutic options for patients at risk of developing obesity or with obesity and some metabolic disorders. However, more studies are required to determine its safety profile and the exact mechanism of action of KSK-94. Full article
(This article belongs to the Special Issue Histamine Receptor Ligands in Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 4692 KiB  
Article
Design, Synthesis, and Cytotoxic Assessment of New Haloperidol Analogues as Potential Anticancer Compounds Targeting Sigma Receptors
by Daniele Zampieri, Maurizio Romano, Sara Fortuna, Emanuele Amata, Maria Dichiara, Giuseppe Cosentino, Agostino Marrazzo and Maria Grazia Mamolo
Molecules 2024, 29(11), 2697; https://doi.org/10.3390/molecules29112697 - 6 Jun 2024
Cited by 1 | Viewed by 1859
Abstract
Sigma receptors (SRs), including SR1 and SR2 subtypes, have attracted increasing interest in recent years due to their involvement in a wide range of activities, including the modulation of opioid analgesia, neuroprotection, and potential anticancer activity. In this context, haloperidol (HAL), a commonly [...] Read more.
Sigma receptors (SRs), including SR1 and SR2 subtypes, have attracted increasing interest in recent years due to their involvement in a wide range of activities, including the modulation of opioid analgesia, neuroprotection, and potential anticancer activity. In this context, haloperidol (HAL), a commonly used antipsychotic drug, also possesses SR activity and cytotoxic effects. Herein, we describe the identification of novel SR ligands, obtained by a chemical hybridization approach. There wereendowed with pan-affinity for both SR subtypes and evaluated their potential anticancer activity against SH-SY5Y and HUH-7 cancer cell lines. Through a chemical hybridization approach, we identified novel compounds (4d, 4e, 4g, and 4j) with dual affinity for SR1 and SR2 receptors. These compounds were subjected to cytotoxicity testing using a resazurin assay. The results revealed potent cytotoxic effects against both cancer cell lines, with IC50 values comparable to HAL. Interestingly, the cytotoxic potency of the novel compounds resembled that of the SR1 antagonist HAL rather than the SR2 agonist siramesine (SRM), indicating the potential role of SR1 antagonism in their mechanism of action. The further exploration of their structure-activity relationships and their evaluation in additional cancer cell lines will elucidate their therapeutic potential and may pave the way for the development of novel anticancer agents that target SRs. Full article
(This article belongs to the Special Issue Small Molecules in Targeted Cancer Therapy)
Show Figures

Graphical abstract

16 pages, 8262 KiB  
Article
Computational Analysis of the Tripartite Interaction of Phasins (PhaP4 and 5)-Sigma Factor (σ24)-DNA of Azospirillum brasilense Sp7
by Yovani Aguilar-Carrillo, Lucía Soto-Urzúa, María De Los Ángeles Martínez-Martínez, Mirian Becerril-Ramírez and Luis Javier Martínez-Morales
Polymers 2024, 16(5), 611; https://doi.org/10.3390/polym16050611 - 23 Feb 2024
Cited by 1 | Viewed by 1549
Abstract
Azospirillum brasilense Sp7 produces PHB, which is covered by granule-associated proteins (GAPs). Phasins are the main GAPs. Previous studies have shown phasins can regulate PHB synthesis. When A. brasilense grows under stress conditions, it uses sigma factors to transcribe genes for survival. One [...] Read more.
Azospirillum brasilense Sp7 produces PHB, which is covered by granule-associated proteins (GAPs). Phasins are the main GAPs. Previous studies have shown phasins can regulate PHB synthesis. When A. brasilense grows under stress conditions, it uses sigma factors to transcribe genes for survival. One of these factors is the σ24 factor. This study determined the possible interaction between phasins and the σ24 factor or phasin-σ24 factor complex and DNA. Three-dimensional structures of phasins and σ24 factor structures were predicted using the I-TASSER and SWISS-Model servers, respectively. Subsequently, a molecular docking between phasins and the σ24 factor was performed using the ClusPro 2.0 server, followed by molecular docking between protein complexes and DNA using the HDOCK server. Evaluation of the types of ligand–receptor interactions was performed using the BIOVIA Discovery Visualizer for three-dimensional diagrams, as well as the LigPlot server to obtain bi-dimensional diagrams. The results showed the phasins (Pha4Abs7 or Pha5Abs7)-σ24 factor complex was bound near the −35 box of the promoter region of the phaC gene. However, in the individual interaction of PhaP5Abs7 and the σ24 factor, with DNA, both proteins were bound to the −35 box. This did not occur with PhaP4Abs7, which was bound to the −10 box. This change could affect the transcription level of the phaC gene and possibly affect PHB synthesis. Full article
Show Figures

Figure 1

24 pages, 5544 KiB  
Review
3,3-Disubstituted 3,4-Dihydro-1,2,4-benzotriazines: Chemistry, Biological Activity, and Affinity to Sigma Receptors
by Fabio Sparatore and Anna Sparatore
Molecules 2024, 29(1), 132; https://doi.org/10.3390/molecules29010132 - 25 Dec 2023
Cited by 2 | Viewed by 1633
Abstract
By reducing the 2-nitrophenylhydrazone of cyclohexanone with sodium dithionite, an unexpected yellow compound was obtained instead of the corresponding colorless amino derivative. Many years later, the structure of this compound, namely, cyclohexane-3-spiro-3,4-dihydro-1,2,4-benzotriazine, was demonstrated. From that time, the reduction of 2-nitrophenylhydrazones of different [...] Read more.
By reducing the 2-nitrophenylhydrazone of cyclohexanone with sodium dithionite, an unexpected yellow compound was obtained instead of the corresponding colorless amino derivative. Many years later, the structure of this compound, namely, cyclohexane-3-spiro-3,4-dihydro-1,2,4-benzotriazine, was demonstrated. From that time, the reduction of 2-nitrophenylhydrazones of different kinds of ketones, followed by air oxidation of the initially formed amino compounds, has represented a general way to synthesize a variety of 3,3-disubstituted 3,4-dihydro-1,2,4-benzotriazines. Many derivatives have been obtained so far by a single research group, and most of them have demonstrated interesting pharmacological activities, mainly antihypertensive, anti-inflammatory, and diuretic effects and other activities with lower diffusion. Moreover, 3,3-disubstituted 3,4-dihydro-1,2,4-benzotriazines represent a novel class of ligands for sigma receptors, with nanomolar affinity to the σ1 subtype. This property might promote the development of agents for cardiovascular, neurodegenerative, and proliferative pathologies. The present commentary, by collecting compounds and biological results obtained so far, intends to celebrate the centennial of the discovery of the first member of this class of compounds and to promote further investigation in the field. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 5816 KiB  
Article
Sigma Receptor Ligands Prevent COVID Mortality In Vivo: Implications for Future Therapeutics
by Reed L. Berkowitz, Andrew P. Bluhm, Glenn W. Knox, Christopher R. McCurdy, David A. Ostrov and Michael H. Norris
Int. J. Mol. Sci. 2023, 24(21), 15718; https://doi.org/10.3390/ijms242115718 - 29 Oct 2023
Viewed by 3809
Abstract
The emergence of lethal coronaviruses follows a periodic pattern which suggests a recurring cycle of outbreaks. It remains uncertain as to when the next lethal coronavirus will emerge, though its eventual emergence appears to be inevitable. New mutations in evolving SARS-CoV-2 variants have [...] Read more.
The emergence of lethal coronaviruses follows a periodic pattern which suggests a recurring cycle of outbreaks. It remains uncertain as to when the next lethal coronavirus will emerge, though its eventual emergence appears to be inevitable. New mutations in evolving SARS-CoV-2 variants have provided resistance to current antiviral drugs, monoclonal antibodies, and vaccines, reducing their therapeutic efficacy. This underscores the urgent need to investigate alternative therapeutic approaches. Sigma receptors have been unexpectedly linked to the SARS-CoV-2 life cycle due to the direct antiviral effect of their ligands. Coronavirus-induced cell stress facilitates the formation of an ER-derived complex conducive to its replication. Sigma receptor ligands are believed to prevent the formation of this complex. Repurposing FDA-approved drugs for COVID-19 offers a timely and cost-efficient strategy to find treatments with established safety profiles. Notably, diphenhydramine, a sigma receptor ligand, is thought to counteract the virus by inhibiting the creation of ER-derived replication vesicles. Furthermore, lactoferrin, a well-characterized immunomodulatory protein, has shown antiviral efficacy against SARS-CoV-2 both in laboratory settings and in living organisms. In the present study, we aimed to explore the impact of sigma receptor ligands on SARS-CoV-2-induced mortality in ACE2-transgenic mice. We assessed the effects of an investigational antiviral drug combination comprising a sigma receptor ligand and an immunomodulatory protein. Mice treated with sigma-2 receptor ligands or diphenhydramine and lactoferrin exhibited improved survival rates and rapid rebound in mass following the SARS-CoV-2 challenge compared to mock-treated animals. Clinical translation of these findings may support the discovery of new treatment and research strategies for SARS-CoV-2. Full article
(This article belongs to the Special Issue Antimicrobial and Antiviral Drugs Discovery)
Show Figures

Figure 1

21 pages, 4096 KiB  
Article
Multi-Omics Analysis Reveals the Role of Sigma-1 Receptor in a Takotsubo-like Cardiomyopathy Model
by Yi Liu, Qing Chen, Jian-Zheng Yang, Xiu-Wen Li, Li-Jian Chen, Kai-Kai Zhang, Jia-Li Liu, Jia-Hao Li, Clare Hsu, Long Chen, Jia-Hao Zeng, Qi Wang, Dong Zhao and Jing-Tao Xu
Biomedicines 2023, 11(10), 2766; https://doi.org/10.3390/biomedicines11102766 - 12 Oct 2023
Cited by 2 | Viewed by 2439
Abstract
Takotsubo syndrome (TTS) is a stress-induced cardiomyopathy that presents with sudden onset of chest pain and dyspneic and cardiac dysfunction as a result of extreme physical or emotional stress. The sigma-1 receptor (Sigmar1) is a ligand-dependent molecular chaperone that is postulated to be [...] Read more.
Takotsubo syndrome (TTS) is a stress-induced cardiomyopathy that presents with sudden onset of chest pain and dyspneic and cardiac dysfunction as a result of extreme physical or emotional stress. The sigma-1 receptor (Sigmar1) is a ligand-dependent molecular chaperone that is postulated to be involved in various processes related to cardiovascular disease. However, the role of Sigmar1 in TTS remains unresolved. In this study, we established a mouse model of TTS using wild-type and Sigmar1 knockout mice to investigate the involvement of Sigmar1 in TTS development. Our results revealed that Sigmar1 knockout exacerbated cardiac dysfunction, with a noticeable decrease in ejection fraction (EF) and fractional shortening (FS) compared to the wild-type model. In terms of the gut microbiome, we observed regulation of Firmicutes and Bacteroidetes ratios; suppression of probiotic Lactobacillus growth; and a rise in pathogenic bacterial species, such as Colidextribacter. Metabolomic and transcriptomic analyses further suggested that Sigmar1 plays a role in regulating tryptophan metabolism and several signaling pathways, including MAPK, HIF-1, calcium signaling, and apoptosis pathways, which may be crucial in TTS pathogenesis. These findings offer valuable insight into the function of Sigmar1 in TTS, and this receptor may represent a promising therapeutic target for TTS. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

14 pages, 2325 KiB  
Article
Structure-Based Modeling of Sigma 1 Receptor Interactions with Ligands and Cholesterol and Implications for Its Biological Function
by Meewhi Kim and Ilya Bezprozvanny
Int. J. Mol. Sci. 2023, 24(16), 12980; https://doi.org/10.3390/ijms241612980 - 19 Aug 2023
Cited by 3 | Viewed by 2683
Abstract
The sigma 1 receptor (S1R) is a 223-amino-acid-long transmembrane endoplasmic reticulum (ER) protein. The S1R plays an important role in neuronal health and it is an established therapeutic target for neurodegenerative and neuropsychiatric disorders. Despite its importance in physiology and disease, the biological [...] Read more.
The sigma 1 receptor (S1R) is a 223-amino-acid-long transmembrane endoplasmic reticulum (ER) protein. The S1R plays an important role in neuronal health and it is an established therapeutic target for neurodegenerative and neuropsychiatric disorders. Despite its importance in physiology and disease, the biological function of S1R is poorly understood. To gain insight into the biological and signaling functions of S1R, we took advantage of recently reported crystal structures of human and Xenopus S1Rs and performed structural modeling of S1R interactions with ligands and cholesterol in the presence of the membrane. By combining bioinformatics analysis of S1R sequence and structural modelling approaches, we proposed a model that suggests that S1R may exist in two distinct conformations—“dynamic monomer” (DM) and “anchored monomer” (AM). We further propose that equilibrium between AM and DM conformations of S1R is essential for its biological function in cells, with AM conformation facilitating the oligomerization of S1R and DM conformation facilitating deoligomerization. Consistent with experimental evidence, our hypothesis predicts that increased levels of membrane cholesterol and S1R antagonists should promote the oligomeric state of S1R, but S1R agonists and pathogenic mutations should promote its deoligomerization. Obtained results provide mechanistic insights into signaling functions of S1R in cells, and the proposed model may help to explain neuroprotective effects of S1R modulators. Full article
Show Figures

Figure 1

12 pages, 657 KiB  
Review
An Emerging Role for Sigma Receptor 1 in Personalized Treatment of Breast Cancer
by Taylor S. Robinson and Mahasin A. Osman
Cancers 2023, 15(13), 3464; https://doi.org/10.3390/cancers15133464 - 2 Jul 2023
Cited by 10 | Viewed by 3240
Abstract
Despite the major progress in treating breast cancer, recurrence remains a problem and types such as triple-negative breast cancer still lack targeted medicine. The orphan Sigma receptor1 (SigmaR1) has emerged as a target in breast cancer, but its mechanism of action is unclear [...] Read more.
Despite the major progress in treating breast cancer, recurrence remains a problem and types such as triple-negative breast cancer still lack targeted medicine. The orphan Sigma receptor1 (SigmaR1) has emerged as a target in breast cancer, but its mechanism of action is unclear and hinders clinical utility. SigmaR1 is widely expressed in organ tissues and localized to various sub-cellular compartments, particularly the endoplasmic reticulum (ER), the mitochondrial-associated membranes (MAMs) and the nuclear envelope. As such, it involves diverse cellular functions, including protein quality control/ER stress, calcium signaling, cholesterol homeostasis, mitochondrial integrity and energy metabolism. Consequently, SigmaR1 has been implicated in a number of cancers and degenerative diseases and thus has been intensively pursued as a therapeutic target. Because SigmaR1 binds a number of structurally unrelated ligands, it presents an excellent context-dependent therapeutic target. Here, we review its role in breast cancer and the current therapies that have been considered based on its known functions. As SigmaR1 is not classified as an oncoprotein, we propose a model in which it serves as an oligomerization adaptor in key cellular pathways, which may help illuminate its association with variable diseases and pave the way for clinical utility in personalized medicine. Full article
(This article belongs to the Special Issue Biomarkers in Breast Cancer: Recent Advances and Challenges)
Show Figures

Figure 1

22 pages, 5408 KiB  
Article
Pharmacological Analysis of GABAA Receptor and Sigma1R Chaperone Interaction: Research Report I―Investigation of the Anxiolytic, Anticonvulsant and Hypnotic Effects of Allosteric GABAA Receptors’ Ligands
by Mikhail V. Voronin, Stanislav V. Shangin, Svetlana A. Litvinova, Elena V. Abramova, Rustam D. Kurbanov, Inna V. Rybina, Yulia V. Vakhitova and Sergei B. Seredenin
Int. J. Mol. Sci. 2023, 24(11), 9580; https://doi.org/10.3390/ijms24119580 - 31 May 2023
Cited by 4 | Viewed by 2924
Abstract
Two groups of facts have been established in previous drug development studies of the non-benzodiazepine anxiolytic fabomotizole. First, fabomotizole prevents stress-induced decrease in binding ability of the GABAA receptor’s benzodiazepine site. Second, fabomotizole is a Sigma1R chaperone agonist, and exposure to Sigma1R [...] Read more.
Two groups of facts have been established in previous drug development studies of the non-benzodiazepine anxiolytic fabomotizole. First, fabomotizole prevents stress-induced decrease in binding ability of the GABAA receptor’s benzodiazepine site. Second, fabomotizole is a Sigma1R chaperone agonist, and exposure to Sigma1R antagonists blocks its anxiolytic effect. To prove our main hypothesis of Sigma1R involvement in GABAA receptor-dependent pharmacological effects, we performed a series of experiments on BALB/c and ICR mice using Sigma1R ligands to study anxiolytic effects of benzodiazepine tranquilizers diazepam (1 mg/kg i.p.) and phenazepam (0.1 mg/kg i.p.) in the elevated plus maze test, the anticonvulsant effects of diazepam (1 mg/kg i.p.) in the pentylenetetrazole-induced seizure model, and the hypnotic effects of pentobarbital (50 mg/kg i.p.). Sigma1R antagonists BD-1047 (1, 10, and 20 mg/kg i.p.), NE-100 (1 and 3 mg/kg i.p.), and Sigma1R agonist PRE-084 (1, 5, and 20 mg/kg i.p.) were used in the experiments. Sigma1R antagonists have been found to attenuate while Sigma1R agonists can enhance GABAARs-dependent pharmacological effects. Full article
Show Figures

Figure 1

10 pages, 1611 KiB  
Perspective
SIGMAR1 Confers Innate Resilience against Neurodegeneration
by Simon Couly, Yuko Yasui and Tsung-Ping Su
Int. J. Mol. Sci. 2023, 24(9), 7767; https://doi.org/10.3390/ijms24097767 - 24 Apr 2023
Cited by 12 | Viewed by 3038
Abstract
The sigma-1 receptor (SIGMAR1) is one of a kind: a receptor chaperone protein. This 223 amino acid-long protein is enriched at the mitochondria-associated endoplasmic reticulum membrane (MAM), a specialized microdomain of the endoplasmic reticulum that is structurally and functionally connected to the mitochondria. [...] Read more.
The sigma-1 receptor (SIGMAR1) is one of a kind: a receptor chaperone protein. This 223 amino acid-long protein is enriched at the mitochondria-associated endoplasmic reticulum membrane (MAM), a specialized microdomain of the endoplasmic reticulum that is structurally and functionally connected to the mitochondria. As a receptor, SIGMAR1 binds a wide spectrum of ligands. Numerous molecules targeting SIGMAR1 are currently in pre-clinical or clinical development. Interestingly, the range of pathologies covered by these studies is broad, especially with regard to neurodegenerative disorders. Upon activation, SIGMAR1 can translocate and interact with other proteins, mostly at the MAM but also in other organelles, which allows SIGMAR1 to affect many cellular functions. During these interactions, SIGMAR1 exhibits chaperone protein behavior by participating in the folding and stabilization of its partner. In this short communication, we will shed light on how SIGMAR1 confers protection against neurodegeneration to the cells of the nervous system and why this ability makes SIGMAR1 a multifunctional therapeutic prospect. Full article
Show Figures

Figure 1

16 pages, 3955 KiB  
Article
Evaluation of Some Safety Parameters of Dual Histamine H3 and Sigma-2 Receptor Ligands with Anti-Obesity Potential
by Kamil Mika, Małgorzata Szafarz, Marek Bednarski, Agata Siwek, Katarzyna Szczepańska, Katarzyna Kieć-Kononowicz and Magdalena Kotańska
Int. J. Mol. Sci. 2023, 24(8), 7499; https://doi.org/10.3390/ijms24087499 - 19 Apr 2023
Cited by 1 | Viewed by 1814
Abstract
Many studies have shown the high efficacy of histamine H3 receptor ligands in preventing weight gain. In addition to evaluating the efficacy of future drug candidates, it is very important to assess their safety profile, which is established through numerous tests and [...] Read more.
Many studies have shown the high efficacy of histamine H3 receptor ligands in preventing weight gain. In addition to evaluating the efficacy of future drug candidates, it is very important to assess their safety profile, which is established through numerous tests and preclinical studies. The purpose of the present study was to evaluate the safety of histamine H3/sigma-2 receptor ligands by assessing their effects on locomotor activity and motor coordination, as well as on the cardiac function, blood pressure, and plasma activity of certain cellular enzymes. The ligands tested at a dose of 10 mg/kg b.w. did not cause changes in locomotor activity (except for KSK-74) and did not affect motor coordination. Significant reductions in blood pressure were observed after the administration of compounds KSK-63, KSK-73, and KSK-74, which seems logically related to the increased effect of histamine. Although the results of in vitro studies suggest that the tested ligands can block the human ether-a-go-go-related gene (hERG) potassium channels, they did not affect cardiac parameters in vivo. It should be noted that repeated administration of the tested compounds prevented an increase in the activity of alanine aminotransferase (AlaT) and gamma-glutamyl transpeptidases (gGT) observed in the control animals fed a palatable diet. The obtained results show that the ligands selected for this research are not only effective in preventing weight gain but also demonstrate safety in relation to the evaluated parameters, allowing the compounds to proceed to the next stages of research. Full article
Show Figures

Figure 1

Back to TopTop