Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (870)

Search Parameters:
Keywords = ship state

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1669 KiB  
Article
Predefined-Time Adaptive Neural Control with Event-Triggering for Robust Trajectory Tracking of Underactuated Marine Vessels
by Hui An, Zhanyang Yu, Jianhua Zhang, Xinxin Wang and Cheng Siong Chin
Processes 2025, 13(8), 2443; https://doi.org/10.3390/pr13082443 (registering DOI) - 1 Aug 2025
Viewed by 42
Abstract
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues [...] Read more.
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues of traditional finite-time control (convergence time dependent on initial states) and fixed-time control (control chattering and parameter conservativeness), this paper proposes a predefined-time adaptive control framework that integrates an event-triggered mechanism and neural networks. By constructing a Lyapunov function with time-varying weights and designing non-periodic dynamically updated dual triggering conditions, the convergence process of tracking errors is strictly constrained within a user-prespecified time window without relying on initial states or introducing non-smooth terms. An adaptive approximator based on radial basis function neural networks (RBF-NNs) is employed to compensate for unknown nonlinear dynamics and external disturbances in real-time. Combined with the event-triggered mechanism, it dynamically adjusts the update instances of control inputs, ensuring prespecified tracking accuracy while significantly reducing computational resource consumption. Theoretical analysis shows that all signals in the closed-loop system are uniformly ultimately bounded, tracking errors converge to a neighborhood of the origin within the predefined-time, and the update frequency of control inputs exhibits a linear relationship with the predefined-time, avoiding Zeno behavior. Simulation results verify the effectiveness of the proposed method in complex marine environments. Compared with traditional control strategies, it achieves more accurate trajectory tracking, faster response, and a substantial reduction in control input update frequency, providing an efficient solution for the engineering implementation of embedded control systems in unmanned ships. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
18 pages, 723 KiB  
Article
A Machine Learning-Based Model for Predicting High Deficiency Risk Ships in Port State Control: A Case Study of the Port of Singapore
by Ming-Cheng Tsou
J. Mar. Sci. Eng. 2025, 13(8), 1485; https://doi.org/10.3390/jmse13081485 - 31 Jul 2025
Viewed by 94
Abstract
This study developed a model to predict ships with high deficiency risk under Port State Control (PSC) through machine learning techniques, particularly the Random Forest algorithm. The study utilized actual ship inspection data from the Port of Singapore, comprehensively considering various operational and [...] Read more.
This study developed a model to predict ships with high deficiency risk under Port State Control (PSC) through machine learning techniques, particularly the Random Forest algorithm. The study utilized actual ship inspection data from the Port of Singapore, comprehensively considering various operational and safety indicators of ships, including but not limited to flag state, ship age, past deficiencies, and detention history. By analyzing these factors in depth, this research enhances the efficiency and accuracy of PSC inspections, provides decision support for port authorities, and offers strategic guidance for shipping companies to comply with international safety standards. During the research process, I first conducted detailed data preprocessing, including data cleaning and feature selection, to ensure the effectiveness of model training. Using the Random Forest algorithm, I identified key factors influencing the detention risk of ships and established a risk prediction model accordingly. The model validation results indicated that factors such as ship age, tonnage, company performance, and flag state significantly affect whether a ship exhibits a high deficiency rate. In addition, this study explored the potential and limitations of applying the Random Forest model in predicting high deficiency risk under PSC, and proposed future research directions, including further model optimization and the development of real-time prediction systems. By achieving these goals, I hope to provide valuable experience for other global shipping hubs, promote higher international maritime safety standards, and contribute to the sustainable development of the global shipping industry. This research not only highlights the importance of machine learning in the maritime domain but also demonstrates the potential of data-driven decision-making in improving ship safety management and port inspection efficiency. It is hoped that this study will inspire more maritime practitioners and researchers to explore advanced data analytics techniques to address the increasingly complex challenges of global shipping. Full article
(This article belongs to the Topic Digital Technologies in Supply Chain Risk Management)
28 pages, 2918 KiB  
Article
Machine Learning-Powered KPI Framework for Real-Time, Sustainable Ship Performance Management
by Christos Spandonidis, Vasileios Iliopoulos and Iason Athanasopoulos
J. Mar. Sci. Eng. 2025, 13(8), 1440; https://doi.org/10.3390/jmse13081440 - 28 Jul 2025
Viewed by 298
Abstract
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics [...] Read more.
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics is at an emerging state. This paper proposes a machine learning-driven framework for real-time ship performance management. The framework starts with data collected from onboard sensors and culminates in a decision support system that is easily interpretable, even by non-experts. It also provides a method to forecast vessel performance by extrapolating Key Performance Indicator (KPI) values. Furthermore, it offers a flexible methodology for defining KPIs for every crucial component or aspect of vessel performance, illustrated through a use case focusing on fuel oil consumption. Leveraging Artificial Neural Networks (ANNs), hybrid multivariate data fusion, and high-frequency sensor streams, the system facilitates continuous diagnostics, early fault detection, and data-driven decision-making. Unlike conventional static performance models, the framework employs dynamic KPIs that evolve with the vessel’s operational state, enabling advanced trend analysis, predictive maintenance scheduling, and compliance assurance. Experimental comparison against classical KPI models highlights superior predictive fidelity, robustness, and temporal consistency. Furthermore, the paper delineates AI and ML applications across core maritime operations and introduces a scalable, modular system architecture applicable to both commercial and naval platforms. This approach bridges advanced simulation ecosystems with in situ operational data, laying a robust foundation for digital transformation and sustainability in maritime domains. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 4095 KiB  
Article
GNSS-Based Multi-Target RDM Simulation and Detection Performance Analysis
by Jinxing Li, Qi Wang, Meng Wang, Youcheng Wang and Min Zhang
Remote Sens. 2025, 17(15), 2607; https://doi.org/10.3390/rs17152607 - 27 Jul 2025
Viewed by 341
Abstract
This paper proposes a novel Global Navigation Satellite System (GNSS)-based remote sensing method for simulating Radar Doppler Map (RDM) features through joint electromagnetic scattering modeling and signal processing, enabling characteristic parameter extraction for both point and ship targets in multi-satellite scenarios. Simulations demonstrate [...] Read more.
This paper proposes a novel Global Navigation Satellite System (GNSS)-based remote sensing method for simulating Radar Doppler Map (RDM) features through joint electromagnetic scattering modeling and signal processing, enabling characteristic parameter extraction for both point and ship targets in multi-satellite scenarios. Simulations demonstrate that the B3I signal achieves a significantly enhanced range resolution (tens of meters) compared to the B1I signal (hundreds of meters), attributable to its wider bandwidth. Furthermore, we introduce an Unscented Particle Filter (UPF) algorithm for dynamic target tracking and state estimation. Experimental results show that four-satellite configurations outperform three-satellite setups, achieving <10 m position error for uniform motion and <18 m for maneuvering targets, with velocity errors within ±2 m/s using four satellites. The joint detection framework for multi-satellite, multi-target scenarios demonstrates an improved detection accuracy and robust localization performance. Full article
Show Figures

Figure 1

20 pages, 1475 KiB  
Article
Design Optimization and Assessment Platform for Wind-Assisted Ship Propulsion
by Timoleon Plessas and Apostolos Papanikolaou
J. Mar. Sci. Eng. 2025, 13(8), 1389; https://doi.org/10.3390/jmse13081389 - 22 Jul 2025
Viewed by 186
Abstract
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization [...] Read more.
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization platform that supports the conceptual design of WAPS-equipped vessels and evaluates the viability of such investments. The platform uses a steady-state force equilibrium model to simulate vessel performance along predefined routes under realistic weather conditions, incorporating regulatory frameworks and economic assessments. A multi-objective optimization framework identifies optimal designs across user-defined criteria. To demonstrate its capabilities, the platform is applied to a bulk carrier operating between China and the USA, optimizing for capital expenditure, net present value (NPV), and CO2 emissions. Results show the platform can effectively balance conflicting objectives, achieving substantial emissions reductions without compromising economic performance. The final optimized design achieved a 12% reduction in CO2 emissions, a 7% decrease in capital expenditure, and a 6.6 million USD increase in net present value compared to the reference design with sails, demonstrating the platform’s capability to deliver balanced improvements across all objectives. The methodology is adaptable to various ship types, WAPS technologies, and operational profiles, offering a valuable decision-support tool for stakeholders navigating the transition to zero-carbon shipping. Full article
(This article belongs to the Special Issue Design Optimisation in Marine Engineering)
Show Figures

Figure 1

28 pages, 43087 KiB  
Article
LWSARDet: A Lightweight SAR Small Ship Target Detection Network Based on a Position–Morphology Matching Mechanism
by Yuliang Zhao, Yang Du, Qiutong Wang, Changhe Li, Yan Miao, Tengfei Wang and Xiangyu Song
Remote Sens. 2025, 17(14), 2514; https://doi.org/10.3390/rs17142514 - 19 Jul 2025
Viewed by 384
Abstract
The all-weather imaging capability of synthetic aperture radar (SAR) confers unique advantages for maritime surveillance. However, ship detection under complex sea conditions still faces challenges, such as high-frequency noise interference and the limited computational power of edge computing platforms. To address these challenges, [...] Read more.
The all-weather imaging capability of synthetic aperture radar (SAR) confers unique advantages for maritime surveillance. However, ship detection under complex sea conditions still faces challenges, such as high-frequency noise interference and the limited computational power of edge computing platforms. To address these challenges, we propose a lightweight SAR small ship detection network, LWSARDet, which mitigates feature redundancy and reduces computational complexity in existing models. Specifically, based on the YOLOv5 framework, a dual strategy for the lightweight network is adopted as follows: On the one hand, to address the limited nonlinear representation ability of the original network, a global channel attention mechanism is embedded and a feature extraction module, GCCR-GhostNet, is constructed, which can effectively enhance the network’s feature extraction capability and high-frequency noise suppression, while reducing computational cost. On the other hand, to reduce feature dilution and computational redundancy in traditional detection heads when focusing on small targets, we replace conventional convolutions with simple linear transformations and design a lightweight detection head, LSD-Head. Furthermore, we propose a Position–Morphology Matching IoU loss function, P-MIoU, which integrates center distance constraints and morphological penalty mechanisms to more precisely capture the spatial and structural differences between predicted and ground truth bounding boxes. Extensive experiments conduct on the High-Resolution SAR Image Dataset (HRSID) and the SAR Ship Detection Dataset (SSDD) demonstrate that LWSARDet achieves superior overall performance compared to existing state-of-the-art (SOTA) methods. Full article
Show Figures

Figure 1

21 pages, 4336 KiB  
Article
A Hybrid Flying Robot Utilizing Water Thrust and Aerial Propellers: Modeling and Motion Control System Design
by Thien-Dinh Nguyen, Cao-Tri Dinh, Tan-Ngoc Nguyen, Jung-Suk Park, Thinh Huynh and Young-Bok Kim
Actuators 2025, 14(7), 350; https://doi.org/10.3390/act14070350 - 17 Jul 2025
Viewed by 287
Abstract
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such [...] Read more.
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such tasks, existing solutions like drones and water-powered robots inherited fundamental limitations, making their use ineffective. For instance, drones are constrained by limited flight endurance, while water-powered robots struggle with horizontal motion due to the couplings between translational motions. The proposed hydro-aerodynamic hybrid actuation in this study addresses these significant drawbacks by utilizing water thrust for sustainable vertical propulsion and propeller-based actuation for more controllable horizontal motion. The characteristics and mathematical models of the proposed flying robots are presented in detail. A state feedback controller and a proportional–integral–derivative (PID) controller are designed and implemented in order to govern the proposed robot’s motion. In particular, a linear matrix inequality approach is also proposed for the former design so that a robust performance is ensured. Simulation studies are conducted where a purely water-powered flying robot using a nozzle rotation mechanism is deployed for comparison, to evaluate and validate the feasibility of the flying robot. Results demonstrate that the proposed system exhibits superior performance in terms of stability and tracking, even in the presence of external disturbances. Full article
(This article belongs to the Special Issue Actuator-Based Control Strategies for Marine Vehicles)
Show Figures

Figure 1

17 pages, 4656 KiB  
Article
Improved Super-Twisting Sliding Mode Control of a Brushless Doubly Fed Induction Generator for Standalone Ship Shaft Power Generation Systems
by Xueran Fei, Minghao Zhou, Yingyi Jiang, Longbin Jiang, Yi Liu and Yan Yan
J. Mar. Sci. Eng. 2025, 13(7), 1358; https://doi.org/10.3390/jmse13071358 - 17 Jul 2025
Viewed by 209
Abstract
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused [...] Read more.
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused by the parameter perturbation of BDFIG systems, a mismatched uncertain model of the BDFIG is constructed. Additionally, an improved STSM control method is proposed to address the power load variation and compensate for the mismatched uncertainty through virtual control technology. Based on the direct vector control of the control winding (CW), the proposed method ensured that the voltage amplitude error of the power winding could converge to the equilibrium point rather than the neighborhood. Finally, in the experimental investigation of the BDFIG-based ship shaft independent power system, the dynamic performance in the startup and power load changing conditions were analyzed. The experimental results show that the proposed improved STSM controller has a faster dynamic response and higher steady-state accuracy than the proportional integral control and the linear sliding mode control, with strong robustness to the mismatched uncertainties caused by parameter perturbations. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

35 pages, 2044 KiB  
Review
Overview of Sustainable Maritime Transport Optimization and Operations
by Lang Xu and Yalan Chen
Sustainability 2025, 17(14), 6460; https://doi.org/10.3390/su17146460 - 15 Jul 2025
Viewed by 630
Abstract
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, [...] Read more.
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, this study systematically examines representative studies from the past decade, focusing on three dimensions, technology, management, and policy, using data sourced from the Web of Science (WOS) database. Building on this analysis, potential avenues for future research are suggested. Research indicates that the technological field centers on the integrated application of alternative fuels, improvements in energy efficiency, and low-carbon technologies in the shipping and port sectors. At the management level, green investment decisions, speed optimization, and berth scheduling are emphasized as core strategies for enhancing corporate sustainable performance. From a policy perspective, attention is placed on the synergistic effects between market-based measures (MBMs) and governmental incentive policies. Existing studies primarily rely on multi-objective optimization models to achieve a balance between emission reductions and economic benefits. Technological innovation is considered a key pathway to decarbonization, while support from governments and organizations is recognized as crucial for ensuring sustainable development. Future research trends involve leveraging blockchain, big data, and artificial intelligence to optimize and streamline sustainable maritime transport operations, as well as establishing a collaborative governance framework guided by environmental objectives. This study contributes to refining the existing theoretical framework and offers several promising research directions for both academia and industry practitioners. Full article
(This article belongs to the Special Issue The Optimization of Sustainable Maritime Transportation System)
Show Figures

Figure 1

24 pages, 2671 KiB  
Review
Navigational Safety Hazards Posed by Offshore Wind Farms: A Comprehensive Literature Review and Bibliometric Analysis
by Vice Milin, Ivica Skoko, Željana Lekšić and Zlatko Boko
J. Mar. Sci. Eng. 2025, 13(7), 1330; https://doi.org/10.3390/jmse13071330 - 11 Jul 2025
Viewed by 207
Abstract
As global energy production progressively turns toward a green environment and economy, one of the safety challenges to the maritime industry that has arisen lies within offshore wind farms (OWFs). As renewable sources of energy whose numbers are rapidly expanding, their impact to [...] Read more.
As global energy production progressively turns toward a green environment and economy, one of the safety challenges to the maritime industry that has arisen lies within offshore wind farms (OWFs). As renewable sources of energy whose numbers are rapidly expanding, their impact to the safety of navigation of the ships that navigate in their vicinity ought to be examined further. An ever-growing number of OWFs has led to safety concerns that have never been taken into consideration before. This article gives a structured quantitative analysis and an in-depth review of the literature connected to the safety of navigation, collision probability, and risk assessment that OWFs pose to all maritime industry agents. In this article, the main concerns of the impact of OWFs to the safety of navigation are analyzed using a combination of both the PRISMA and PICOC methodologies. Various types of scientific papers such as journal articles, conference proceedings, MSc theses, PhD theses, and online works of research are collated into a detailed bibliometric analysis and categorized by the most relevant parameters providing valuable perspectives on the current state of art in the field. The findings of this research emphasize the need for a further and more thorough analysis on the theoretical installment of OWFs and their inevitable impact on increasing maritime traffic complexity. The results of this article can form a strong basis for further scientific development in the field and can give useful insights to all maritime industry stakeholders dealing with OWFs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 6990 KiB  
Article
Fault Signal Emulation of Marine Turbo-Rotating Systems Based on Rotor-Gear Dynamic Interaction Modeling
by Seong Hyeon Kim, Hyun Min Song, Se Hyeon Jeong, Won Joon Lee and Sun Je Kim
J. Mar. Sci. Eng. 2025, 13(7), 1321; https://doi.org/10.3390/jmse13071321 - 9 Jul 2025
Viewed by 214
Abstract
Rotating machinery is essential in various industrial fields, and growing demands for high performance under harsh operating conditions have heightened interest in fault diagnosis and prognostic technologies. However, a major challenge in fault diagnosis research lies in the scarcity of data, primarily due [...] Read more.
Rotating machinery is essential in various industrial fields, and growing demands for high performance under harsh operating conditions have heightened interest in fault diagnosis and prognostic technologies. However, a major challenge in fault diagnosis research lies in the scarcity of data, primarily due to the inability to deliberately introduce faults into machines during actual operation. In this study, a physical model is proposed to realistically simulate the system behavior of a ship’s turbo-rotating machinery by coupling the torsional and lateral vibrations of the rotor. While previous studies employed simplified single-shaft models, the proposed model adopted gear mesh interactions to reflect the coupling behavior between shafts. Furthermore, the time-domain response of the system is analyzed through state-space transformation. The proposed model was applied to simulate imbalance and gear teeth damage conditions that may occur in marine turbo-rotating systems and the results were compared with those under normal operating conditions. The analysis confirmed that the model effectively reproduces fault-induced dynamic characteristics. By enabling rapid implementation of various fault conditions and efficient data acquisition data, the proposed model is expected to contribute to enhancing the reliability of fault diagnosis and prognostic research. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

30 pages, 15347 KiB  
Article
Research on Optimization Design of Ice-Class Ship Form Based on Actual Sea Conditions
by Yu Lu, Xuan Cao, Jiafeng Wu, Xiaoxuan Peng, Lin An and Shizhe Liu
J. Mar. Sci. Eng. 2025, 13(7), 1320; https://doi.org/10.3390/jmse13071320 - 9 Jul 2025
Viewed by 255
Abstract
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake [...] Read more.
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake long-distance ocean voyages, an ice-class ship requires sufficient icebreaking capacity to navigate ice-covered water areas. However, since such ships operate for most of their time under open water conditions, it is also crucial to consider their resistance characteristics in these environments. Firstly, this paper employs linear interpolation to extract wind, wave, and sea ice data along the route and calculates the proportion of ice-covered and open water area in the overall voyage. This provides data support for hull form optimization based on real sea state conditions. Then, a resistance optimization platform for ice-class ships is established by integrating hull surface mixed deformation control within a scenario analysis framework. Based on the optimization results, comparative analysis is conducted between the parent hull and the optimized hull under various environmental resistance scenarios. Finally, the optimization results are evaluated in terms of energy consumption using a fuel consumption model of the ship’s main engine. The optimized hull achieves a 16.921% reduction in total resistance, with calm water resistance and wave-added resistance reduced by 5.92% and 27.6%, respectively. Additionally, the optimized hull shows significant resistance reductions under multiple wave and floating ice conditions. At the design speed, calm water power and hourly fuel consumption are reduced by 7.1% and 7.02%, respectively. The experimental results show that the hull form optimization process in this paper can take into account both ice-region navigation and ice-free navigation. The design ideas and solution methods can provide a reference for the design of ice-class ships. Full article
Show Figures

Figure 1

23 pages, 8000 KiB  
Article
Optimal Operation Strategy of Ship Power System Under Battle Damage for Enhancing Survivability in Long-Term Missions
by Chunhan Bai, Yun Tan, Fanrong Wei and Xiangning Lin
Energies 2025, 18(14), 3615; https://doi.org/10.3390/en18143615 - 9 Jul 2025
Viewed by 227
Abstract
After a ship suffers an external strike, the system is often in a poor state of battle damage. Currently, the support capacity of the system in all aspects decreases dramatically, the operation interval narrows, and it is not easy to ensure the completion [...] Read more.
After a ship suffers an external strike, the system is often in a poor state of battle damage. Currently, the support capacity of the system in all aspects decreases dramatically, the operation interval narrows, and it is not easy to ensure the completion of the long-term mission chain, especially when it involves impact loads, which is more significant. Given this, this paper proposes a restoration strategy for the power system of battle-damaged ships based on the long-term mission chain. First, the Ship Power System (SPS) is modelled and analyzed to obtain the multi-case operating characteristics of various types of loads, including impact loads under the mission chain. Second, the frequency and power support capability of energy storage is mined and quantified, and the limitations of its frequency support, power interaction, and other multi-operating states are characterized, based on which the multi-operating state switching strategy of the system containing energy storage is formed, to enhance the active support capability of the system. Subsequently, a frequency response model of the system is established. This model takes into account the support provided by energy storage, analyzes the dynamic evolution of system frequency under the disturbance of directly connected impact loads. Based on this analysis, the safe operating boundary of the system is identified. Finally, a two-stage SPS optimization model is proposed based on the above, and the effectiveness and superiority of this paper’s strategy are verified through simulation analysis of typical scenarios and comparison of multiple strategies. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

17 pages, 1101 KiB  
Article
Ship Scheduling Algorithm Based on Markov-Modulated Fluid Priority Queues
by Jianzhi Deng, Shuilian Lv, Yun Li, Liping Luo, Yishan Su, Xiaolin Wang and Xinzhi Liu
Algorithms 2025, 18(7), 421; https://doi.org/10.3390/a18070421 - 8 Jul 2025
Viewed by 210
Abstract
As a key node in port logistics systems, ship anchorage is often faced with congestion caused by ship flow fluctuations, multi-priority scheduling imbalances and the poor adaptability of scheduling models to complex environments. To solve the above problems, this paper constructs a ship [...] Read more.
As a key node in port logistics systems, ship anchorage is often faced with congestion caused by ship flow fluctuations, multi-priority scheduling imbalances and the poor adaptability of scheduling models to complex environments. To solve the above problems, this paper constructs a ship scheduling algorithm based on a Markov-modulated fluid priority queue, which describes the stochastic evolution of the anchorage operation state via a continuous-time Markov chain and abstracts the arrival and service processes of ships into a continuous fluid input and output mechanism modulated by the state. The algorithm introduces a multi-priority service strategy to achieve the differentiated scheduling of different types of ships and improves the computational efficiency and scalability based on a matrix analysis method. Simulation results show that the proposed model reduces the average waiting time of ships by more than 90% compared with the M/G/1/1 and RL strategies and improves the utilization of anchorage resources by about 20% through dynamic service rate adjustment, showing significant advantages over traditional scheduling methods in multi-priority scenarios. Full article
Show Figures

Figure 1

46 pages, 5911 KiB  
Article
Leveraging Prior Knowledge in Semi-Supervised Learning for Precise Target Recognition
by Guohao Xie, Zhe Chen, Yaan Li, Mingsong Chen, Feng Chen, Yuxin Zhang, Hongyan Jiang and Hongbing Qiu
Remote Sens. 2025, 17(14), 2338; https://doi.org/10.3390/rs17142338 - 8 Jul 2025
Viewed by 342
Abstract
Underwater acoustic target recognition (UATR) is challenged by complex marine noise, scarce labeled data, and inadequate multi-scale feature extraction in conventional methods. This study proposes DART-MT, a semi-supervised framework that integrates a Dual Attention Parallel Residual Network Transformer with a mean teacher paradigm, [...] Read more.
Underwater acoustic target recognition (UATR) is challenged by complex marine noise, scarce labeled data, and inadequate multi-scale feature extraction in conventional methods. This study proposes DART-MT, a semi-supervised framework that integrates a Dual Attention Parallel Residual Network Transformer with a mean teacher paradigm, enhanced by domain-specific prior knowledge. The architecture employs a Convolutional Block Attention Module (CBAM) for localized feature refinement, a lightweight New Transformer Encoder for global context modeling, and a novel TriFusion Block to synergize spectral–temporal–spatial features through parallel multi-branch fusion, addressing the limitations of single-modality extraction. Leveraging the mean teacher framework, DART-MT optimizes consistency regularization to exploit unlabeled data, effectively mitigating class imbalance and annotation scarcity. Evaluations on the DeepShip and ShipsEar datasets demonstrate state-of-the-art accuracy: with 10% labeled data, DART-MT achieves 96.20% (DeepShip) and 94.86% (ShipsEar), surpassing baseline models by 7.2–9.8% in low-data regimes, while reaching 98.80% (DeepShip) and 98.85% (ShipsEar) with 90% labeled data. Under varying noise conditions (−20 dB to 20 dB), the model maintained a robust performance (F1-score: 92.4–97.1%) with 40% lower variance than its competitors, and ablation studies validated each module’s contribution (TriFusion Block alone improved accuracy by 6.9%). This research advances UATR by (1) resolving multi-scale feature fusion bottlenecks, (2) demonstrating the efficacy of semi-supervised learning in marine acoustics, and (3) providing an open-source implementation for reproducibility. In future work, we will extend cross-domain adaptation to diverse oceanic environments. Full article
Show Figures

Figure 1

Back to TopTop