Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,062)

Search Parameters:
Keywords = ship characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6084 KiB  
Article
Intelligent Route Planning for Transport Ship Formations: A Hierarchical Global–Local Optimization and Collaborative Control Framework
by Zilong Guo, Mei Hong, Yunying Li, Longxia Qian, Yongchui Zhang and Hanlin Li
J. Mar. Sci. Eng. 2025, 13(8), 1503; https://doi.org/10.3390/jmse13081503 - 5 Aug 2025
Abstract
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive [...] Read more.
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive system. Global planning often neglects multi-ship collaborative constraints, while local methods disregard vessel maneuvering characteristics and formation stability. This paper proposes GLFM, a three-layer hierarchical framework (global optimization–local adjustment-formation collaboration module) for intelligent route planning of transport ship formations. GLFM integrates an improved multi-objective A* algorithm for global path optimization under dynamic meteorological and oceanographic (METOC) conditions and International Maritime Organization (IMO) safety regulations, with an enhanced Artificial Potential Field (APF) method incorporating ship safety domains for dynamic local obstacle avoidance. Formation, structural stability, and coordination are achieved through an improved leader–follower approach. Simulation results demonstrate that GLFM-generated trajectories significantly outperform conventional routes, reducing average risk level by 38.46% and voyage duration by 12.15%, while maintaining zero speed and period violation rates. Effective obstacle avoidance is achieved, with the leader vessel navigating optimized global waypoints and followers maintaining formation structure. The GLFM framework successfully balances global optimality with local responsiveness, enhances formation transportation efficiency and safety, and provides a comprehensive solution for intelligent route optimization in multi-constrained marine convoy operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 1669 KiB  
Article
Predefined-Time Adaptive Neural Control with Event-Triggering for Robust Trajectory Tracking of Underactuated Marine Vessels
by Hui An, Zhanyang Yu, Jianhua Zhang, Xinxin Wang and Cheng Siong Chin
Processes 2025, 13(8), 2443; https://doi.org/10.3390/pr13082443 - 1 Aug 2025
Viewed by 146
Abstract
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues [...] Read more.
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues of traditional finite-time control (convergence time dependent on initial states) and fixed-time control (control chattering and parameter conservativeness), this paper proposes a predefined-time adaptive control framework that integrates an event-triggered mechanism and neural networks. By constructing a Lyapunov function with time-varying weights and designing non-periodic dynamically updated dual triggering conditions, the convergence process of tracking errors is strictly constrained within a user-prespecified time window without relying on initial states or introducing non-smooth terms. An adaptive approximator based on radial basis function neural networks (RBF-NNs) is employed to compensate for unknown nonlinear dynamics and external disturbances in real-time. Combined with the event-triggered mechanism, it dynamically adjusts the update instances of control inputs, ensuring prespecified tracking accuracy while significantly reducing computational resource consumption. Theoretical analysis shows that all signals in the closed-loop system are uniformly ultimately bounded, tracking errors converge to a neighborhood of the origin within the predefined-time, and the update frequency of control inputs exhibits a linear relationship with the predefined-time, avoiding Zeno behavior. Simulation results verify the effectiveness of the proposed method in complex marine environments. Compared with traditional control strategies, it achieves more accurate trajectory tracking, faster response, and a substantial reduction in control input update frequency, providing an efficient solution for the engineering implementation of embedded control systems in unmanned ships. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
16 pages, 4461 KiB  
Article
Study on the Influence of Inducer Structure Change on Pump Cavitation Characteristics
by Zhengwei Wang, Wei Song, Xuanyi Lin, Yun Zhao and Yonggang Lu
Energies 2025, 18(15), 4059; https://doi.org/10.3390/en18154059 - 31 Jul 2025
Viewed by 156
Abstract
Given that cryogenic pumps on liquefied natural gas (LNG) carriers are prone to cavitation under complex operating conditions, this paper examines the inducer of an LNG centrifugal pump to uncover how the inducer geometry affects both the cavitation behavior and internal flow-induced excitation [...] Read more.
Given that cryogenic pumps on liquefied natural gas (LNG) carriers are prone to cavitation under complex operating conditions, this paper examines the inducer of an LNG centrifugal pump to uncover how the inducer geometry affects both the cavitation behavior and internal flow-induced excitation at −163 °C. Through detailed numerical simulations, we evaluate the cavitation performance and flow excitation characteristics across a range of inducer designs, systematically varying the blade count, inlet and outlet angles, and blade wrap angle. Our results show that reducing the number of blades, together with properly optimized inlet/outlet and wrap angles, significantly enhances the cavitation resistance. These findings provide a solid theoretical basis and practical guidance for the engineering optimization of LNG ship pumps. Full article
Show Figures

Figure 1

23 pages, 4845 KiB  
Article
A Transfer Matrix Method to Dynamic Calculation and Optimal Design of Flanged Pipelines
by Zhiming Yang, Yingbo Diao, Jingfeng Gong and Kai Gao
J. Mar. Sci. Eng. 2025, 13(8), 1459; https://doi.org/10.3390/jmse13081459 - 30 Jul 2025
Viewed by 158
Abstract
To study the dynamic characteristics of the fluid-filled ship piping system with flanges and to optimize the design, and based on the transfer matrix methods (TMMs), this paper proposes two modeling methods for flat-welded flanges and weld-neck flanges. Method 1 employs a lumped [...] Read more.
To study the dynamic characteristics of the fluid-filled ship piping system with flanges and to optimize the design, and based on the transfer matrix methods (TMMs), this paper proposes two modeling methods for flat-welded flanges and weld-neck flanges. Method 1 employs a lumped mass equivalent flange. Method 2, based on the finite element and analogy ideas, equates the flange to pipe sections with a larger wall thickness. By comparing with the finite element method (FEM) results, it is found that for both flat-weld flanges and weld-neck flanges, the accuracy of Method 2 proposed in this paper is superior to that of Method 1. Meanwhile, experimental verification is carried out, and the experimental results are generally consistent with those obtained using Method 2. Furthermore, the multi-objective particle swarm optimization (MOPSO) algorithm is further introduced for the dynamic design of a branch pipeline system. The goal is to avoid resonance by adjusting the natural frequency of the system. Through the comparison of the FEM results, it has been confirmed that this optimization method is both efficient and accurate in optimizing the natural frequency. The method proposed in this paper has a specific reference value for engineering practice. Full article
(This article belongs to the Special Issue Advances in Ships and Marine Structures—Edition II)
Show Figures

Figure 1

21 pages, 2585 KiB  
Review
Advances of Articulated Tug–Barge Transport in Enhancing Shipping Efficiency
by Plamen Yanakiev, Yordan Garbatov and Petar Georgiev
J. Mar. Sci. Eng. 2025, 13(8), 1451; https://doi.org/10.3390/jmse13081451 - 29 Jul 2025
Viewed by 158
Abstract
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is [...] Read more.
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is expected to lead to an increase in the annual growth rate from 2025 to 2032. This study aims to analyse the current advancements in ATB technology and provide insights into the ATB fleet and the systems that connect tugboats and barges. Furthermore, it highlights the advantages of this transportation system, especially regarding its role in enhancing energy efficiency within the maritime transport sector. Currently, there is limited information available in the public domain about ATBs compared to other commercial vessels. The analysis reveals that much of the required information for modern ATB design is not accessible outside specialised design companies. The study also focuses on conceptual design aspects, which include the main dimensions, articulated connections, propulsion systems, and machinery, concluding with an evaluation of economic viability. Special emphasis is placed on defining the main dimensions, which is a critical part of the complex design process. In this context, the ratios of length to beam (L/B), beam to draft (B/D), beam to depth (B/T), draft to depth (T/D), and power to the number of tugs cubed (Pw/N3) are established as design control parameters in the conceptual design phase. This aspect underscores the novelty of the present study. Additionally, the economic viability is analysed in terms of both CAPEX (capital expenditures) and OPEX (operational expenditures). While CAPEX does not significantly differ between the methods used in different types of commercial ships, OPEX should account for the unique characteristics of ATB vessels. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 4095 KiB  
Article
GNSS-Based Multi-Target RDM Simulation and Detection Performance Analysis
by Jinxing Li, Qi Wang, Meng Wang, Youcheng Wang and Min Zhang
Remote Sens. 2025, 17(15), 2607; https://doi.org/10.3390/rs17152607 - 27 Jul 2025
Viewed by 359
Abstract
This paper proposes a novel Global Navigation Satellite System (GNSS)-based remote sensing method for simulating Radar Doppler Map (RDM) features through joint electromagnetic scattering modeling and signal processing, enabling characteristic parameter extraction for both point and ship targets in multi-satellite scenarios. Simulations demonstrate [...] Read more.
This paper proposes a novel Global Navigation Satellite System (GNSS)-based remote sensing method for simulating Radar Doppler Map (RDM) features through joint electromagnetic scattering modeling and signal processing, enabling characteristic parameter extraction for both point and ship targets in multi-satellite scenarios. Simulations demonstrate that the B3I signal achieves a significantly enhanced range resolution (tens of meters) compared to the B1I signal (hundreds of meters), attributable to its wider bandwidth. Furthermore, we introduce an Unscented Particle Filter (UPF) algorithm for dynamic target tracking and state estimation. Experimental results show that four-satellite configurations outperform three-satellite setups, achieving <10 m position error for uniform motion and <18 m for maneuvering targets, with velocity errors within ±2 m/s using four satellites. The joint detection framework for multi-satellite, multi-target scenarios demonstrates an improved detection accuracy and robust localization performance. Full article
Show Figures

Figure 1

25 pages, 6493 KiB  
Article
Research on Vibration Reduction Characteristics and Optimization of an Embedded Symmetric Distribution Multi-Level Acoustic Black Hole Floating Raft Isolation System
by Xipeng Luo, Xiao Wang, Qiyuan Fan, Jun Wang, Yuanyuan Shi, Jiaqi Liu and Yizhe Huang
Symmetry 2025, 17(8), 1196; https://doi.org/10.3390/sym17081196 - 26 Jul 2025
Viewed by 188
Abstract
The subject of ship structural dynamics has faced new technological obstacles due to scientific and technological advancements, and one of the main concerns in related sectors is how to effectively reduce the vibration levels of different ships. This article focuses on the application [...] Read more.
The subject of ship structural dynamics has faced new technological obstacles due to scientific and technological advancements, and one of the main concerns in related sectors is how to effectively reduce the vibration levels of different ships. This article focuses on the application scenarios of ship floating raft isolation systems, establishing a wave propagation model for acoustic black hole (ABH) structures based on the idea of the ABH effect. Then, a transfer matrix model for serially connected ABH structures is derived, which serves as a basis for subsequent structural designs. Second, the finite element method is used to study the energy distribution and vibration characteristics of a symmetrically distributed periodic non-uniform multi-level ABH structure. Meanwhile, it examines its bandgap distribution under a one-dimensional periodic arrangement and then investigates the vibration properties of non-uniform multi-level ABH thin-plate constructions with different periods from the perspective of engineering applications. Moreover, parameter optimization studies of non-uniform multi-level ABH structures with finite periods are carried out with an emphasis on engineering applications. The first step is to use the design space to determine the range of values for the parameters that need to be optimized. The hyper Latin cubic sampling method is then employed to select samples, and the EI criterion and PSO optimization algorithm are applied to add new samples to improve the Kriging surrogate model’s accuracy. When the optimal structural parameters have been determined, they are applied to the raft rib plate to verify the isolation effect of the non-uniform multi-level ABH structure by analyzing the vibration level difference at specific raft positions before and after embedding it. Full article
Show Figures

Figure 1

22 pages, 7569 KiB  
Article
Ancient Ship Structures: Ultimate Strength Analysis of Wooden Joints
by Albert Zamarin, Smiljko Rudan, Davor Bolf, Alice Lucchini and Irena Radić Rossi
J. Mar. Sci. Eng. 2025, 13(8), 1392; https://doi.org/10.3390/jmse13081392 - 22 Jul 2025
Viewed by 176
Abstract
This paper presents an analysis of the ultimate strength of wooden joints of the structures of ancient wooden ships. The aim is to contribute to the discussion about how joining technology and types of joints contributed to the transition from ‘shell-first’ to ‘frame-first’ [...] Read more.
This paper presents an analysis of the ultimate strength of wooden joints of the structures of ancient wooden ships. The aim is to contribute to the discussion about how joining technology and types of joints contributed to the transition from ‘shell-first’ to ‘frame-first’ construction, of which the latter is still traditional Mediterranean wooden shipbuilding technology. Historically, ship construction has consisted of two main structural types of elements: planking and stiffening. Therefore, two characteristic carvel planking joints and two longitudinal keel joints were selected for analysis. For planking, the joint details of the ship Uluburun (14th c. BC) and the ship Kyrenia (4th c. BC) were chosen, while two different types of scarf joints belonging to the ship Jules-Verne 9 (6th c. BC) and the ship Toulon 2 (1st c. AD) were selected. The capacity, i.e., the ultimate strength of the joint, is compared to the strength of the structure as if there was no joint. The analysis simulates the independent joint loading of each of the six numerical models in bending, tension, and compression until collapse. The results are presented as load-end-shortening curves, and the calculation was performed as a nonlinear FE analysis on solid elements using the LSDYNA explicit solver. Since wood is an anisotropic material, a large number of parameters are needed to describe the wood’s behaviour as realistically as possible. To determine all the necessary mechanical properties of two types of wood structural material, pine and oak, a physical experiment was used where results were compared with numerical calculations. This way, the material models were calibrated and used on the presented joints’ ultimate strength analysis. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 7457 KiB  
Article
An Efficient Ship Target Integrated Imaging and Detection Framework (ST-IIDF) for Space-Borne SAR Echo Data
by Can Su, Wei Yang, Yongchen Pan, Hongcheng Zeng, Yamin Wang, Jie Chen, Zhixiang Huang, Wei Xiong, Jie Chen and Chunsheng Li
Remote Sens. 2025, 17(15), 2545; https://doi.org/10.3390/rs17152545 - 22 Jul 2025
Viewed by 317
Abstract
Due to the sparse distribution of ship targets in wide-area offshore scenarios, the typical cascade mode of imaging and detection for space-borne Synthetic Aperture Radar (SAR) echo data would consume substantial computational time and resources, severely affecting the timeliness of ship target information [...] Read more.
Due to the sparse distribution of ship targets in wide-area offshore scenarios, the typical cascade mode of imaging and detection for space-borne Synthetic Aperture Radar (SAR) echo data would consume substantial computational time and resources, severely affecting the timeliness of ship target information acquisition tasks. Therefore, we propose a ship target integrated imaging and detection framework (ST-IIDF) for SAR oceanic region data. A two-step filtering structure is added in the SAR imaging process to extract the potential areas of ship targets, which can accelerate the whole process. First, an improved peak-valley detection method based on one-dimensional scattering characteristics is used to locate the range gate units for ship targets. Second, a dynamic quantization method is applied to the imaged range gate units to further determine the azimuth region. Finally, a lightweight YOLO neural network is used to eliminate false alarm areas and obtain accurate positions of the ship targets. Through experiments on Hisea-1 and Pujiang-2 data, within sparse target scenes, the framework maintains over 90% accuracy in ship target detection, with an average processing speed increase of 35.95 times. The framework can be applied to ship target detection tasks with high timeliness requirements and provides an effective solution for real-time onboard processing. Full article
(This article belongs to the Special Issue Efficient Object Detection Based on Remote Sensing Images)
Show Figures

Figure 1

20 pages, 3162 KiB  
Article
Study on Separation of Desulfurization Wastewater in Ship Exhaust Gas Cleaning System with Rotating Dynamic Filtration
by Shiyong Wang, Juan Wu, Yanlin Wu and Wenbo Dong
Membranes 2025, 15(7), 214; https://doi.org/10.3390/membranes15070214 - 18 Jul 2025
Viewed by 379
Abstract
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental [...] Read more.
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental testing, theoretical analysis, and pilot-scale validation. Flux increases with temperature and pressure but decreases with feed concentration, remaining unaffected by circulation flow. For a small membrane (152 mm), flux consistently increases with rotational speed across all pressures. For a large membrane (374 mm), flux increases with rotational speed at 300 kPa but firstly increases and then decreases at 100 kPa. Filtrate turbidity in all experiments complies with regulatory standards. Due to the unique hydrodynamic characteristics of RDF, back pressure reduces the effective transmembrane pressure, whereas shear force mitigates concentration polarization and cake layer formation. Separation performance is governed by the balance between these two forces. The specific energy consumption of RDF is only 10–30% that of cross-flow filtration (CFF). Under optimized pilot-scale conditions, the wastewater was concentrated 30-fold, with filtrate turbidity consistently below 2 NTU, outperforming CFF. Moreover, continuous operation proves more suitable for marine environments. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

21 pages, 4336 KiB  
Article
A Hybrid Flying Robot Utilizing Water Thrust and Aerial Propellers: Modeling and Motion Control System Design
by Thien-Dinh Nguyen, Cao-Tri Dinh, Tan-Ngoc Nguyen, Jung-Suk Park, Thinh Huynh and Young-Bok Kim
Actuators 2025, 14(7), 350; https://doi.org/10.3390/act14070350 - 17 Jul 2025
Viewed by 301
Abstract
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such [...] Read more.
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such tasks, existing solutions like drones and water-powered robots inherited fundamental limitations, making their use ineffective. For instance, drones are constrained by limited flight endurance, while water-powered robots struggle with horizontal motion due to the couplings between translational motions. The proposed hydro-aerodynamic hybrid actuation in this study addresses these significant drawbacks by utilizing water thrust for sustainable vertical propulsion and propeller-based actuation for more controllable horizontal motion. The characteristics and mathematical models of the proposed flying robots are presented in detail. A state feedback controller and a proportional–integral–derivative (PID) controller are designed and implemented in order to govern the proposed robot’s motion. In particular, a linear matrix inequality approach is also proposed for the former design so that a robust performance is ensured. Simulation studies are conducted where a purely water-powered flying robot using a nozzle rotation mechanism is deployed for comparison, to evaluate and validate the feasibility of the flying robot. Results demonstrate that the proposed system exhibits superior performance in terms of stability and tracking, even in the presence of external disturbances. Full article
(This article belongs to the Special Issue Actuator-Based Control Strategies for Marine Vehicles)
Show Figures

Figure 1

33 pages, 5578 KiB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 549
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

18 pages, 10703 KiB  
Article
An Emergency Response Framework Design and Performance Analysis for Ship Fire Incidents in Waterway Tunnels
by Jian Deng, Shaoyong Liu and Xiaohan Zeng
Fire 2025, 8(7), 278; https://doi.org/10.3390/fire8070278 - 12 Jul 2025
Viewed by 552
Abstract
Waterway tunnels, a novel type of infrastructure designed for inland waterways in mountainous gorge regions, have seen rapid development in recent years. However, their unique structural characteristics and specific shipping activities pose significant risks in the event of an accident. To enhance the [...] Read more.
Waterway tunnels, a novel type of infrastructure designed for inland waterways in mountainous gorge regions, have seen rapid development in recent years. However, their unique structural characteristics and specific shipping activities pose significant risks in the event of an accident. To enhance the scientific rigor and efficiency of emergency responses to vessel incidents in tunnels, this study focuses on fire accidents in waterway tunnels. Considering the unique challenges of emergency response in such scenarios, we propose an emergency response framework using Business Process Modeling Notation (BPMN). The framework is mapped into a Petri net model encompassing three key stages: detection and early warning, emergency response actions, and recovery. A Colored Hierarchical Timed Petri Net (CHTPN) emergency response model is then developed based on fire incident data and emergency response time functions. Furthermore, a homomorphic Markov chain is employed to assess the network’s validity and performance. Finally, optimization strategies are proposed to improve the emergency response process. The results indicate that the emergency response network demonstrates strong accessibility, effectively mitigating information bottlenecks in critical stages of the response process. The network provides accurate and rapid decision support for different tunnel ship fire scenarios, efficiently and reasonably allocating emergency resources and response teams, and monitoring the operation of key emergency response stages. This enhances the efficiency of emergency operations and provides robust support for decision-making in waterway tunnel fire emergencies. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

20 pages, 10137 KiB  
Article
A Multi-Feature Fusion Approach for Sea Fog Detection Under Complex Background
by Shuyuan Yang, Yuzhu Tang, Zeming Zhou, Xiaofeng Zhao, Pinglv Yang, Yangfan Hu and Ran Bo
Remote Sens. 2025, 17(14), 2409; https://doi.org/10.3390/rs17142409 - 12 Jul 2025
Viewed by 215
Abstract
Sea fog is a natural phenomenon that significantly reduces visibility, posing navigational hazards for ships and impacting coastal activities. Geostationary meteorological satellite data have proven to be indispensable for sea fog monitoring due to their large spatial coverage and spatiotemporal consistency. However, the [...] Read more.
Sea fog is a natural phenomenon that significantly reduces visibility, posing navigational hazards for ships and impacting coastal activities. Geostationary meteorological satellite data have proven to be indispensable for sea fog monitoring due to their large spatial coverage and spatiotemporal consistency. However, the spectral similarities between sea fog and low clouds result in omissions and misclassifications. Furthermore, high clouds obscure certain sea fog regions, leading to under-detection and high false alarm rates. In this paper, we present a novel sea fog detection method to alleviate the challenges. Specifically, the approach leverages a fusion of spectral, motion, and spatiotemporal texture consistency features to effectively differentiate sea fog and low clouds. Additionally, a multi-scale self-attention module is incorporated to recover the sea fog region obscured by clouds. Based on the spatial distribution characteristics of sea fog and clouds, we redesigned the loss function to integrate total variation loss, focal loss, and dice loss. Experimental results validate the effectiveness of the proposed method, and the detection accuracy is compared with the vertical feature mask produced by the CALIOP and exhibits a high level of consistency. Full article
(This article belongs to the Special Issue Observations of Atmospheric and Oceanic Processes by Remote Sensing)
Show Figures

Graphical abstract

19 pages, 24556 KiB  
Article
Harmonic Aggregation Entropy: A Highly Discriminative Harmonic Feature Estimator for Time Series
by Ye Wang, Zhentao Yu, Cheng Chi, Bozhong Lei, Jianxin Pei and Dan Wang
Entropy 2025, 27(7), 738; https://doi.org/10.3390/e27070738 - 10 Jul 2025
Viewed by 225
Abstract
Harmonics are a common phenomenon widely present in power systems. The presence of harmonics not only increases the energy consumption of equipment but also poses hidden risks to the safety and stealth performance of large ships. Thus, there is an urgent need for [...] Read more.
Harmonics are a common phenomenon widely present in power systems. The presence of harmonics not only increases the energy consumption of equipment but also poses hidden risks to the safety and stealth performance of large ships. Thus, there is an urgent need for a detection method for the harmonic characteristics of time series. We propose a novel harmonic feature estimation method, termed Harmonic Aggregation Entropy (HaAgEn), which effectively discriminates against background noise. The method is based on bispectrum analysis; utilizing the distribution characteristics of harmonic signals in the bispectrum matrix, a new Diagonal Bi-directional Integral Bispectrum (DBIB) method is employed to effectively extract harmonic features within the bispectrum matrix. This approach addresses the issues associated with traditional time–frequency analysis methods, such as the large computational burden and lack of specificity in feature extraction. The integration results, Ix and Iy, of DBIB on different frequency axes are calculated using cross-entropy to derive HaAgEn. It is verified that HaAgEn is significantly more sensitive to harmonic components in the signal compared to other types of entropy, thereby better addressing harmonic detection issues and reducing feature redundancy. The detection accuracy of harmonic components in the shaft-rate electromagnetic field signal, as evidenced by sea trial data, reaches 96.8%, which is significantly higher than that of other detection methods. This provides a novel technical approach for addressing the issue of harmonic detection in industrial applications. Full article
(This article belongs to the Section Signal and Data Analysis)
Show Figures

Figure 1

Back to TopTop