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Abstract

To study the dynamic characteristics of the fluid-filled ship piping system with flanges
and to optimize the design, and based on the transfer matrix methods (TMMs), this paper
proposes two modeling methods for flat-welded flanges and weld-neck flanges. Method 1
employs a lumped mass equivalent flange. Method 2, based on the finite element and
analogy ideas, equates the flange to pipe sections with a larger wall thickness. By comparing
with the finite element method (FEM) results, it is found that for both flat-weld flanges
and weld-neck flanges, the accuracy of Method 2 proposed in this paper is superior to that
of Method 1. Meanwhile, experimental verification is carried out, and the experimental
results are generally consistent with those obtained using Method 2. Furthermore, the
multi-objective particle swarm optimization (MOPSO) algorithm is further introduced for
the dynamic design of a branch pipeline system. The goal is to avoid resonance by adjusting
the natural frequency of the system. Through the comparison of the FEM results, it has
been confirmed that this optimization method is both efficient and accurate in optimizing
the natural frequency. The method proposed in this paper has a specific reference value for
engineering practice.

Keywords: pipeline system; transfer matrix method; pipe flange; vibration reduction
optimization

1. Introduction
Pipeline vibration not only causes structural fatigue failure, leading to serious accidents,

such as pipeline leakage and rupture, but also generates noise pollution, affecting the
working environment and personnel health [1]. Components in the ship piping system,
such as flanges and supports, can significantly alter a system’s vibration characteristics [2].
For example, as important components for supporting the pipeline, the structure and
position of the support can alter the stiffness of the pipeline, thereby affecting the natural
frequency of the pipeline system [3]. Therefore, a calculation method that is both accurate
and efficient is particularly important for the low-vibration design of pipeline systems.

At present, the mainstream methods for calculating the fluid–structure coupling
vibration characteristics of the fluid-filled pipeline include the method of characteristics
(MOC), the finite element method (FEM), and the transfer matrix method (TMM). Since
the fluid-conveying pipeline system exhibits a typical chain-like topology, the transfer
matrix method is well-suited for such structures. The key advantage of this method is
that the dimensions of the overall property matrices for the whole system do not increase
with the number of elements or the system’s scale and complexity [4,5]. It offers high
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computational efficiency and has been widely adopted by researchers for frequency-domain
fluid–structure interaction analysis in pipeline systems [6,7].

Common pipeline systems include pipeline components with regular geometric struc-
tures, such as straight pipes, elbow pipes, and branch pipes, as well as pipeline components
with irregular geometric structures, such as flanges and flexible supports. Regular geo-
metric structures pipeline components, such as straight pipes, elbow pipes, and branch
pipes, can have their mathematical models established through theoretical derivation [8–12].
Tentarelli [8] expounded the dynamic equation of a single fluid-filled pipeline based on the
transfer matrix method; Lesmez et al. [9] adopted the transfer matrix method and estab-
lished the fluid–structure coupling model of the L-shaped liquid-filled pipe by equivalent
the elbow pipe to multiple straight pipes; Cao et al. [10] established the mixed energy
transfer matrix method (HETMM), effectively solving the problem of numerical instability
existing in the vibration solution method based on TMM during high-frequency calculation,
and analyzed the natural frequency of the dual-branch pipeline system; Deng et al. [11]
considered the fluid friction and the flexibility correction of the elbow, calculated the natural
frequency and frequency response of the Z-shaped hydraulic pipeline using TMM, and
compared them with the experimental results.

The research objects in the abovementioned literature are almost all single infusion
tubes or branch pipes, while in real life complex pipeline systems often connect individual
pipeline components through flanges. The two commonly used types of flanges are flat-
weld flanges and weld-neck flanges. In the existing literature, there is no recognized
transfer matrix model for pipeline flanges, which restricts the application of the transfer
matrix method in the analysis of multi-component series pipeline systems. Li [6] treated
the flat-weld flange as a lumped mass and established its point transfer matrix through
the balanced relationship of the force and torque before and after the flange. Liu et al. [12]
considered the lateral vibration of the pipeline, established a transfer matrix model of
lumped mass, and introduced a coupling term to describe the influence of eccentric mass
on bending moment and shear force. The above analyses simplify the flange to a lumped
mass and have not been verified through a real pipeline system. Flat-weld flanges are
generally of an axisymmetric structure, and their center of mass is usually located on the
axis. However, weld-neck flanges are relatively longer than flat-weld flanges, and their
mass distribution is uneven. Therefore, they cannot be simply regarded as lumped mass.
To address these limitations, this paper develops two transfer matrix modeling methods
for flat-weld and weld-neck flanges, respectively. By introducing concepts from finite
element discretization and geometrical analogy, we can improve the accuracy of dynamic
characteristic analysis for flange-containing pipeline systems.

Adjusting the parameters of the pipeline system can significantly improve its vibration
characteristics [13]. However, pipeline systems often contain complex components, such
as flanges and flexible supports. Therefore, it is of great practical significance to establish
a method for the optimal design of pipeline systems that can consider complex pipeline
components. Kwong et al. [14] optimized the support position using the genetic algorithm
and verified the optimization effect of the vibration and noise of the pipeline system
through experiments; Wan et al. [15] conducted static and modal analyses on the pipeline
system and selected the methods for pipeline support based on the risk level to accurately
identify the supports with abnormal conditions and achieve the assessment of the support
status of the pipeline system. Zhang et al. [16] studied the frequency adjustment and
dynamic response reduction in the multi-support pipeline system through experiments and
numerical simulations and introduced the multi-objective genetic algorithm to optimize
the support position and adjust the first-order natural frequency to avoid the operating
range of the engine. The abovementioned studies all conducted regular analyses based on



J. Mar. Sci. Eng. 2025, 13, 1459 3 of 23

the assumption that the support base is rigid but did not comprehensively consider the
influence of the flexibility of the support base on the inherent characteristics of the pipeline
system, which has certain limitations.

This paper initially presents the derivation and validation process of the transfer matrix
model for pipe flanges, drawing on the concepts of finite element discretization and analogy.
It then introduces the multi-objective particle swarm optimization (MOPSO) algorithm,
aiming to optimize the pipeline design by avoiding excitation frequencies. This approach
provides a reliable theoretical foundation and technical support for the engineering practice
of pipeline systems.

2. Mathematical Models
2.1. Dynamic Models of Typical Pipe Components

The local coordinate system of the straight pipe is established according to the right-
hand rule: along the axial direction of the pipe is the z direction, and the y-z plane is the
horizontal plane. The force diagram of the fluid-filled straight pipe is shown in Figure 1. To
simplify the calculation, the influence of gravity is ignored. Each straight pipe microelement
includes six forces, six velocities, sound pressure, and fluid vibration velocity, totaling
14 variables. According to their vibration forms, they can be classified into three types,
namely axial vibration, lateral vibration, and torsional vibration. Like straight pipes,
the fluid–structure coupling mathematical models of elbow pipes can also be divided
into the axial 4-equation, the y-z plane 4-equation, the x-z plane 4-equation, and the
torsion 2- equation.

Figure 1. Straight fluid-filled pipe model, where
.

wi and
.
θi are the vibration velocity and angular

velocity of the pipe, respectively; fi is the body force; mi is the moment. Subscripts i indicates the
component along the x-, y-, or z-direction.

The 14-equation model in reference [17] is used for research. Whether it is a straight
pipe or an elbow pipe element, the 14-equation model of fluid–structure coupling can be
written in the following general form:

AI
∂y(z, t)

∂t
+ B

∂y(z, t)
∂z

+ Cy(z, t) = 0 (1)

where AI is a 14-dimensional identity matrix, while B and C are the coefficient matrices
corresponding to the variables.

The time-domain state vector containing motion variables in all directions can be
expressed as follows:

y(z, t) =
[

Vl Pl
.

wz fz
.

wy fy
.
θx mx

.
wx fx

.
θy my

.
θz mz

]T
(2)

where Vl is the pulsation velocity of the fluid; Pl is the fluid pressure.
Suppose the initial system is static and y(z,t)|t=0. We perform the Laplace transform

on the above equation and define the following:
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Φ(z, s) = ζ(y(z, t)), Φ(z, s) = [Vl , Pl ,
.

wz, fz,
.

wy, fy,
.
θx, mx,

.
wx, fx,

.
θy, my,

.
θz, mz]

T
,

where Equation (1) can be solved as follows:

Φ(z, s) + A−1B
∂Φ(z, s)

∂z
= 0 (3)

where A = AI + C/s, and s is the Laplace transform variable.
The solution of Equation (3) can be written as follows:

Φ(0, s) = VE−1(z, s)V−1Φ(z, s) (4)

where U = VE−1(z, s)V−1 is the field transfer matrix of the pipe section
with an equal cross-section; V denotes the eigenvalue of A−1B; E(z, s) is
diag

{
exp( −z

λ1(s)
), exp( −z

λ2(s)
), · · · , exp( −z

λ14(s)
)
}

; λ1(s), λ2(s), · · · , λ14(s) is the eigenvalue of

matrix A−1B.

2.2. Point Transfer Matrix of Branch Pipes

The model of the branch pipeline connected by N pipelines is shown in Figure 2.
We define the angles between the first pipeline and the other pipelines as α1, α2, . . ., αN,
while the state vectors of each pipeline at the branch points are Φ1, Φ2, . . ., ΦN. The main
transmission path is from Pipeline 1 to Pipeline 2, and the remaining pipelines are regarded
as branches.

1Φ

2Φ

NΦ

2α

Nα

.

.

.
i

1

2

N

1x

1y

2x
1z

2z

2y

N
y

N
z

N
x

 
Figure 2. Branch pipeline model.

The state vector transmission relationships between pipe 1 and pipe 2 at the branch
point can be found in Ref. [18]. Equation (5) is as follows:

Φ1 = P−1
1

[
P2 + P3H−1

3 T2 + · · ·+ PNH−1
N T2

]
Φ2 (5)

where Hi =

[
Ai

BiU−1
i

]
(3 ≤ i ≤ N), T2 =

[
A2

07×14

]
. P−1

1

[
P2 + P3H−1

3 T2 + · · ·+ PNH−1
N T2

]
is the point transfer matrix in the branch pipe point. PiH−1

i is the influence of branch pipes
on the main pipe. Ai is a 7 × 14 coefficient matrix, while Pi is a 14 × 14 coefficient matrix.
The above matrices are dependent on the branch angle and the inner radius of the pipeline,
which can be referenced in [19]. Ui is the field transfer matrix of each branch pipe. Bi is the
boundary condition matrix at the end of each branch pipe.

2.3. Pipe Flange Transfer Matrix

In previous studies, flanges are often regarded as a lumped mass treatment [12].
Ignoring its geometric shape, the schematic diagram of the connection between the lumped
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mass mc and the pipe is shown in Figure 3. The center point of the connection between
the pipe and the lumped mass is selected as the coordinate origin 0, the center of mass of

the lumped mass is C,
→
f is the total force at point 0, and

→
m is the total torque at point 0.

Suppose that the lumped mass is rigidly connected to the pipe. That is, the displacements
at the end of pipe i and the initial end of pipe i + 1 are equal.

O

m


f


C

LΦ RΦi i+1

z

x

y
 

Figure 3. Simplified diagram of the central mass.

The front-end state vector ΦL and the back-end state vector ΦR of the centralized mass
can be written in the form of ΦL= USΦR, where US is the transfer matrix of the centralized
mass points and US can be expressed as in the following Equation (6):

US =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 mcs 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 mcs 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 Jmxs 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 mcs 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 Jmys 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 Jmzs 1



(6)

where Jmx, Jmy, and Jmz represent the moments of inertia of the lumped mass around the x-,
y-, and z-axes, respectively.

2.3.1. Flat-Weld Flange

The physical diagram of the flat-weld flange is shown in Figure 4. In practical appli-
cations, two flat-weld flanges are, respectively, welded to the pipes to be connected, and
then fastened with bolts to ensure a reliable connection between the pipes and to build a
complete pipeline system.

The flat-weld flange is simplified to a lumped mass. Based on the force and moment
balance relationship before and after the flat-weld flange, combined with the state vectors
at the left and right ends of the flange, the flange point transfer matrix is established, as
shown in Equation (6).

The moment of inertia Jmz of the flange coil around the z-axis (the axial direction of
the pipe) can be obtained by the infinitesimal method, as in the following Equation (7):

Jmz =
1
2

mc(R2
1 + R2

2) (7)
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where R1 and R2 are the outer radius and inner radius of the flange, respectively. Since
the flange is symmetric about the x-axis and y-axis, Jmx = Jmy can be obtained by using the
vertical axis theorem, as follows:

Jmx = Jmy =
1
2

Jmz (8)

According to the abovementioned method as Method 1 for dealing with the flat-weld
flange in this paper, the dynamic analysis of the flat-weld flange of the pipe is carried out.

 

Figure 4. Physical diagram of the flat–weld flange.

In addition to the abovementioned Method 1, this paper takes into account the geomet-
ric similarity between the flat-weld flange and the straight pipe and equivalently regards
them as a section of straight pipe with a larger wall thickness through the idea of analogy.
The field transfer matrix of this equivalent straight pipe adopts the form of Equation (4),
which is used as Method 2 for the dynamic analysis of pipes with flat-weld flanges in
this paper.

2.3.2. Weld-Neck Flange

The weld-neck flange consists of two parts, namely the flange plate and the flange
neck (Figure 5). Compared with the flat-weld flange, it has the characteristics of large
weight and long length. If it is only considered as a lumped mass, it may cause significant
errors. To this end, this paper proposes two methods to solve this problem.

 

Figure 5. Physical diagram of a weld–neck flange.
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Method 1: Simplify the flange plate as a lumped mass. The point transfer matrix of the
lumped mass is shown in Equation (6). However, the shape of the flange neck is irregular
and cannot be directly solved using the existing mathematical model. Using the idea of
finite elements, the flange neck is divided into n sections of length (as shown in Figure 6),
and the length of each section is ∆z = L/n. When ∆z approaches 0, the flange neck of the
weld-neck flange can be calculated approximately by the superposition of multiple sections
of straight pipes with gradually changing cross-sections. Therefore, the transfer matrix of
the flange neck can be expressed as follows:

UZ =
n

∏
i=1

U(∆z × i) (9)

Figure 6. Equivalent schematic diagram of a flange neck.

Then, the transfer matrix of the weld-neck flange can be expressed as follows:

U f = UZ × US (10)

where US is the point transfer matrix of the lumped mass.
Method 2: Simplify the flange plate into straight pipes with equal inner diameters. The

corresponding representation method of the flange neck is the same as that in Method 1.
Then, the transfer matrix of the weld-neck flange can be expressed as follows:

U f = UZ × UD (11)

where UD is the field transfer matrix of the flange.

2.3.3. Overall Transfer Matrix of the Liquid-Filled Pipeline

For the pipeline system with n elements shown in Figure 7, the transfer matrix Ui of
each element can be established through the above theory, and the start-end state vector
relation Φi = UiΦi+1 of the current element i can be deduced. Based on the continuity of
the state vectors between components and combined with the boundary conditions at the
initial and end of the pipeline system, the expression of the state vector transfer matrix of
the system can be established as in the following Equation (12):



Bstart 0 0 0 0 0
0 0 0 0 0 Bend

E −U1 0 0 0 0

0
. . . . . . 0 0 0

0 0 E −Ui 0 0

0 0 0
. . . . . . 0

0 0 0 0 E −Un





Φ1

Φ2
...
...
...

Φn

Φn+1


= Ftot (12)



J. Mar. Sci. Eng. 2025, 13, 1459 8 of 23

where Bstart and Bend are 7 × 14 boundary constraint matrices, the matrices of some common
ideal boundary constraints can be referenced in [6]. E is the 14 × 14 identity matrix, and
Ftot is the external excitation column vector in the frequency domain.

sectioni...section1 section2 section
n-1

section
n

...
1Φ 2Φ 3Φ nΦ-1nΦ 1n+ΦiΦ 1i+Φ

Figure 7. Pipeline system diagram.

The state vectors at the beginning and end of ith can be obtained from Equation (12).
Combined with the pipeline field transfer matrix Equation (4), the state vector of any point
on the pipeline system can be obtained. When solving the inherent characteristics of the
pipeline system, let the external excitation matrix Ftot = 0; when the determinant |Dtot| = 0,
the corresponding frequency can be obtained, which is the natural frequency of the system.

After calculating the natural frequencies of the system, we substitute them into the
coefficient matrix Dtot, and this matrix has zero eigenvalues. The eigenvector corresponding
to the zero eigenvalue is the state vector at the beginning and end of all components in
the first order. By extracting the state vectors at the front and rear ends of the pipe
element and based on the transfer relationship at any point on the pipe element, the state
vector at any point on the pipeline system can be determined. Based on the coordinate
system transformation and translation of each component of the pipeline system and the
normalization processing of the state vector, the ith modal shape of the pipeline system in
the global coordinate system can be established.

3. The Principle of Dynamic Optimization of Pipeline Systems
3.1. The Basic Principle and Structure of Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) is based on the simulation of group behaviors,
such as flocks of birds and schools of fish. Its mathematical model is simple, and in many
cases, it can quickly converge to the optimal solution region.

Based on the particle swarm optimization algorithm, the Pareto dominance relation-
ship is introduced to determine the superiority and inferiority among particles and find
the Pareto optimal solution set, avoiding the pursuit of single-objective optimum; we add
an external archive to store non-dominated solutions, providing global optimal position
references for particles and maintaining population diversity. The crowding degree of
particles is measured by calculating the crowding degree. When updating the archive,
the particles with a large crowding degree are retained to make the solution uniformly
distributed on the Pareto front. Thus, the multi-objective particle Swarm optimization
(MOPSO) algorithm is formed.

3.2. The Basic Structure of the MOPSO Algorithm for Pipeline Systems

The transfer matrix method has few degrees of freedom and high programming
calculation efficiency, which makes the computational load involved in the optimization
calculation of pipeline systems very small. It still has a relatively fast calculation speed and
high convergence for complex pipeline systems. The paper intends to optimize the design
of the pipeline system based on the selected basic model of the branch pipeline design with
weld-neck flanges by applying the numerical calculation method of the transfer matrix
and the multi-objective particle swarm optimization algorithm: Firstly, the algorithm
parameters are set, and the particle position and velocity are initialized. At the same
time, the mathematical model of the pipeline is established and the optimization objective
function is formulated. Then, the transfer matrix method is applied for sample calculation,
and the Pareto solution set is updated through the sample crowding degree. Finally,
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when the preset iteration termination conditions are met, the Pareto optimal solution set is
obtained from the external archive to determine the pipeline system design scheme. The
algorithm process is shown in Figure 8.

Establish the 
mathematical model of 

pipeline system

Form the optimization 
objective function

TMM dynamics 
calculation

Update the Pareto 
solution set according to 

the congestion degree

Iteration completed?

Output result

Y

N

Set the parameters of the 
multi-objective particle 

swarm optimization 
algorithm

Initialize the particles and 
velocity

 

Figure 8. Flowchart of the pipeline system optimization design.

4. Numerical Examples and Discussions
4.1. Simple Straight Pipe

The pipe model is depicted in Figure 9. The length, inner radius, and wall thickness of
the pipe are L = 2 m, R = 0.0325 m, and e = 0.005 m. Both ends of the pipe are free. At this
time, the force variables of the fluid and the pipe at the boundary are 0, and its boundary
constraint matrix B is shown in Equation (13). The pipe material is structural steel, the
Young’s modulus of the pipe is E = 2 × 1011 Pa, the density is ρl = 7850 kg/m3, and the
Poisson’s ratio is v = 0.3. The medium inside the pipe is air. The bulk modulus of the air is
K = 1.42 × 105 Pa, and the density is ρl = 1.3 kg/m3.

B =



0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1


(13)

The natural frequencies of the pipe are calculated, respectively, by using the method
in this paper and ANSYS (2019 R2 Version) numerical simulation. The calculation results
of the natural frequencies within 1000 Hz are shown in Table 1. By comparing the results of
this method with those of the FEM, it can be found that the results between the two are
highly consistent, and the relative errors are both within 1%. These results demonstrate the
method’s high accuracy in predicting natural frequencies for straight pipe.
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Figure 9. A schematic of straight pipe.

Table 1. Natural frequencies of simple straight pipe (in Hz).

Mode 1 2 3 4 5

Present 110.6 300.0 575.2 782.6 923.7
FEM 110.6 300.1 575.2 782.6 924.2

4.2. Straight Pipe with Flat-Weld Flanges

As depicted in Figure 10, the length of the straight pipe sections at both ends of the
flange is 1 m. The model is meshed with hexahedral solid elements, and the element size
is 10 mm, resulting in a total of 17,517 elements. Other property parameters of the pipe
and boundary constraints are consistent with those in Section 4.1. DN65 flat-weld flanges
(GB/9119-2000) are adopted, and the medium in the pipe is air.

Point1Force Point2

Figure 10. The finite element model of pipe with flat–weld flanges.

An external unit harmonic excitation force is applied at 0.2 m from the beginning of the
pipe. Measurement point 1 is located at the excitation application point, and measurement
point 2 is 0.5 m from the end. The acceleration responses of the pipe are solved using
the two methods proposed in this paper and FEM. The comparison results are shown in
Figure 11, and the corresponding first four natural frequencies are presented in Table 2. Due
to the small mass and irregular shape of the flange connection bolts and nuts, subsequent
calculations only consider their mass’s influence on the pipe’s vibration response, ignoring
the moment of inertia.

Table 2. Natural frequencies of pipe with flat-weld flanges.

Mode 1 2 3 4

Method 1 96.1 Hz 297.7 Hz 494.2 Hz 902.4 Hz
Method 2 96.3 Hz 291.0 Hz 490.4 Hz 884.0 Hz

FEM 95.8 Hz 290.9 Hz 491.8 Hz 880.1 Hz
Error based on Method 1 0.31% 2.34% 0.49% 2.53%
Error based on Method 1 0.52% 0.03% 0.28% 0.44%

Compared with the FEM results, the vibration acceleration response and natural
frequencies calculated by Method 2 are basically consistent with those calculated by the
FEM. In contrast, the error between Method 1 and the FEM results is relatively large. Based
on the above analysis, the following conclusion can be drawn. When using the transfer
matrix method to conduct overall calculation and analysis of pipe with flat-weld flanges,
Method 2 has higher accuracy, and subsequent calculations mainly adopt Method 2.
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Figure 11. Frequency responses of pipe with flat–weld flanges: (a) point 1; (b) point 2.

4.3. Straight Pipe with Weld-Neck Flanges

In this part, the correctness of the proposed transfer matrix calculation model for the
weld-neck flange (CB/T 4327-2013) will be verified with the finite element model shown
in Figure 12. The length of the straight pipes at both ends of the pipe is 1 m, while the
length of the straight pipe in the middle is 0.2 m. The model is meshed with hexahedral
solid elements, and the element size is 10 mm, resulting in a total of 25,812 elements. Other
property parameters of the pipe are consistent with those in Section 4.1. DN65 weld-neck
flanges are adopted, and the medium in the pipe is water. The bulk modulus of the water
is K = 2.14 × 109 Pa, and the density is ρl = 999 kg/m3.

Point1Force Point2

Figure 12. The finite element model of pipe with weld–neck flanges.

When calculating, both ends of the pipe are fixedly supported. At this time, the fluid
pressure and the velocity variables of the pipe at the boundary are 0 and the boundary
constraint matrix B is shown in Equation (14). An external unit harmonic excitation force is
applied at 0.2 m from the beginning of the pipe. Measurement point 1 is 1 m away from the
beginning of the pipe, and measurement point 2 is 0.8 m away from the end of the pipe.
The acceleration responses of the pipe are solved using the two methods proposed in this
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paper and ANSYS, respectively. The comparison results are shown in Figure 13, and the
corresponding first five natural frequencies are presented in Table 3.

B =



0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0


(14)
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Figure 13. Frequency responses of pipe with weld–neck flanges: (a) point 1; (b) point 2.

Table 3. Natural frequencies of the pipe with weld–neck flanges.

Mode 1 2 3 4 5

Method 1 38.6 Hz 148.6 Hz 303.7 Hz 430.4 Hz 741.1 Hz
Method 2 38.1 Hz 138.6 Hz 293.2 Hz 424.6 Hz 699.7 Hz

FEM 38.2 Hz 138.7 Hz 292.2 Hz 424.2 Hz 692.7 Hz
Error based on Method 1 1.05% 7.14% 3.94% 1.46% 6.99%
Error based on Method 1 0.26% 0.07% 0.34% 0.09% 1.01%

It can be seen that the pipe vibration acceleration response calculated by Method 2 is
basically consistent with the FEM result throughout the calculation frequency range, which
proves the correctness of this method. Method 1 is in good agreement with the FEM results
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before 500 Hz. After 500 Hz, with as the frequency increased, the error of the calculation
results of Method 1 increased accordingly.

Through the above analysis, the following conclusion can be drawn. When the transfer
matrix method is used to conduct the overall calculation and analysis of the pipe with
weld-neck flanges, the accuracy of Method 2 is higher. Unlike Method 1, Method 2 can
also calculate the vibration response on the flanges. Therefore, the subsequent calculations
mainly adopt Method 2.

4.4. Experimental Verification of Pipe with Flanges

To verify the applicability of the method proposed in this paper on actual pipes, this
section will further illustrate the application of the flange model and method described in
this paper through complex pipes containing flat-weld flanges and weld-neck flanges. In
the overall pipe model built in this experiment, weld-neck flanges are connected by bolts
to simulate the pipe connection situation in actual engineering. The schematic of the pipe
installation and the physical diagram of the experiment are shown in Figures 14 and 15. In
Figure 14, the A and B ends of the pipe are connected to the support by nylon ropes. At
this time, the pipe is equivalent to free support, and its boundary constraint matrix B is
shown in Equation (13). Points 1 and 2 represent the measurement points for the vibration
acceleration of the pipe wall. The inner radius of the straight pipe is R = 0.0325 m, and the
wall thickness is e = 0.005 m. The pipe material is structural steel, with Young’s modulus
E = 1.90 × 1011 Pa, density ρl =7850 kg/m3, and Poisson’s ratio ν = 0.3. We adopt DN65
weld-neck flanges and flat-weld flanges.

Force

1
2

A B

0.420.2 0.4 0.2 0.25

Figure 14. A schematic of the experimental pipe (air–filled).

 

Figure 15. The experimental model of the pipe (air–filled).

In this experiment, a force hammer (Model LC02-3A102, DongHua Testing Technology
Co., Ltd., Jingjiang, China) delivers a vertical excitation to the pipe 0.20 m from end A while
the pipe is initially at rest. The vibration response is recorded by a BK-4534BX accelerometer
(Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark), the position of
which is indicated in Figure 14. The experimental data are collected and processed through
the PULSE system. The comparison with the computational results of the method in this
paper and the FEM is shown in Figure 16.
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Figure 16. Frequency responses of experimental pipe (air–filled): (a) point 1; (b) point 2.

It can be seen from Figure 16 that the computational results of this method are in good
agreement with the measurement results of the vibration experiment of the flanged pipe,
which proves the correctness and effectiveness of this method in analyzing the vibration
problems of such pipes.

The finite element model of the experimental pipe is shown in Figure 17. The model is
meshed with hexahedral solid elements, and the element size is 10 mm, resulting in a total
of 52,689 elements. Table 4 lists the modal shapes within the analysis frequency band of the
experimental air-filled pipe. In this method, the dotted lines represent vibration modes,
and the solid lines represent the original model. The modal vibration patterns of the pipe
obtained by the two methods are basically the same, indicating that this method is highly
accurate in calculating the vibration characteristics and inherent characteristics of pipes
with flanges.

 

Figure 17. The finite element model of the experimental pipe.
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Table 4. The mode shapes of the experimental pipe (air-filled).

Mode Present ANSYS

1
 

2  

Consider the pipe filled with water. In the experiment, water is sealed in the pipe
through blind plates. The blind plates at both ends of the pipe weighed 2.92 kg and 4.62 kg,
respectively, as shown in Figure 18. The positions of the pipe vibration measurement points
and the experimental process are the same as those in the air-filled pipe.

 

Figure 18. The experimental model of the pipe (water–filled).

The vibration acceleration responses of the measurement points on the pipe are calcu-
lated by the method in this paper. The experimental results are shown in Figure 19. It can
be seen that when the pipe is filled with water, the calculation results of the method in this
paper are generally in good agreement with the experimental results but slightly worse
than those of the air-filled pipe. The deviation between the two may mainly be caused
by the following reasons: (a) The experimental results may be disturbed by factors not
considered in the calculation, such as the acceleration sensor possibly sensing motion in
other directions, and there may be parameter differences between the calculation and the
experiment, such as Young’s modulus, etc.; (b) Due to reasons, such as gravity, installation,
or welding processes, the pipe is not completely within the horizontal plane, and there is a
certain amount of prestress, which can also cause errors; (c) This method does not consider
the influence of flange gaskets on the vibration response of the pipe; (d) Although both
ends of the pipe are connected to the supports by nylon ropes, the connection points are
still not completely free.
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Figure 19. Cont.
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Figure 19. Frequency responses of the experimental pipe (water–filled): (a) point 1; (b) point 2.

4.5. Experimental Verification of Elbow Pipe with Flanges

Validation of the applicability of the method proposed for complex pipelines and
boundary conditions is conducted on the pipe shown in Figure 20. The pipe has an inner
diameter of 52 mm, a wall thickness of 4 mm, and other sizes are shown in Figure 21.
The pipe is filled with water. The material properties of the pipe are the same as those in
Section 4.4. Both ends of the pipe are free, and the straight pipe sections at both ends of the
elbow are connected to the base via clamps.

 

Figure 20. The experimental model of the elbow pipe with flanges (water-filled).

Supoort
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Support 3
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Figure 21. A schematic of the elbow pipe with flanges.
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The transfer relationship between the state vectors of the left and right sides of the
elastic support point of the pipe satisfies ΦL = UKΦR, where the transfer matrix of the
elastic support point is as follows:

UK =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 kz

s 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 ky
s 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 kθx

s 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 kx

s 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0
kθy
s 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 kθz

s 1



(15)

where kx, ky, kz, kθx, kθy, and kθz represent the stiffness in each direction.
Before verification, it is necessary to measure the support stiffness in the experimental

installation state. The vertical stiffness of each support is measured through experiments,
as shown in Figure 22.
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Figure 22. Supporting dynamic stiffness.

During the frequency response validation, the excitation and response measurement
points of the pipe are shown in Figure 21. A comparison between the method proposed
and the experimental results is shown in Figure 23. The results within the frequency range
of 1~300 Hz exhibit agreement with the experimental data. There are deviations in certain
frequency bands. The deviation may primarily be caused by the stiffness measured by
the experiment, which has errors, and by the neglect of the influence of torsional stiffness.
Overall, this indicates that this method proposed is feasible for predicting the vibration
response characteristics of complex pipelines with actual application boundary conditions
and flanges.
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Figure 23. Frequency responses of the experimental elbow pipe (water–filled): (a) point 1; (b) point 2.

4.6. Dynamic Design of Branch Pipeline with Weld-Neck Flanges

The preceding mathematical models—including the transfer matrices for typical
components (straight pipes, elbow pipes, and branch pipes), and the validated high-
precision Method 2 for flange transfer matrices—enable accurate calculation of key dynamic
parameters (natural frequencies, vibration responses, and modal shapes) of fluid-filled
pipelines with complex components, like flanges. However, engineering practice demands
more than prediction; it requires efficient optimizing designs to avoid resonance with
external excitations (e.g., industrial pump frequencies) and enhance stability. To this end,
this section will introduce the multi-objective particle swarm optimization algorithm to
achieve the rapid optimization design of typical pipelines.

4.6.1. Selection of Optimization Objectives and Establishment of Optimization Models

The pipeline finite element model for optimization is illustrated in Figure 24, where
AB = FG = 0.4 m, CD = DK = 0.3 m, DE = 0.5 m, HI = 0.85 m, and LM = 1.1 m. The
distance between support 1 and point D is 0.2 m, the distance between support 2 and
point H is 0.1 m, and the distance between support 3 and point L is 0.35 m. The model
is meshed with hexahedral solid elements, and the element size is 8 mm, resulting in a
total of 200,869 elements. The parameters of the pipe material are consistent with those of
the straight pipe in Section 4.1. The bending radius of the elbow pipe is 0.25 m, the inner
radius of the pipe is 0.0325 m, and the wall thickness is 0.005 m. Both ends of pipeline I
and M are fixed, while end A is free. The length, width, and thickness of the elastic plate
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are 0.5 m, 0.5 m, and 0.02 m, respectively. When calculating, the flexibility of the plate is
considered. The origin impedance of the plate needs to be obtained through the FEM or
experiments as the boundary condition of the transfer matrix method. In the finite element
calculation, the four sides of the plate are fixed. The obtained origin impedance is shown in
Figure 25. Combining the four-polo parameters of the spring, the point transfer matrix at
the support can be obtained [20]. The initial values of the elastic support stiffness are all
1.3 × 106 N/m, and the medium inside the pipe is water. When constructing the pipeline
system model, considering that the bolts and flange holes have a relatively small impact on
the overall dynamic characteristics, the simplified treatment is as follows: The flange plate
of the weld-neck flange is equivalent to a straight pipe structure, and the flange connection
holes and bolts are ignored.

A B C D

J Support1

E

F

G

H

I

K

L

Support2Support3

M

Figure 24. Schematic diagram of the finite element model to be optimized.
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Figure 25. Calculated amplitude of the velocity impedance of flexible base.

At point J, which is 0.2 m away from end C, an external harmonic excitation force
of 10 N is applied. The acceleration responses of each measurement point in the pipeline
are shown in Figure 26. Industrial current-carrying pipelines may be stimulated by water
pumps during operation. Under normal circumstances, the rotational speed Rp of the water
pump connected to the industrial flow-carrying pipeline is mostly within the range of
1500–3600 r/min, and the excitation base frequency corresponding to this rotational speed
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range is approximately 25–60 Hz. This paper assumes that the pipeline to be optimized
is excited by a fundamental frequency of 40 Hz. In practical situations, in addition to the
fundamental frequency vibration, the excitation source often generates certain excitation at
integer multiples of its frequency. Therefore, the excitation effect of the excitation source at
80 Hz, which is twice the fundamental frequency, is considered. According to the frequency
reserve requirements [21], the resonance domains of the two excitation frequencies can
be calculated as 36–44 Hz and 72–88 Hz, respectively. It can be seen in Figure 26 that the
second and third natural frequencies of the current-carrying pipeline both fall within the
resonance range and need to be optimized. Therefore, in this paper, the optimization targets
of the second and third natural frequencies are set at 48 Hz and 95 Hz, respectively.
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Figure 26. Frequency responses of pipeline measurement points.

4.6.2. Multi–Objective Particle Swarm Optimization Algorithm

In this paper, the second and third natural frequencies are taken as the optimization
objectives and the support stiffness at the three supports are taken as optimization variables.
The MOPSO algorithm is adopted to optimize the inherent characteristics of the pipeline
system shown. We suppose that the variation range of the elastic support stiffness at each
of the three positions is 104–107 N/m.

4.6.3. Optimize the Design Results

The MATLAB (R2019b Version) program is written based on the relationship between
the independent variable and the objective function. Through the MOPSO algorithm,
the optimal stiffness values of supports 1, 2, and 3 are calculated as 5.09 × 106 N/m,
1 × 104 N/m, and 7.99 × 106 N/m, respectively. The optimal solution is substituted into
this method for calculation, and a finite element model is established for simulation. During
the finite element calculation, we fix the four sides of the support base. The acceleration
responses of point J before and after the optimized configuration are shown in Figure 27.
The second and third natural frequencies of the pipeline as calculated by simulation are
47.9 Hz and 94.2 Hz, respectively, and the errors between the theoretical optimization
objective and the simulation results are 0.2% and 0.4%, respectively.

In the study of the pipeline modal shapes, the calculation results of the method in
this paper and the first three pipeline modal shapes obtained by ANSYS are shown in
Table 5. In contrast, the vibration patterns and node distributions of this method are highly
consistent, which fully verifies the accuracy and reliability of the method proposed in this
paper in the analysis of the natural vibration patterns of complex pipeline systems.
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Figure 27. Comparison of the frequency response at point J before and after optimization.

Table 5. The modal shapes of the optimized pipe.

Mode Present ANSYS

1

 

2

3

 

The results show that the adopted method accurately achieves the optimal configura-
tion goals of the second and third natural frequencies of the numerical model. Furthermore,
by comparing these results with the finite element calculation results, the accuracy of this
method in the optimization of natural frequencies is confirmed. Furthermore, it can be seen
from Figure 27 that through the rational definition of target natural frequencies and struc-
tural optimization, the second and third modes of the pipeline system are effectively shifted
away from the excitation frequency range of the connected equipment. This effectively
suppresses the resonance and enhances the dynamic stability of the structure. In addition,
the MOPSO algorithm is used to calculate 30 samples, with 50 iterations and a calculation
time of 6 min 32 s. It balances optimization accuracy with computational efficiency. These
outcomes demonstrate the practical significance and engineering value of the method.

5. Conclusions
In this paper, the fluid-filled ship piping system is taken as the research object, and

transfer matrix models of the pipeline system considering flat-weld flanges and weld-neck
flanges are established. The pipe model is verified through the methods of FEM and
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experiments, expanding the application scope of the transfer matrix method in calculating
the fluid–structure coupling dynamics of pipeline systems. Meanwhile, the MOPSO algo-
rithm is adopted to optimize the design of the specific pipeline. The main conclusions are
as follows:

1. Two calculation methods for the transfer matrix of flat-weld flanges and weld-neck
flanges are proposed. The verification shows that Method 2 has higher accuracy. In
the verification of the flanged pipe model, the vibration acceleration response and
natural frequency calculated by Method 2 are basically consistent with the FEM results.
Method 1 is in good agreement with the FEM results at low frequencies, but the error
is significant at high frequencies.

2. The experimental results show that the vibration test results are in agreement with
the prediction of the method in this paper, and the deviation between the two can
be explained by predictable reasons. This kind of difference is acceptable in the
preliminary engineering design and estimation.

3. The modal shapes of straight pipe and branch pipe with flanges calculated by the
proposed method are in good agreement with the ANSYS results, which verifies the
practicability and correctness of TMM in solving the inherent characteristics of such
pipeline systems.

4. The MOPSO algorithm is adopted to optimize the design of the branch pipeline with
weld-neck flanges. Considering the flexibility of the support base, the second and
third natural frequencies are taken as optimization objectives, and the support stiff-
ness at the three support points is taken as the optimization variable. The optimization
result enables the pipeline’s natural frequency to avoid the excitation frequency and
prevent resonance successfully. The accuracy of the method in natural frequency
optimization is confirmed by finite element model simulation. Moreover, the com-
putational time is 6 min 32 s, demonstrating good computational efficiency while
maintaining optimization accuracy.
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