Modeling, Experiment and Simulation of Tunnel Fire

A special issue of Fire (ISSN 2571-6255). This special issue belongs to the section "Fire Risk Assessment and Safety Management in Buildings and Urban Spaces".

Deadline for manuscript submissions: 31 August 2026 | Viewed by 12540

Special Issue Editors


E-Mail Website
Guest Editor
School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Interests: utility tunnel fire; temperature profile in long narrow space; heat transfer in tunnel fire

E-Mail Website
Guest Editor
School of Safety Science, Tsinghua University, Beijing 100084, China
Interests: public safety; urban safety; urban risk assessment; resilient cities; disaster prediction and early warning; disaster dynamics and simulation

E-Mail
Guest Editor
China Electric Power Research Institute, Beijing 100192, China
Interests: fire accident analysis; fire in power facility; emergency response of power grid

E-Mail Website
Co-Guest Editor
Beijing Jiaoke Highway Survey and Design Institute Co., Ltd., Beijing 100089, China
Interests: road tunnel operation safety; disaster prediction and early warning; ventilation and smoke exhaust; evacuation
School of Safety Engineering, China University of Mining and Technology, Xuzhou, China
Interests: tunnel fire smoke dynamics; smoke control and ventilation strategies; lithium-ion battery fires; novel fire suppression agents
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Interests: spread and control of fire smoke; public safety and emergency management

Special Issue Information

Dear Colleagues,

Tunnel fire has been a hot topic for decades. In recent years, more and more tunnels with novel forms have emerged, such as underwater immersed tunnels, utility tunnels, and long-distance segment tunnels. Existing fire theory of classic tunnels must be updated, and new models are expected to be proposed. As reliable research tools, experiment and simulation still need to be improved, coping with the increasingly complex research on tunnel fires. As for the modeling of tunnel fire, with the development of AI, data driven models should be taken into consideration. Combining data driven and physical driven models to express complex fire behavior in tunnels with novel forms is welcomed.

This Special Issue aims to present new fire challenges brought by tunnels with new forms and explore the unique fire dynamics in these tunnels by combining experiment and simulation. New corresponding models need to be applied in fire protection engineering in these new tunnels. Original contributions are welcome, and potential topics include, but are not limited to, the following:

  • Ventilation and evacuation in extremely long tunnels.
  • Fire location determination and fire separation in utility tunnels.
  • Ventilation, smoke control, and flow organization in underwater tunnels.
  • Ventilation, smoke control, and flow organization in interconnecting tunnels.
  • Fire dynamics of new energy in tunnels.
  • Flowing fire in tunnels.
  • Tunnel fire risk analysis or management using AI.
  • Fire accident in electric-related underground engineering.

Dr. Rongliang Pan
Prof. Dr. Hong Huang
Dr. Chang Liu
Prof. Xiujun Yang
Dr. Lu He
Dr. Zeng Long
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fire is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • tunnel fire dynamics
  • tunnel fire protection engineering
  • flow organization in tunnel fire
  • evacuation
  • tunnel fire risk analysis
  • tunnel fire risk management
  • on-site experiment in tunnel
  • tunnel with new forms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3493 KB  
Article
Experimental Study on the Influence of Fire Source Location on the Ceiling Temperature Distribution in Enclosed Tunnels
by Zhenwei Wang, Ke An, Xueyong Zhou, Jianjun Xiao, Yuanfu Zhou and Linjie Li
Fire 2026, 9(1), 35; https://doi.org/10.3390/fire9010035 - 12 Jan 2026
Viewed by 207
Abstract
Sealing tunnel portals is widely recognized as a pivotal strategy for mitigating fire hazards in tunnel safety management. Nevertheless, the interplay between fire source locations—both longitudinally and transversely—and its impact on flame behavior and ceiling temperature profiles within enclosed structures has not been [...] Read more.
Sealing tunnel portals is widely recognized as a pivotal strategy for mitigating fire hazards in tunnel safety management. Nevertheless, the interplay between fire source locations—both longitudinally and transversely—and its impact on flame behavior and ceiling temperature profiles within enclosed structures has not been fully elucidated. Utilizing a 1:15 reduced-scale rectangular tunnel model, this research investigates how varying the fire source position affects the maximum ceiling temperature under enclosed scenarios. Dimensionless parameters, including the longitudinal dimensionless distance D and transverse dimensionless distance Z′, were derived through dimensional analysis. Observations indicate that as the fire approaches the enclosed end, the flame initially leans toward the boundary, peaking in inclination at D = 0.73, and subsequently exhibits a “wall-attached combustion” pattern due to wall confinement. While lateral displacement of the fire source pushes the high-temperature zone toward the corresponding side wall, the longitudinal temperature rise follows a non-monotonic pattern: declining continuously in in Region I (0 ≤ D ≤ 0.73) and rebounding in Region II (0.73 < D < 1). Based on these findings, a dimensionless prediction model incorporating heat release rate (HRR), transverse offset, and longitudinal fire location was developed. Furthermore, a thermal accumulation factor was introduced to refine the predictive model in Region II. The results offer theoretical insights to support fire protection design and risk assessment in enclosed tunnels. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

22 pages, 7225 KB  
Article
Experimental and Numerical Study on the Two-Dimensional Longitudinal Temperature Rise Behavior of Fire Smoke in the Shenzhen–Zhongshan Ultra-Wide Cross-Section Undersea Tunnel
by Xiujun Yang, Rongliang Pan, Chenhao Ran and Maohua Zhong
Fire 2026, 9(1), 29; https://doi.org/10.3390/fire9010029 - 6 Jan 2026
Viewed by 400
Abstract
The Shenzhen–Zhongshan Link is a key cross-sea corridor in the Guangdong–Hong Kong–Macao Greater Bay Area. As a representative ultra-wide cross-section undersea tunnel, it exhibits smoke spread behaviors that differ fundamentally from those of traditional road tunnels. In particular, the radial flow region of [...] Read more.
The Shenzhen–Zhongshan Link is a key cross-sea corridor in the Guangdong–Hong Kong–Macao Greater Bay Area. As a representative ultra-wide cross-section undersea tunnel, it exhibits smoke spread behaviors that differ fundamentally from those of traditional road tunnels. In particular, the radial flow region of fire smoke is more pronounced, resulting in substantial lateral variations in smoke dynamics parameters. These characteristics render classical one-dimensional ceiling jet temperature rise theories insufficient for capturing the multidimensional thermal behavior in such geometries. In this study, the immersed-tunnel section of the Shenzhen–Zhongshan Link was investigated through a combination of full-scale fire experiments and Fire Dynamics Simulator (FDS) simulations. The longitudinal attenuation and lateral distribution characteristics of hot smoke temperature rise during spread in an ultra-wide tunnel were systematically obtained. Based on a simplified one-dimensional ceiling jet concept, differences in hot smoke diffusion distance were employed to characterize the lateral temperature rise ratio at any longitudinal location, from which a lateral distribution model was developed. The classical one-dimensional average temperature rise decay model was further reformulated to derive a modified longitudinal decay model applicable to the tunnel centerline of ultra-wide cross-sections. By integrating these characteristic models, a two-dimensional longitudinal prediction framework for hot smoke temperature rise in ultra-wide tunnels was established. Validation against full-scale fire experiments demonstrates that the proposed model can predict the two-dimensional thermal field with an accuracy within 25%. The findings of this study provide a theoretical basis for fire scenario reconstruction in the Shenzhen–Zhongshan undersea tunnel and offer a technical foundation for optimizing emergency ventilation strategies during fire incidents. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

13 pages, 1727 KB  
Article
Experimental Study on Critical Ventilation Speed in Asymmetric V-Shaped Tunnel Fires
by Junmei Li, Hengxuan Zhao, Wenbo Liu and Yanfeng Li
Fire 2026, 9(1), 8; https://doi.org/10.3390/fire9010008 - 23 Dec 2025
Viewed by 324
Abstract
Asymmetric V-shaped tunnels are commonly found in newly built urban underground road tunnels. In such kinds of tunnels, the flow of smoke becomes very complicated in the event of a fire, and effective smoke control under longitudinal ventilation is challenging. The critical ventilation [...] Read more.
Asymmetric V-shaped tunnels are commonly found in newly built urban underground road tunnels. In such kinds of tunnels, the flow of smoke becomes very complicated in the event of a fire, and effective smoke control under longitudinal ventilation is challenging. The critical ventilation speed under different slope combinations and heat release rates (HRRs) of fire in asymmetric V-shaped tunnels with the fire sources located at the slope change point were investigated by experiments through a 1:20 small-scale V-shaped model tunnel. The research results indicate that the critical ventilation speed increases with the increasing of fire HRR. If the fire source power remains constant, when longitudinal ventilation is implemented on the side with small slope, the critical ventilation speed decreases as the slope difference between the two sides of the slope change point increases. Conversely, when longitudinal ventilation is implemented from the large slope side, the critical ventilation speed increases as the slope difference increases. For practical engineering applications, based on the critical ventilation speed of single-slope tunnels, and incorporating the experimental results from model tests, calculation models for the critical ventilation velocity were developed, respectively, for longitudinal ventilation implemented from large or small slope sides with slope corrections taken into account. The research findings can provide technical support for effective smoke control in V-shaped tunnels during fire incidents. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

15 pages, 7684 KB  
Article
Effects of Fire Source Transverse Position and Curvature Radius on the Critical Velocity and Smoke Back-Layering Length in L-Shaped Tunnels
by Wenjie Zhao, Bin Miao, Guangyan Chen, Zhuoting Xiao and Mingxing Yang
Fire 2026, 9(1), 5; https://doi.org/10.3390/fire9010005 - 21 Dec 2025
Viewed by 389
Abstract
L-shaped tunnels frequently occur in underground coal mines because of geological and operational limitations. Their complex geometry increases ventilation resistance and causes non-uniform airflow, promoting combustible gas accumulation and resulting in a greater fire risk than in straight tunnels. In this work, Fire [...] Read more.
L-shaped tunnels frequently occur in underground coal mines because of geological and operational limitations. Their complex geometry increases ventilation resistance and causes non-uniform airflow, promoting combustible gas accumulation and resulting in a greater fire risk than in straight tunnels. In this work, Fire Dynamics Simulator was employed to quantify the effects of the fire source’s transverse position, curvature radius, heat release rate, and imposed longitudinal ventilation on both the critical velocity and the extent of smoke back-layering. The analysis shows that higher heat-release rates elevate the critical velocity, whereas a centrally located fire yields the lowest value. Shifting the fire toward either sidewall or adopting a larger curvature radius results in a higher critical velocity. In addition, the extent of upstream smoke back-layering increases with curvature, peaking when the ignition point lies close to the convex sidewall. Specifically, with a ventilation velocity of 0.95 m/s and a centerline fire, the back-layering length extends from 23 m (R = 5 m) to 40 m (R = 10 m). Based on theoretical derivation and dimensional analysis, several dimensionless parameters were developed that incorporate both the transverse fire-source position and the curvature radius to modify the dimensionless heat-release rate. Finally, dimensionless predictive models for the critical velocity and back-layering length, incorporating the effects of the curvature radius and the fire transverse position, were developed. These models provide a theoretical foundation and practical framework for fire prevention and ventilation design in L-shaped tunnels. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

19 pages, 4073 KB  
Article
A Numerical Study on the Smoke Diffusion Characteristics in Tunnel Fires During Construction Under Pressed-In Ventilation
by Longyue Li, Yanfeng Li, Kangyue Wang, Lin Xu, Mingxuan Qiu and Mengzhen Liu
Fire 2025, 8(12), 480; https://doi.org/10.3390/fire8120480 - 18 Dec 2025
Viewed by 358
Abstract
Pressed-in ventilation provides the possibility of implementing fire smoke control in tunnels during construction. In this study, the impact of the velocity at the air duct outlet, the heat release rate (HRR), and the tunnel geometry on the longitudinal temperature decay of the [...] Read more.
Pressed-in ventilation provides the possibility of implementing fire smoke control in tunnels during construction. In this study, the impact of the velocity at the air duct outlet, the heat release rate (HRR), and the tunnel geometry on the longitudinal temperature decay of the ceiling (ΔT) and smoke’s back-layering length (SBL) is investigated, using a reduced-scale experiment and the Fire Dynamics Simulator (FDS, version 6.7.6). The results indicate that an increase in the velocity at the air duct outlet and a decrease in the HRR lead to a reduction in the value of both ΔT and SBL in the main tunnel. Predictive models for the dimensionless longitudinal temperature decay of the ceiling and the dimensionless SBL are proposed. Near the fire source, the predicted SBL is relatively high due to thermal radiation. The research results provide valuable references for preventing tunnel fires during construction. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

19 pages, 4711 KB  
Article
Study on the Fire Temperature Pattern of Tunnels with Beams Under the Longitudinal Smoke Exhaust Mode
by Shilin Feng, Liang Yi, Zhisheng Xu and Zihan Yu
Fire 2025, 8(10), 388; https://doi.org/10.3390/fire8100388 - 29 Sep 2025
Viewed by 1315
Abstract
Previous studies on tunnel fires have primarily focused on tunnels with flat ceilings and lacked studies on tunnels with beams. The present study is predicated on a reduced-scale tunnel model with a beam structure. Through meticulous analysis of the effects of factors such [...] Read more.
Previous studies on tunnel fires have primarily focused on tunnels with flat ceilings and lacked studies on tunnels with beams. The present study is predicated on a reduced-scale tunnel model with a beam structure. Through meticulous analysis of the effects of factors such as longitudinal ventilation velocity and beam dimensions, the study unveils the distribution pattern of ceiling temperatures under the longitudinal smoke exhaust mode. The findings suggest that the presence of beams can induce turbulence in the longitudinal ventilation airflow. It has been demonstrated that the magnitude of this phenomenon is directly proportional to the spacing of the beams. This results in fluctuations in the ceiling temperature rise close to the combustion zone. The smoke storage capacity of the open cavities formed between adjacent beams is significantly affected by the beam height, thereby influencing the overall temperature rise beneath the ceiling. The greater the beam height, the higher the overall ceiling temperature rise near the combustion zone, but the lower the ceiling temperature rise downstream of the fire source. A prediction model for the longitudinal decay of ceiling temperature downstream of the fire source in tunnels with beams has been obtained. This model is related to the dimensionless beam dimension. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

22 pages, 1202 KB  
Article
Identifying Critical Fire Risk Transmission Paths in Subway Stations: A PSR–DEMATEL–ISM Approach
by Rongshui Qin, Xiangxiang Zhang, Chenchen Shi, Qian Zhao, Tao Yu, Junfeng Xiao and Xiangyang Liu
Fire 2025, 8(8), 332; https://doi.org/10.3390/fire8080332 - 19 Aug 2025
Cited by 2 | Viewed by 1353
Abstract
To enhance the understanding and management of fire risks in subway stations, this study aims to identify critical fire risk transmission paths using an integrated PSR–DEMATEL–ISM approach. A comprehensive evaluation framework is first constructed based on the Pressure–State–Response (PSR) model, systematically categorizing 22 [...] Read more.
To enhance the understanding and management of fire risks in subway stations, this study aims to identify critical fire risk transmission paths using an integrated PSR–DEMATEL–ISM approach. A comprehensive evaluation framework is first constructed based on the Pressure–State–Response (PSR) model, systematically categorizing 22 influencing factors into three dimensions: pressure, state, and response. The Decision-Making Trial and Evaluation Laboratory (DEMATEL) method is then employed to analyze the causal relationships and centrality among these factors, distinguishing between cause and effect groups. Subsequently, Interpretive Structural Modeling (ISM) is applied to organize the factors into a multi-level hierarchical structure, enabling the identification of risk propagation pathways. The analysis reveals five high-centrality and high-causality factors: fire safety education and training, completeness of fire management rules and regulations, fire smoke detection and firefighting capability, operational status of monitoring equipment, and effectiveness of emergency response plans. Based on these key drivers, six major transmission paths are derived, reflecting the internal logic of fire risk evolution in subway environments. Among them, chains originating from Fire Safety Education and Training (S6), Architectural Fire Protection Design (S7), and Completeness of Fire Management Rules and Regulations (S16) exhibit the most significant influence on system-wide safety performance. This study provides theoretical support and practical guidance for proactive fire prevention and emergency planning in urban rail transit systems, offering a structured and data-driven approach to identifying vulnerabilities and improving system resilience. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

22 pages, 3475 KB  
Article
Validation of Subway Environmental Simulation (SES) for Longitudinal Ventilation: A Comparison with Memorial Tunnel Experimental Data
by Manuel J. Barros-Daza
Fire 2025, 8(8), 314; https://doi.org/10.3390/fire8080314 - 7 Aug 2025
Viewed by 1576
Abstract
Ventilation in subway and railway tunnels is a critical safety component, especially during fire emergencies, where effective smoke and heat management is essential for successful evacuation and firefighting efforts. The Subway Environmental Simulation (SES, Version 4.1) model is widely used for predicting airflow [...] Read more.
Ventilation in subway and railway tunnels is a critical safety component, especially during fire emergencies, where effective smoke and heat management is essential for successful evacuation and firefighting efforts. The Subway Environmental Simulation (SES, Version 4.1) model is widely used for predicting airflow and thermal conditions during fire events, but its accuracy in real-world applications requires validation. This study compares SES predictions with experimental data from the Memorial Tunnel fire ventilation tests to evaluate its performance in simulating the effects of jet fans on longitudinal ventilation. The analysis focuses on SES’s ability to predict flow rate and temperature distributions. Results showed reasonable agreement between SES-predicted airflows and temperatures. However, SES tended to underpredict temperatures upstream and near the fire source, indicating a limitation in simulating thermal behavior close to the fire. These findings suggest that SES can be a reliable tool for tunnel ventilation design if certain safety margins, based on the error values identified in this study, are considered. Nonetheless, further improvements are necessary to enhance its accuracy, particularly in modeling heat transfer dynamics and the impact of fire-induced temperature changes. Future work should focus on conducting additional full-scale test validations and model refinements to improve SES’s predictive capabilities for fire safety planning. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

18 pages, 10703 KB  
Article
An Emergency Response Framework Design and Performance Analysis for Ship Fire Incidents in Waterway Tunnels
by Jian Deng, Shaoyong Liu and Xiaohan Zeng
Fire 2025, 8(7), 278; https://doi.org/10.3390/fire8070278 - 12 Jul 2025
Cited by 1 | Viewed by 1559
Abstract
Waterway tunnels, a novel type of infrastructure designed for inland waterways in mountainous gorge regions, have seen rapid development in recent years. However, their unique structural characteristics and specific shipping activities pose significant risks in the event of an accident. To enhance the [...] Read more.
Waterway tunnels, a novel type of infrastructure designed for inland waterways in mountainous gorge regions, have seen rapid development in recent years. However, their unique structural characteristics and specific shipping activities pose significant risks in the event of an accident. To enhance the scientific rigor and efficiency of emergency responses to vessel incidents in tunnels, this study focuses on fire accidents in waterway tunnels. Considering the unique challenges of emergency response in such scenarios, we propose an emergency response framework using Business Process Modeling Notation (BPMN). The framework is mapped into a Petri net model encompassing three key stages: detection and early warning, emergency response actions, and recovery. A Colored Hierarchical Timed Petri Net (CHTPN) emergency response model is then developed based on fire incident data and emergency response time functions. Furthermore, a homomorphic Markov chain is employed to assess the network’s validity and performance. Finally, optimization strategies are proposed to improve the emergency response process. The results indicate that the emergency response network demonstrates strong accessibility, effectively mitigating information bottlenecks in critical stages of the response process. The network provides accurate and rapid decision support for different tunnel ship fire scenarios, efficiently and reasonably allocating emergency resources and response teams, and monitoring the operation of key emergency response stages. This enhances the efficiency of emergency operations and provides robust support for decision-making in waterway tunnel fire emergencies. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

16 pages, 5438 KB  
Article
Fire Assessment of a Subway Train Fire: A Study Based on Full-Scale Experiments and Numerical Simulations
by Xingji Wang, Keshu Zhang, Qilong Shi, Bin Zeng, Qiang Li and Dong Li
Fire 2025, 8(7), 259; https://doi.org/10.3390/fire8070259 - 30 Jun 2025
Cited by 1 | Viewed by 1852
Abstract
Assessments of subway train fires were conducted based on full-scale experiments and numerical simulations. The experimental platform and simulation model were established according to a real subway train in China. The results show that there was no obvious flame spread, and all the [...] Read more.
Assessments of subway train fires were conducted based on full-scale experiments and numerical simulations. The experimental platform and simulation model were established according to a real subway train in China. The results show that there was no obvious flame spread, and all the electrical circuitry maintained its integrity during a standard luggage fire. The maximum HRR (heat release rate) of the luggage fire obtained through the full-scale experiment was 155.5 kW, which was almost the same as the standard HRR curve provided in EN 45545-1. However, the fire only lasted approximately 180 s, which was much shorter than a standard fire (600 s). Through numerical simulations of an entire subway train, the side wall and roof ignited quickly, and the fire continually spread to the adjacent compartment under the extreme scenario with a gasoline pool fire and exposed winterproof material. The maximum HRRs of the luggage and gasoline pool fires were 179.7 and 17,800.0 kW, respectively. According to the experimental and simulation results, the Duggan method, which assumes that all combustibles inside a train compartment burn at the same time, was not appropriate for assessing the fires in the subway train, and a simple revised frame was proposed instead. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

20 pages, 5225 KB  
Article
Study of Temperature Distribution in U-Shaped Underwater Tunnel Fires Under the Influence of Induced Airflow
by Yuhang Zhou, Guoqing Zhu, Yuyang Ming, Xinyu Wang, Xuming Li and Liang Wang
Fire 2025, 8(5), 185; https://doi.org/10.3390/fire8050185 - 7 May 2025
Viewed by 785
Abstract
Compared to a single horizontal or inclined tunnel, a U-shaped underwater tunnel combines both types. If such tunnels catch fire, the resulting scenarios will lead to varying intensities of induced airflow, which significantly impact the internal heat transfer mechanisms. This study numerically simulated [...] Read more.
Compared to a single horizontal or inclined tunnel, a U-shaped underwater tunnel combines both types. If such tunnels catch fire, the resulting scenarios will lead to varying intensities of induced airflow, which significantly impact the internal heat transfer mechanisms. This study numerically simulated the effects of varying induced airflow strengths on the heat transfer proportion and temperature distribution within the tunnel. Key variables including the inclination angle of tunnel sections, the heat release rate (HRR) of the fire source, and its distance to the tunnel opening were systematically investigated. The results indicate that when the fire is in the horizontal tunnel section, the primary factor affecting the temperature field distribution is the HRR of the fire. As the fire source moves toward the inclined tunnel section, a transition to strong induced airflow occurs above the corner at low angles of inclination. As the slope increases, the transition position shifts downstream, toward the lower side of the corner. At this point, the tunnel is affected by strong induced airflow. Using dimensionless analysis, models were developed for temperature field distribution under strong and weak induced airflow, guiding underwater tunnel spray activation temperature and firefighting and rescue efforts. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

13 pages, 5044 KB  
Article
Study on Smoke Characteristics in Cavern Complexes of Pumped-Storage Power Stations
by Peifeng Hu, Tong Xu, Chang Liu, Kai Wang, Fazheng Chong, Fengju Shang and Jiansong Wu
Fire 2024, 7(12), 453; https://doi.org/10.3390/fire7120453 - 2 Dec 2024
Cited by 1 | Viewed by 1136
Abstract
The underground power houses of pumped-storage power stations (PSPSs) are highly complex, with interconnected and multidimensional structures, including various tunnels, such as the main and auxiliary power houses (MAPH), main transformer tunnel (MTT), tailrace gate tunnel (TGT), access tunnels (ATs), cable tunnels (CTs) [...] Read more.
The underground power houses of pumped-storage power stations (PSPSs) are highly complex, with interconnected and multidimensional structures, including various tunnels, such as the main and auxiliary power houses (MAPH), main transformer tunnel (MTT), tailrace gate tunnel (TGT), access tunnels (ATs), cable tunnels (CTs) etc. During intensive civil construction and electromechanical installation, fire risk becomes particularly prominent. Current research mainly examines fire incidents within individual tunnels, lacking comprehensive analyses of smoke spread across the entire cavern network. Therefore, in this study, a numerical model of a cavern complex in a PSPS was established to analyze smoke behavior and temperature distribution under various fire scenarios. The results indicated that when a fire occurred in the MAPH, the fire risk was relatively higher compared to fires in other places. Using the example of smoke spread from the MAPH to the MTT, the smoke spread process through key connecting caverns was analyzed. Initially, the temperature and velocity were stable, and the CTs and traffic cable tunnel in the auxiliary powerhouse (TCTAP) were the main smoke paths. After 7 min, the heat release rate (HRR) became stable, and CTs and ATs became the main paths for smoke spread, which could provide a reference for improving fire design in underground cavern systems. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

Back to TopTop