Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,215)

Search Parameters:
Keywords = service scenarios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 559 KiB  
Review
Interest Flooding Attacks in Named Data Networking and Mitigations: Recent Advances and Challenges
by Simeon Ogunbunmi, Yu Chen, Qi Zhao, Deeraj Nagothu, Sixiao Wei, Genshe Chen and Erik Blasch
Future Internet 2025, 17(8), 357; https://doi.org/10.3390/fi17080357 - 6 Aug 2025
Abstract
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful [...] Read more.
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. Full article
Show Figures

Figure 1

45 pages, 767 KiB  
Article
The Economic Effects of the Green Transition of the Greek Economy: An Input–Output Analysis
by Theocharis Marinos, Maria Markaki, Yannis Sarafidis, Elena Georgopoulou and Sevastianos Mirasgedis
Energies 2025, 18(15), 4177; https://doi.org/10.3390/en18154177 - 6 Aug 2025
Abstract
Decarbonization of the Greek economy requires significant investments in clean technologies. This will boost demand for goods and services and will create multiplier effects on output value added and employment, though reliance on imported technologies might increase the trade deficit. This study employs [...] Read more.
Decarbonization of the Greek economy requires significant investments in clean technologies. This will boost demand for goods and services and will create multiplier effects on output value added and employment, though reliance on imported technologies might increase the trade deficit. This study employs input–output analysis to estimate the direct, indirect, and multiplier effects of green transition investments on Greek output, value added, employment, and imports across five-year intervals from 2025 to 2050. Two scenarios are considered: the former is based on the National Energy and Climate Plan (NECP), driven by a large-scale exploitation of RES and technologies promoting electrification of final demand, while the latter (developed in the context of the CLEVER project) prioritizes energy sufficiency and efficiency interventions to reduce final energy demand. In the NECP scenario, GDP increases by 3–10% (relative to 2023), and employment increases by 4–11%. The CLEVER scenario yields smaller direct effects—owing to lower investment levels—but larger induced impacts, since energy savings boost household disposable income. The consideration of three sub-scenarios adopting different levels of import-substitution rates in key manufacturing sectors exhibits pronounced divergence, indicating that targeted industrial policies can significantly amplify the domestic economic benefits of the green transition. Full article
Show Figures

Figure 1

35 pages, 5296 KiB  
Article
A Multi-Class Intrusion Detection System for DDoS Attacks in IoT Networks Using Deep Learning and Transformers
by Sheikh Abdul Wahab, Saira Sultana, Noshina Tariq, Maleeha Mujahid, Javed Ali Khan and Alexios Mylonas
Sensors 2025, 25(15), 4845; https://doi.org/10.3390/s25154845 - 6 Aug 2025
Abstract
The rapid proliferation of Internet of Things (IoT) devices has significantly increased vulnerability to Distributed Denial of Service (DDoS) attacks, which can severely disrupt network operations. DDoS attacks in IoT networks disrupt communication and compromise service availability, causing severe operational and economic losses. [...] Read more.
The rapid proliferation of Internet of Things (IoT) devices has significantly increased vulnerability to Distributed Denial of Service (DDoS) attacks, which can severely disrupt network operations. DDoS attacks in IoT networks disrupt communication and compromise service availability, causing severe operational and economic losses. In this paper, we present a Deep Learning (DL)-based Intrusion Detection System (IDS) tailored for IoT environments. Our system employs three architectures—Convolutional Neural Networks (CNNs), Deep Neural Networks (DNNs), and Transformer-based models—to perform binary, three-class, and 12-class classification tasks on the CiC IoT 2023 dataset. Data preprocessing includes log normalization to stabilize feature distributions and SMOTE-based oversampling to mitigate class imbalance. Experiments on the CIC-IoT 2023 dataset show that, in the binary classification task, the DNN achieved 99.2% accuracy, the CNN 99.0%, and the Transformer 98.8%. In three-class classification (benign, DDoS, and non-DDoS), all models attained near-perfect performance (approximately 99.9–100%). In the 12-class scenario (benign plus 12 attack types), the DNN, CNN, and Transformer reached 93.0%, 92.7%, and 92.5% accuracy, respectively. The high precision, recall, and ROC-AUC values corroborate the efficacy and generalizability of our approach for IoT DDoS detection. Comparative analysis indicates that our proposed IDS outperforms state-of-the-art methods in terms of detection accuracy and efficiency. These results underscore the potential of integrating advanced DL models into IDS frameworks, thereby providing a scalable and effective solution to secure IoT networks against evolving DDoS threats. Future work will explore further enhancements, including the use of deeper Transformer architectures and cross-dataset validation, to ensure robustness in real-world deployments. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

22 pages, 10285 KiB  
Article
Biophysical and Social Constraints of Restoring Ecosystem Services in the Border Regions of Tibet, China
by Lizhi Jia, Silin Liu, Xinjie Zha and Ting Hua
Land 2025, 14(8), 1601; https://doi.org/10.3390/land14081601 - 6 Aug 2025
Abstract
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with [...] Read more.
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with scenario analysis to quantify the ecosystem service potential that could be achieved in China’s Tibetan borderlands under two interacting agendas: ecological restoration and border-strengthening policies. Restoration feasibility was evaluated through combining local biophysical constraints, economic viability (via restoration-induced carbon gains vs. opportunity costs), operational practicality, and simulated infrastructure expansion. The results showed that per-unit-area ecosystem services in border counties (particularly Medog, Cona, and Zayu) exceed that of interior Tibet by a factor of two to four. Combining these various constraints, approximately 4–17% of the border zone remains cost-effective for grassland or forest restoration. Under low carbon pricing (US$10 t−1 CO2), the carbon revenue generated through restoration is insufficient to offset the opportunity cost of agricultural production, constituting a major constraint. Habitat quality, soil conservation, and carbon sequestration increase modestly when induced by restoration, but a pronounced carbon–water trade-off emerges. Planned infrastructure reduces restoration benefits only slightly, whereas raising the carbon price to about US$50 t−1 CO2 substantially expands such benefits. These findings highlight both the opportunities and limits of ecosystem restoration in border regions and point to carbon pricing as the key policy lever for unlocking cost-effective restoration. Full article
(This article belongs to the Special Issue The Role of Land Policy in Shaping Rural Development Outcomes)
Show Figures

Figure 1

28 pages, 1622 KiB  
Article
Trusting Humans or Bots? Examining Trust Transfer and Algorithm Aversion in China’s E-Government Services
by Yifan Song, Takashi Natori and Xintao Yu
Adm. Sci. 2025, 15(8), 308; https://doi.org/10.3390/admsci15080308 - 6 Aug 2025
Abstract
Despite the increasing integration of government chatbots (GCs) into digital public service delivery, their real-world effectiveness remains limited. Drawing on the literature on algorithm aversion, trust-transfer theory, and perceived risk theory, this study investigates how the type of service agent (human vs. GCs) [...] Read more.
Despite the increasing integration of government chatbots (GCs) into digital public service delivery, their real-world effectiveness remains limited. Drawing on the literature on algorithm aversion, trust-transfer theory, and perceived risk theory, this study investigates how the type of service agent (human vs. GCs) influences citizens’ trust of e-government services (TOE) and e-government service adoption intention (EGA). Furthermore, it explores whether the effect of trust of government (TOG) on TOE differs across agent types, and whether perceived risk (PR) serves as a boundary condition in this trust-transfer process. An online scenario-based experiment was conducted with a sample of 318 Chinese citizens. Data were analyzed using the Mann–Whitney U test and partial least squares structural equation modeling (PLS-SEM). The results reveal that, within the Chinese e-government context, citizens perceive higher risk (PR) and report lower adoption intention (EGA) when interacting with GCs compared to human agents—an indication of algorithm aversion. However, high levels of TOG mitigate this aversion by enhancing TOE. Importantly, PR moderates the strength of this trust-transfer effect, serving as a critical boundary condition. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Digital Government)
Show Figures

Figure 1

29 pages, 3400 KiB  
Article
Value-Added Service Pricing Strategies Considering Customer Stickiness: A Freemium Perspective
by Xuwang Liu, Biying Zhou, Wei Qi, Zhiwu Li and Junwei Wang
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 201; https://doi.org/10.3390/jtaer20030201 - 6 Aug 2025
Abstract
Freemium, a popular business model in the digital economy, offers a basic product for free while charging for advanced features or value-added services. This pricing strategy enables platforms to attract a broad user base and then monetize through premium offerings. Customer characteristics and [...] Read more.
Freemium, a popular business model in the digital economy, offers a basic product for free while charging for advanced features or value-added services. This pricing strategy enables platforms to attract a broad user base and then monetize through premium offerings. Customer characteristics and service price are important factors affecting customer choice behavior in such a model. Based on consumption stickiness, we consider a monopoly that provides value-added services by incorporating a multinomial logit model into a two-stage dynamic pricing model. First, we analyze the optimal pricing of value-added services under a normal sales scenario. We then consider optimal pricing during the marketing period under two strategies—level improvement for value-added services and quality reduction for a basic product—and analyze the applicability of each. The results show that increasing the value-added service level has a positive effect on the optimal price of value-added services, whereas reducing the basic product quality has no effect on the optimal price. Furthermore, the numerical simulation shows that when the depth of consumer stickiness is low, the optimal marketing strategy reduces the quality of the basic product, the price of value-added services should be higher than that in the normal sales period but lower than the price under the level-improvement strategy for value-added services; otherwise, improving the level of the value-added services becomes the optimal approach. This study provides a theoretical basis and decision support for product quality design and service pricing that applies to freemium platforms. Full article
(This article belongs to the Topic Digital Marketing Dynamics: From Browsing to Buying)
Show Figures

Figure 1

21 pages, 3733 KiB  
Article
DNO-RL: A Reinforcement-Learning-Based Approach to Dynamic Noise Optimization for Differential Privacy
by Guixin Wang, Xiangfei Liu, Yukun Zheng, Zeyu Zhang and Zhiming Cai
Electronics 2025, 14(15), 3122; https://doi.org/10.3390/electronics14153122 - 5 Aug 2025
Abstract
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional [...] Read more.
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional static differential privacy mechanisms struggle to accommodate spatiotemporal heterogeneity in dynamic scenarios because of the use of a fixed privacy budget parameter, leading to wasted privacy budgets or insufficient protection of sensitive regions. This study proposes a reinforcement-learning-based dynamic noise optimization method (DNO-RL) that dynamically adjusts the Laplacian noise scale by real-time sensing of vehicle density, region sensitivity, and the remaining privacy budget via a deep Q-network (DQN), with the aim of providing context-adaptive differential privacy protection for cross-border vehicle location services. Simulation experiments of cross-border scenarios based on the T-Drive dataset showed that DNO-RL reduced the average localization error by 28.3% and saved 17.9% of the privacy budget compared with the local differential privacy under the same privacy budget. This study provides a new paradigm for the dynamic privacy–utility balancing of cross-border vehicular networking services. Full article
Show Figures

Figure 1

26 pages, 3478 KiB  
Article
Rethinking Routes: The Case for Regional Ports in a Decarbonizing World
by Dong-Ping Song
Logistics 2025, 9(3), 103; https://doi.org/10.3390/logistics9030103 - 4 Aug 2025
Viewed by 167
Abstract
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in [...] Read more.
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in a decarbonizing world. Methods: A scenario-based analysis is used to evaluate total costs and CO2 emissions across the entire container shipping supply chain, incorporating deep-sea shipping, port operations, feeder services, and inland rail/road transport. The Port of Liverpool serves as the primary case study for rerouting Asia–Europe services from major ports. Results: Analysis indicates Liverpool’s competitiveness improves with shipping lines’ slow steaming, growth in hinterland shipment volume, reductions in the emission factors of alternative low-carbon fuels, and an increased modal shift to rail matching that of competitor ports (e.g., Southampton). A dual-port strategy, rerouting services to call at both Liverpool and Southampton, shows potential for both economic and environmental benefits. Conclusions: The study concludes that rerouting deep-sea services to regional ports can offer cost and emission advantages under specific operational and market conditions. Findings on factors and conditions influencing competitiveness and the dual-port strategy provide insights for shippers, ports, shipping lines, logistics agents, and policymakers navigating maritime decarbonization. Full article
(This article belongs to the Section Maritime and Transport Logistics)
Show Figures

Figure 1

28 pages, 6199 KiB  
Article
Dual Chaotic Diffusion Framework for Multimodal Biometric Security Using Qi Hyperchaotic System
by Tresor Lisungu Oteko and Kingsley A. Ogudo
Symmetry 2025, 17(8), 1231; https://doi.org/10.3390/sym17081231 - 4 Aug 2025
Viewed by 130
Abstract
The proliferation of biometric technology across various domains including user identification, financial services, healthcare, security, law enforcement, and border control introduces convenience in user identity verification while necessitating robust protection mechanisms for sensitive biometric data. While chaos-based encryption systems offer promising solutions, many [...] Read more.
The proliferation of biometric technology across various domains including user identification, financial services, healthcare, security, law enforcement, and border control introduces convenience in user identity verification while necessitating robust protection mechanisms for sensitive biometric data. While chaos-based encryption systems offer promising solutions, many existing chaos-based encryption schemes exhibit inherent shortcomings including deterministic randomness and constrained key spaces, often failing to balance security robustness with computational efficiency. To address this, we propose a novel dual-layer cryptographic framework leveraging a four-dimensional (4D) Qi hyperchaotic system for protecting biometric templates and facilitating secure feature matching operations. The framework implements a two-tier encryption mechanism where each layer independently utilizes a Qi hyperchaotic system to generate unique encryption parameters, ensuring template-specific encryption patterns that enhance resistance against chosen-plaintext attacks. The framework performs dimensional normalization of input biometric templates, followed by image pixel shuffling to permutate pixel positions before applying dual-key encryption using the Qi hyperchaotic system and XOR diffusion operations. Templates remain encrypted in storage, with decryption occurring only during authentication processes, ensuring continuous security while enabling biometric verification. The proposed system’s framework demonstrates exceptional randomness properties, validated through comprehensive NIST Statistical Test Suite analysis, achieving statistical significance across all 15 tests with p-values consistently above 0.01 threshold. Comprehensive security analysis reveals outstanding metrics: entropy values exceeding 7.99 bits, a key space of 10320, negligible correlation coefficients (<102), and robust differential attack resistance with an NPCR of 99.60% and a UACI of 33.45%. Empirical evaluation, on standard CASIA Face and Iris databases, demonstrates practical computational efficiency, achieving average encryption times of 0.50913s per user template for 256 × 256 images. Comparative analysis against other state-of-the-art encryption schemes verifies the effectiveness and reliability of the proposed scheme and demonstrates our framework’s superior performance in both security metrics and computational efficiency. Our findings contribute to the advancement of biometric template protection methodologies, offering a balanced performance between security robustness and operational efficiency required in real-world deployment scenarios. Full article
(This article belongs to the Special Issue New Advances in Symmetric Cryptography)
Show Figures

Figure 1

25 pages, 19905 KiB  
Article
Assessing Urban Park Accessibility via Population Projections: Planning for Green Equity in Shanghai
by Leiting Cen and Yang Xiao
Land 2025, 14(8), 1580; https://doi.org/10.3390/land14081580 - 2 Aug 2025
Viewed by 238
Abstract
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics [...] Read more.
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics into urban park planning by developing a dynamic evaluation framework for park accessibility. Building on the Gaussian-based two-step floating catchment area (Ga2SFCA) method, we propose the human-population-projection-Ga2SFCA (HPP-Ga2SFCA) model, which integrates population forecasts to assess park service efficiency under future demographic pressures. Using neighborhood-committee-level census data from 2000 to 2020 and detailed park spatial data, we identified five types of population change and forecast demographic distributions for both short- and long-term scenarios. Our findings indicate population decline in the urban core and outer suburbs, with growth concentrated in the transitional inner-suburban zones. Long-term projections suggest that 66% of communities will experience population growth, whereas short-term forecasts indicate a decline in 52%. Static models overestimate park accessibility by approximately 40%. In contrast, our dynamic model reveals that accessibility is overestimated in 71% and underestimated in 7% of the city, highlighting a potential mismatch between future population demand and current park supply. This study offers a forward-looking planning framework that enhances the responsiveness of park systems to demographic change and supports the development of more equitable, adaptive green space strategies. Full article
(This article belongs to the Special Issue Spatial Justice in Urban Planning (Second Edition))
Show Figures

Figure 1

13 pages, 906 KiB  
Article
Integrated Flushing and Corrosion Control Measures to Reduce Lead Exposure in Households with Lead Service Lines
by Fatemeh Hatam, Mirjam Blokker and Michele Prevost
Water 2025, 17(15), 2297; https://doi.org/10.3390/w17152297 - 2 Aug 2025
Viewed by 200
Abstract
The quality of water in households can be affected by plumbing design and materials, water usage patterns, and source water quality characteristics. These factors influence stagnation duration, disinfection residuals, metal release, and microbial activity. In particular, stagnation can degrade water quality and increase [...] Read more.
The quality of water in households can be affected by plumbing design and materials, water usage patterns, and source water quality characteristics. These factors influence stagnation duration, disinfection residuals, metal release, and microbial activity. In particular, stagnation can degrade water quality and increase lead release from lead service lines. This study employs numerical modeling to assess how combined corrosion control and flushing strategies affect lead levels in household taps with lead service lines under reduced water use. To estimate potential health risks, the U.S. EPA model is used to predict the percentage of children likely to exceed safe blood lead levels. Lead exceedances are assessed based on various regulatory requirements. Results show that exceedances at the kitchen tap range from 3 to 74% of usage time for the 5 µg/L standard, and from 0 to 49% for the 10 µg/L threshold, across different scenarios. Implementing corrosion control treatment in combination with periodic flushing proves effective in lowering lead levels under the studied low-consumption scenarios. Under these conditions, the combined strategy limits lead exceedances above 5 µg/L to only 3% of usage time, with none above 10 µg/L. This demonstrates its value as a practical short-term strategy for households awaiting full pipe replacement. Targeted flushing before peak water use reduces the median time that water remains stagnant in household pipes from 8 to 3 h at the kitchen tap under low-demand conditions. Finally, the risk model indicates that the combined approach can reduce the predicted percentage of children with blood lead levels exceeding 5 μg/dL from 61 to 6% under low water demand. Full article
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Viewed by 212
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

18 pages, 5956 KiB  
Article
Improving the Universal Performance of Land Cover Semantic Segmentation Through Training Data Refinement and Multi-Dataset Fusion via Redundant Models
by Jae Young Chang, Kwan-Young Oh and Kwang-Jae Lee
Remote Sens. 2025, 17(15), 2669; https://doi.org/10.3390/rs17152669 - 1 Aug 2025
Viewed by 133
Abstract
Artificial intelligence (AI) has become the mainstream of analysis tools in remote sensing. Various semantic segmentation models have been introduced to segment land cover from aerial or satellite images, and remarkable results have been achieved. However, they often lack universal performance on unseen [...] Read more.
Artificial intelligence (AI) has become the mainstream of analysis tools in remote sensing. Various semantic segmentation models have been introduced to segment land cover from aerial or satellite images, and remarkable results have been achieved. However, they often lack universal performance on unseen images, making them challenging to provide as a service. One of the primary reasons for the lack of robustness is overfitting, resulting from errors and inconsistencies in the ground truth (GT). In this study, we propose a method to mitigate these inconsistencies by utilizing redundant models and verify the improvement using a public dataset based on Google Earth images. Redundant models share the same network architecture and hyperparameters but are trained with different combinations of training and validation data on the same dataset. Because of the variations in sample exposure during training, these models yield slightly different inference results. This variability allows for the estimation of pixel-level confidence levels for the GT. The confidence level is incorporated into the GT to influence the loss calculation during the training of the enhanced model. Furthermore, we implemented a consensus model that employs modified masks, where classes with low confidence are substituted by the dominant classes identified through a majority vote from the redundant models. To further improve robustness, we extended the same approach to fuse the dataset with different class compositions based on imagery from the Korea Multipurpose Satellite 3A (KOMPSAT-3A). Performance evaluations were conducted on three network architectures: a simple network, U-Net, and DeepLabV3. In the single-dataset case, the performance of the enhanced and consensus models improved by an average of 2.49% and 2.59% across the network architectures. In the multi-dataset scenario, the enhanced models and consensus models showed an average performance improvement of 3.37% and 3.02% across the network architectures, respectively, compared to an average increase of 1.55% without the proposed method. Full article
Show Figures

Graphical abstract

26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 - 1 Aug 2025
Viewed by 181
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

20 pages, 2327 KiB  
Article
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Viewed by 290
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage [...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Graphical abstract

Back to TopTop