From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
Abstract
1. Introduction
1.1. Review of Previous Economic Assessments of Hungarian Forest Ecosystem Services
1.2. Study Aim, Research Question, and Hypotheses
- (1)
- Total storage value: the value of carbon stored in forest biomass, soil, and harvested wood products (HWPs);
- (2)
- Sequestration value: the annual increase in the amount of carbon stored in biomass and harvested wood products representing the annual net absorption of atmospheric CO2;
- (3)
- Avoided emission value: the value of CO2 emissions avoided by substituting fossil-based materials with bio-based products and by utilizing biomass and wood products for energy recovery at the end of their life cycle;
- (4)
- Marketable value: the value of carbon sequestration eligible for VCM projects.
2. Materials and Methods
2.1. Total Storage Value
2.2. Sequestration Value
2.3. Avoided Emission Value
2.4. Marketable Value
3. Results
4. Discussion
Policy and Practice Recommendations
- (i)
- Integrate substitution benefits into climate policy frameworks: The substantial mitigation value derived from substitution effects—estimated at EUR 453 million annually—underscores the importance of prioritizing wood use in construction and energy sectors. Substitution should be formally recognized as a distinct ecosystem service and integrated into national climate accounting, incentive structures, and sectoral strategies.
- (ii)
- Promote long-term carbon storage in construction wood products: The results indicate that long-term storage of carbon in HWPs used in construction offers greater marketable revenue potential than IFM. Forest harvesting strategies should therefore emphasize the production of durable wood products, particularly for construction, while remaining within ecological sustainability thresholds.
- (iii)
- Mobilize overmature forest resources through technological innovation and spatial integration: A substantial share of Hungary’s forest growing stock—estimated at 12.2%, or 50.2 million m3—is currently overmature, having more than tripled over the past four decades [64,67]. This underutilized biomass pool represents a renewable resource with high potential for long-term carbon storage in HWPs. However, in the absence of targeted management interventions, much of this stock is expected to experience quality decline, diminishing its commercial and climate mitigation value. To sustainably mobilize overmature timber reserves, improved professional coordination across private forest owners and industry actors is required, supported by advanced geospatial data systems. Accurate, geographically explicit information on the volume and quality of harvestable wood can lay the foundation for a new entrepreneurial culture within the forestry and wood-processing sectors. Innovations such as integrated forest information platforms (e.g., Metsään.fi, Forest Hub), mobile logistics applications, route optimization systems, and community-based business models can play a pivotal role in unlocking this resource, while simultaneously enhancing value retention and climate performance.
- (iv)
- Support climate-resilient forest restructuring to sustain and enhance carbon sequestration capacity under a changing climate: To maintain and enhance the carbon sink function of forests amid increasing climate variability, targeted climate adaptation measures are essential. Strategic forest restructuring—particularly through the deployment of drought-tolerant, pre-adapted propagation material and the replacement of vulnerable species—can significantly strengthen forest resilience, ensure the permanence of stored carbon, and increase the magnitude of net annual carbon sequestration. These ecosystem-based adaptation strategies should be implemented within the framework of IFM and integrated into VCM mechanisms. Recognizing such proactive adaptation actions as creditable within carbon markets would incentivize early implementation and foster alignment between mitigation and adaptation objectives. This approach is especially critical in regions where climate change threatens the viability of existing forest compositions and the long-term stability of carbon stocks—such as Hungary, which lies at the xeric limit of forest vegetation.
- (v)
- Address limitations in carbon market eligibility criteria: The gap between ecological mitigation potential and monetizable carbon benefits reflects the restrictive nature of current additionality and eligibility rules under the VCM and the EU Carbon Removal Certification Framework. Reforms are needed to allow for integrated crediting of long-term storage in HWPs and IFM practices, and to enable more comprehensive carbon accounting across multiple pools.
- (vi)
- Improve soil carbon monitoring and integration: Given that forest soils represent the largest carbon pool (764 Mt CO2), enhanced monitoring and modeling capacity is essential. Strengthening data on soil carbon dynamics would improve measurement, reporting, and verification (MRV) systems, and enable future crediting pathways once regulatory frameworks evolve.
- (vii)
- Institutionalize ecosystem service valuation in forest planning: The valuation framework introduced in this study—capturing total stock, annual flows, and marketable values—should be embedded in national forest planning and policy development. Applying this framework systematically would support informed decision-making that balances economic, ecological, and climate objectives.
- (viii)
- Communicate ecosystem service values to stakeholders and the public: Public awareness campaigns and stakeholder engagement initiatives are essential to communicate the substantial value of forest ecosystem services related to carbon sequestration and climate change mitigation. It is especially important to highlight that long-term carbon storage in harvested wood products is a viable and climate-friendly strategy. When conducted within the framework of sustainable forest management and long-term use, harvesting should not be viewed as harmful, but rather as an integral part of a low-carbon, circular bioeconomy. Clear, evidence-based communication will foster broader understanding, trust, and support for integrated forest–carbon strategies.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AEV | Avoided Emission Value. |
C | Carbon. |
CRCF | Carbon Removal and Carbon Farming Regulation (EU/2024/3012). |
CO2 | Carbon dioxide. |
ETS | Emission Trading System. |
GHGI | Greenhouse Gas Inventory. |
HWPs | Harvested Wood Products. |
LULUCF | Land Use, Land Use Change and Forestry. |
MV | Marketable Value. |
NFD | National Forestry Database. |
SV | Sequestration Value. |
TSV | Total Storage Value. |
VCM | Voluntary Carbon Market. |
References
- MEA. Millennium Ecosystem Assessment. In Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; Available online: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 23 July 2025).
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Chiabai, A.; Travisi, C.M.; Markandya, A.; Ding, H.; Nunes, P.A.L.D. Economic assessment of forest ecosystem services losses: Cost of policy inaction. Environ. Resour. Econ. 2011, 50, 405–445. [Google Scholar] [CrossRef]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Ding, H.; Chiabai, A.; Silvestri, S.; Nunes, P.A.L.D. Valuing climate change impacts on European forest ecosystems. Ecosyst. Serv. 2016, 18, 141–153. [Google Scholar] [CrossRef]
- Garrido Mateos, L.; Rodríguez-López, F.; Sánchez-Macías, J.I. The three-stage evolution in the economic valuation of nature: Externalities, ecosystem services, and natural capital accountability. J. Clean. Prod. 2025, 518, 145899. [Google Scholar] [CrossRef]
- Potschin, M.; Haines-Young, H.; Fisch, R.; Turner, R.K. Ecosystem services in the twenty-first century. In Routledge Handbook of Ecosystem Services; Potschin, M., Haines-Young, H., Fisch, R., Turner, R.K., Eds.; Routledge: New York, NY, USA, 2016; ISBN 978-1-138-02508-0. [Google Scholar]
- Pigou, A.C. The Economics of Welfare; Macmillan: London, UK, 1920. [Google Scholar]
- Kaldor, N. Welfare propositions of economics and interpersonal comparisons of utility. Econ. J. 1939, 49, 549. [Google Scholar] [CrossRef]
- Hicks, J.R. Foundations of welfare economics. Econ. J. 1939, 49, 696–712. [Google Scholar] [CrossRef]
- Lancaster, K.J. A new approach to consumer theory. J. Polit. Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic prices and implicit markets: Product differentiation in pure competition. J. Polit. Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Thaler, R.H.; Rosen, S. The value of saving a life: Evidence from the labor market. In Economic Aspects of Health; Fuchs, V.R., Ed.; University of Chicago Press: Chicago, IL, USA, 1976; pp. 265–298. [Google Scholar]
- Hotelling, H. An Economic Study of the Monetary Evaluation of Recreation in the National Parks; US Department of the Interior, National Park Service and Recreational Planning Division: Washington, DC, USA, 1949. [Google Scholar]
- Clawson, M. Methods of measuring the demand for and value of outdoor recreation. Nat. Resour. J. 1959, 2, 287–295. [Google Scholar]
- Courant, P.N.; Porter, R.C. Averting expenditure and the cost of pollution. J. Environ. Econ. Manag. 1981, 8, 321–329. [Google Scholar] [CrossRef]
- Bockstael, N.E.; McConnell, K.E. Welfare measurement in the household production framework. Am. Econ. Rev. 1983, 73, 806–814. [Google Scholar]
- Ehrlich, P.R.; Mooney, H.A. Extinction, substitution, and ecosystem services. Bioscience 1983, 33, 248–254. [Google Scholar] [CrossRef]
- de Groot, R.S. Environmental functions as a unifying concept for ecology and economics. Environmentalist 1987, 7, 105–109. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Randall, A.; Ives, B.; Eastman, C. Bidding games for valuation of aesthetic environmental improvements. J. Environ. Econ. Manag. 1974, 1, 132–149. [Google Scholar] [CrossRef]
- Carson, R.T.; Mitchell, R.C. The use of contingent valuation data for benefit-cost analysis in water pollution control. J. Environ. Econ. Manag. 1986, 13, 218–233. [Google Scholar]
- Louviere, J.J.; Hensher, D.A. Using discrete choice models with experimental design data to forecast consumer demand for a unique cultural event. J. Consum. Res. 1983, 10, 348. [Google Scholar] [CrossRef]
- Adamowicz, W.; Louviere, J.; Williams, M. Combining revealed and stated preference methods for valuing environmental amenities. J. Environ. Econ. Manag. 1994, 26, 271–292. [Google Scholar] [CrossRef]
- Farber, S.C.; Costanza, R.; Wilson, M.A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 2002, 41, 375–392. [Google Scholar] [CrossRef]
- Bateman, I.J.; Mace, G.M.; Fezzi, C.; Atkinson, G.; Turner, R.K. Economic analysis for ecosystem service assessments. Environ. Resour. Econ. 2011, 48, 177–218. [Google Scholar] [CrossRef]
- Pascual, U.; Muradian, R.; Brander, L.; Gómez-Baggethun, E.; Martín-López, B.; Verma, M.; Armsworth, P.; Christie, M.; Cornelissen, J.H.C.; Eppink, F.; et al. The economics of valuing ecosystem services and biodiversity. In The Economics of Ecosystems and Biodiversity (TEEB): Ecological and Economic Foundations; Routledge: New York, NY, USA, 2010; pp. 183–256. Available online: https://www.researchgate.net/publication/303444184_The_Economics_of_Valuing_Ecosystem_Services_and_Biodiversity#fullTextFileContent (accessed on 23 July 2025).
- TEEB. The Economics of Ecosystems and Biodiversity; TEEB Interim Report; UNEP: Nairobi, Kenya, 2008. [Google Scholar]
- Sukhdev, P.; Wittmer, H.; Miller, D. The economics of ecosystems and biodiversity (TEEB): Challenges and responses. In Nature in the Balance: The Economics of Biodiversity; Helm, D., Hepburn, C., Eds.; Oxford Academic: Oxford, UK, 2014. [Google Scholar] [CrossRef]
- SEEA; European Commission; Eurostat; Food and Agriculture Organization; Organisation for Economic Co-operation and Development; United Nations Organisation; World Bank. System of Environmental-Economic Accounting 2012: Central Framework; United Nations Organisation: New York, NY, USA, 2014. [Google Scholar]
- NCC (Natural Capital Coalition). Natural Capital Protocol. 2016. Available online: www.naturalcapitalcoalition.org/protocol (accessed on 23 July 2025).
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES) V5.1: Guidance on the Application of the Revised Structure; Fabis Consulting Ltd.: Nottingham, UK, 2018; Available online: https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (accessed on 31 July 2025).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: EU Biodiversity Strategy for 2030 Bringing Nature Back into Our Lives; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Financing the Green Transition: The European Green Deal Investment Plan and Just Transition Mechanism; Press release; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Häyhä, T.; Franzese, P.P.; Paletto, A.; Fath, B.D. Assessing, valuing, and mapping ecosystem services in Alpine forests. Ecosyst. Serv. 2015, 14, 12–23. [Google Scholar] [CrossRef]
- Peters-Stanley, M.; Yin, D. State of the Voluntary Carbon Markets 2013: Maneuvering the Mosaic. 2013. Available online: https://www.ecosystemmarketplace.com/publications/maneuvering-the-mosaic-state-of-the-voluntary-carbon-markets-2013/ (accessed on 23 July 2025).
- Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Donofrio, S.; Maguire, P.; Zwick, S.; Merry, W. State of the Voluntary Carbon Markets 2019: Market Overview. 2019. Available online: https://www.forest-trends.org/publications/state-of-voluntary-carbon-markets-2019-market-overview/ (accessed on 23 July 2025).
- Verkerk, P.J.; Costanza, R.; Hetemäki, L.; Kubiszewski, I.; Leskinen, P.; Nabuurs, G.J.; Potočnik, J.; Palahí, M. Climate-smart forestry: The missing link. For. Policy Econ. 2020, 115, 102164. [Google Scholar] [CrossRef]
- Camia, A.; Robert, N.; Jonsson, R.; Pilli, R.; García-Condado, S.; López-Lozano, R.; Giuntoli, J. Biomass Production, Supply, Uses and Flows in the European Union; JRC Science for Policy Report; Publications Office of the European Union: Brussels, Belgium, 2018; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC109869 (accessed on 23 July 2025).
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Mirici, M.E.; Berberoglu, S. Terrestrial carbon dynamics and economic valuation of ecosystem service for land use management in the Mediterranean region. Ecol. Inform. 2024, 81, 102570. [Google Scholar] [CrossRef]
- Conte, M.; Nelson, E.; Carney, K.; Fissore, C.; Olwero, N.; Plantinga, A.J.; Ricketts, T. Terrestrial carbon sequestration and storage. In Natural Capital Theory and Practice of Mapping Ecosystem Services; Kareiva, P., Tallis, H., Ricketts, H., Daily, G.C., Polasky, S., Eds.; Oxford University Press: Oxford, UK, 2014. [Google Scholar] [CrossRef]
- Sharp, R.; Chaplin, K.; Rebecca, W.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T. The Natural Capital Project InVEST +VERSION+ User’s Guide; Stanford University: Stanford, CA, USA; The Nature Conservancy: Arlington, VA, USA; World Wildlife Fund: Washington, DC, USA, 2016; Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 23 July 2025).
- Nordhaus, W.D. Estimates of the Social Cost of Carbon: Background and Results from the RICE-2011 Model; Cowles Foundation Discussion Paper No. 1826; National Bureau of Economic Research: Cambridge, MA, USA, 2011. [Google Scholar] [CrossRef]
- Kesicki, F.; Ekins, P. Marginal abatement cost curves: A call for caution. Clim. Policy 2011, 12, 219–236. [Google Scholar] [CrossRef]
- Tol, R.S.J. The Social Cost of Carbon: Trends, Outliers and Catastrophes. Econ. E-J. 2008, 2, 20080025. [Google Scholar] [CrossRef]
- de Groot, R.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Horowitz, J.K.; McConnell, E.K. A Review of WTA/WTP Studies. J. Environ. Econ. Manag. 2002, 44, 426–447. [Google Scholar] [CrossRef]
- Carson, R.T. Contingent Valuation: A Practical Alternative When Prices Aren’t Available. J. Econ. Perspect. 2012, 26, 27–42. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef]
- Szerényi Marjainé, Z.; Széchy, A. Az Ökoszisztéma-Szolgáltatások Közgazdasági Értékelése, Módszertan Kidolgozása: A Klímaszabályozás, az Árvízi Kockázat Csökkentése és a Rekreáció Pénzbeli Értékelésének Megalapozása. [Economic Valuation of Ecosystem Services: Methodological Development for Climate Regulation, Flood Risk Mitigation, and Recreational Services] KEHOP-4.3.0-VEKOP-15-2016-00001 Agrárminisztérium, Budapest. 2020. Available online: https://unipub.lib.uni-corvinus.hu/7960/1/kehop430_Gazdasagi_ertekeles.pdf (accessed on 23 July 2025).
- Széchy, A.; Szerényi, Z. Valuing the Recreational Services Provided by Hungary’s Forest Ecosystems. Sustainability 2023, 15, 3924. [Google Scholar] [CrossRef]
- NIR 2023. National Inventory Report for 1985–2021. Hungary; Hungarian Meteorological Service: Budapest, Hungary, 2023. [Google Scholar]
- Borovics, A.; Király, É.; Kottek, P. Projection of the Carbon Balance of the Hungarian Forestry and Wood Industry Sector Using the Forest Industry Carbon Model. Forests 2024, 15, 600. [Google Scholar] [CrossRef]
- Illés, G.; Móricz, N.; Bereczki, K.; Németh, T. Carbon Stock Assessment of Forest Soils of Hungary Based on Long-Term Monitoring Systems; University of Sopron Forest Research Institute: Sárvár, Hungary, 2025; manuscript in preparation. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- IPCC. 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol; Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., Troxler, T.G., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Borovics, A.; Király, É. Az önkéntes karbonpiaci mechanizmusok és a CRCF rendelet szabályrendszere. Erdészeti Lapok 2024, 159, 418–423. [Google Scholar]
- Rogelj, J.; Shindell, D.; Jiang, K.; Fifita, S.; Forster, P.; Ginzburg, V.; Handa, C.; Kheshgi, H.; Kobayashi, S.; Kriegler, E.; et al. Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Sathre, R.; O’Connor, J. Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ. Sci. Policy 2010, 13, 104–114. [Google Scholar] [CrossRef]
- Borovics, A.; Mertl, T.; Király, É.; Kottek, P. Estimation of the Overmature Wood Stock and the Projection of the Maximum Wood Mobilization Potential up to 2100 in Hungary. Forests 2023, 14, 1516. [Google Scholar] [CrossRef]
- Mátyás, C. Erdőgazdálkodás a természethelyreállítás és a szénsemlegesség követelményei között [Forest management between the requirements of ecosystem restoration and carbon neutrality]. Erdészeti Lapok 2025, 160, 206–211. [Google Scholar]
- Tobisch, T.; Kottek, P. Uncertainty Analysis of Standing Volume Data Stored in the National Forest Database: Supplement to the National Greenhouse Gas Inventory of Hungary; Forestry Directorate; National Food Chain Safety Office: Budapest, Hungary, 2013. [Google Scholar]
- Borovics, A.; Mertl, T.; Király, É.; Kottek, P. A hazai erdőállomány fahasználati lehetőségeinek előrejelzése és a túltartott faállományok vizsgálata [Forecasting timber utilization potential and assessing overmature forest stands in Hungary]. Erdészettudományi Közlemények 2025, in press. [Google Scholar]
Ecosystem Service | Estimated Value (EUR) | Estimated Value (HUF) | Valuation Basis | Source |
---|---|---|---|---|
Carbon sequestration (annual net uptake) | 525 million EUR/year | 210 billion HUF/year | Hungarian GHGI: 3.82 tCO2 eq/ha/year at 30,000 HUF/tCO2 eq | Szerényi and Széchy [53] |
Carbon storage in forest biomass (total stock) | EUR 33.8 billion | HUF 13,513 billion | Total biomass carbon stock in forest types at 30,000 HUF/tCO2 eq | Szerényi and Széchy [53] |
Carbon storage in forest soils (total stock) | EUR 121.7 billion | HUF 48,665 billion | Soil carbon stock in 47 habitat types at 30,000 HUF/tCO2 eq | Szerényi and Széchy [53] |
Recreation in Pilis Biosphere Reserve | 9.25–11.56 million EUR/year | 3.7–4.6 billion HUF/year | Travel cost method (half-day and full-day visits) | Széchy and Szerényi [54] |
Recreation countrywide estimate | 101.7 million EUR/year | 40.7 billion HUF/year | Benefit transfer, 45 M visits × EUR 2.26 per visit | Széchy and Szerényi [54] |
Flood regulation/water retention | Up to 90 million EUR/year | 36 billion HUF/year | Avoided cost of flood damage | Szerényi and Széchy [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borovics, A.; Király, É.; Kottek, P.; Illés, G.; Schiberna, E. From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector. Forests 2025, 16, 1251. https://doi.org/10.3390/f16081251
Borovics A, Király É, Kottek P, Illés G, Schiberna E. From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector. Forests. 2025; 16(8):1251. https://doi.org/10.3390/f16081251
Chicago/Turabian StyleBorovics, Attila, Éva Király, Péter Kottek, Gábor Illés, and Endre Schiberna. 2025. "From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector" Forests 16, no. 8: 1251. https://doi.org/10.3390/f16081251
APA StyleBorovics, A., Király, É., Kottek, P., Illés, G., & Schiberna, E. (2025). From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector. Forests, 16(8), 1251. https://doi.org/10.3390/f16081251