Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (382)

Search Parameters:
Keywords = self-cleaning coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3185 KB  
Review
Recent Advances in Fluorinated Colloidal Nanosystems for Biological Detection and Surface Coating
by Fei Xu, Xiaolong Cao and Kai Yan
Polymers 2026, 18(3), 316; https://doi.org/10.3390/polym18030316 - 24 Jan 2026
Viewed by 95
Abstract
Fluorinated colloidal nanosystems have attracted significant attention for their advantageous properties and potential applications in the biomedical field, especially in 19F magnetic resonance imaging. These nanosystems are known for their high specificity, excellent biocompatibility, and ease of functional modification. Furthermore, they offer [...] Read more.
Fluorinated colloidal nanosystems have attracted significant attention for their advantageous properties and potential applications in the biomedical field, especially in 19F magnetic resonance imaging. These nanosystems are known for their high specificity, excellent biocompatibility, and ease of functional modification. Furthermore, they offer unique advantages for functional surface coating due to their surface performance and chemical resistance. This paper discusses recent developments in fluorinated colloidal nanosystems, including applications in biological detection (such as enzymes, proteins, pH levels, ions, reducing environments, and reactive oxygen species) and surface coating (such as self-cleaning, self-healing, antibacterial properties, anti-fogging, antifouling, and oil–water separation). This article also highlights current challenges and provides suggestions for future research directions in the field of fluorinated colloidal nanosystems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 3933 KB  
Article
TiO2 Nanoparticles Obtained by Green Synthesis: Characterization and Evaluation of Their Effect on the Self-Cleaning and Antifungal Properties of an Aqueous Paint-Type Coating
by Kendell Alcazar, Laura Tous, Adriana Herrera, Dylan Martinez-Bernett and Manuel Saba
Nanomaterials 2026, 16(2), 91; https://doi.org/10.3390/nano16020091 - 10 Jan 2026
Viewed by 330
Abstract
This work presents a green chemistry route to obtain titanium dioxide TiO2 nanoparticles with an average size of about 13.25 nm using lemongrass (Cymbopogon citratus) extract. For these assessments, TiO2 nanoparticles were added to the coating at concentrations of [...] Read more.
This work presents a green chemistry route to obtain titanium dioxide TiO2 nanoparticles with an average size of about 13.25 nm using lemongrass (Cymbopogon citratus) extract. For these assessments, TiO2 nanoparticles were added to the coating at concentrations of 1% and 5% w/w on fiber-cement sheets. Self-cleaning evaluation was analyzed by the photodegradation of methylene blue (MB) dye at concentrations of 5, 10, and 20 mg/L applied to the coated sheet, and then exposed to simulated sunlight. The coating containing 5 wt% TiO2 nanoparticles showed the highest photodegradation, reaching 93.3% after 4 h under simulated sunlight exposure at the lowest MB concentration (5 mg/L). Additionally, average contact angles of 80.4°, 92.03°, and 104.25° were determined for coatings containing 0%, 1%, and 5 wt% TiO2, respectively. Moreover, the modified 5 wt% TiO2 exhibited up to 30.9% greater hydrophobicity than the control. Antifungal efficacy against Aspergillus niger and Penicillium was evaluated using the Poisoned Food method with nanoparticles at concentrations of 1 and 3 mg/mL showing a moderate growth inhibition. In conclusion, the versatility demonstrated suggests potential applications such as a nano-additive for aqueous acrylic coatings, improving hydrophobicity, self-cleaning and antifungal properties, which could be attractive to the construction industry. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

12 pages, 4677 KB  
Article
Preparation of Robust Superhydrophobic Surfaces Based on the Screen Printing Method
by Yinyu Sun, Qing Ding, Qiaoqiao Zhang, Yuting Xie, Zien Zhang, Yudie Pang, Zhongcheng Ke and Changjiang Li
Nanomaterials 2026, 16(2), 86; https://doi.org/10.3390/nano16020086 - 8 Jan 2026
Viewed by 361
Abstract
The bioinspired superhydrophobic surfaces have demonstrated many fascinating performances in fields such as self-cleaning, anti-corrosion, anti-icing, energy-harvesting devices, and antibacterial coatings. However, developing a low-cost, feasible, and scalable production approach to fabricate robust superhydrophobic surfaces has remained one of the main challenges in [...] Read more.
The bioinspired superhydrophobic surfaces have demonstrated many fascinating performances in fields such as self-cleaning, anti-corrosion, anti-icing, energy-harvesting devices, and antibacterial coatings. However, developing a low-cost, feasible, and scalable production approach to fabricate robust superhydrophobic surfaces has remained one of the main challenges in the past decades. In this paper, we propose an uncommon method for the fabrication of a durable superhydrophobic coating on the surface of the glass slide (GS). By utilizing the screen printing method and high-temperature curing, the epoxy resin grid (ERG) coating was uniformly and densely loaded on the surface of GS (ERG@GS). Subsequently, the hydrophobic silica (H-SiO2) was deposited on the surface of ERG@GS by the impregnation method, thereby obtaining a superhydrophobic surface (H-SiO2@ERG@GS). It is demonstrated that the micro-grooves in ERG can provide a large specific surface area for the deposition of low surface energy materials, while the micro-columns can offer excellent protection for the superhydrophobic coating when it is subjected to mechanical wear. It is important to note that micro-columns, micro-grooves, and nano H-SiO2 jointly form the micro–nano structure, providing a uniform and robust rough structure for the superhydrophobic surface. Therefore, the combination of a micro–nano rough structure, low surface energy material, and air cushion effect endow the material with excellent durability and superhydrophobic property. The results show that H-SiO2@ERG@GS possesses excellent self-cleaning property, mechanical durability, and chemical stability, indicating that this preparation method of the robust superhydrophobic coating has significant practical application value. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

14 pages, 2815 KB  
Article
Preparation and Research of a Metal Anti-Corrosion Coating Based on PDMS Reinforcement
by Chenyan Xie, Peng Dou, Gaojie Fu, Jiaqi Wang, Zeyi Wei, Xinglin Lu, Suji Sheng, Lixin Yuan and Bin Shen
Coatings 2026, 16(1), 74; https://doi.org/10.3390/coatings16010074 - 8 Jan 2026
Viewed by 275
Abstract
Metal materials are widely used in power grid infrastructure, but they are prone to metal corrosion due to long-term exposure to various environmental conditions, resulting in significant losses. The existing superhydrophobic coatings have good anti-corrosion performance, but poor wear resistance. Therefore, it is [...] Read more.
Metal materials are widely used in power grid infrastructure, but they are prone to metal corrosion due to long-term exposure to various environmental conditions, resulting in significant losses. The existing superhydrophobic coatings have good anti-corrosion performance, but poor wear resistance. Therefore, it is extremely important to improve the wear resistance of superhydrophobic coatings. In this study, a kind of fluorine-modified SiO2 particle was prepared with pentafluorooctyltrimethoxysilane (FAS-13) as the low surface energy modifier, following the fabrication of a superhydrophobic coating on metal substrate via a PDMS-doped spray deposition method to reinforcement wear resistance property. XPS, FT-IR and Raman spectra confirmed the successful introduction of FAS-13 on SiO2 particles, as evidenced by the characteristic fluorine-related peaks. TGA revealed that the fluorine modified SiO2 (F-SiO2) particles exhibited excellent thermal stability, with an initial decomposition temperature of 354 °C. From the perspective of surface morphology, the relevant data indicated a peak-to-valley height difference of only 88.7 nm, with Rq of 11.9 nm and Ra of 8.86 nm. And it also exhibited outstanding superhydrophobic property with contact angle (CA) of 164.44°/159.48°, demonstrating remarkable self-cleaning performance. And it still maintained CA of over 150° even after cyclic abrasion of 3000 cm with 800 grit sandpaper under a 100 g load, showing exceptional wear resistance. In addition, it was revealed that the coated electrode retained a high impedance value of 8.53 × 108 Ω·cm2 at 0.1 Hz after 480 h of immersion in 5 wt% NaCl solution, with the CPE exponent remaining close to unity (from 1.00 to 0.97), highlighting its superior anti-corrosion performance and broad application prospects for metal corrosion prevention. Full article
(This article belongs to the Collection Feature Paper Collection in Corrosion, Wear and Erosion)
Show Figures

Figure 1

11 pages, 1686 KB  
Article
Low-Temperature Hot-Water Treatment as a Green Strategy to Enhance the Self-Cleaning and Antibacterial Performance of Sputtered TiO2 Thin Films
by Manel Boukazzoula, Djamila Maghnia, Frank Neumann and Oualid Baghriche
Photochem 2026, 6(1), 4; https://doi.org/10.3390/photochem6010004 - 6 Jan 2026
Viewed by 186
Abstract
Titanium dioxide (TiO2) thin films were deposited by DC magnetron sputtering and subsequently treated in hot water at 50, 70, and 95 °C for 72 h to investigate the influence of low temperature on their structural optical and functional properties. XRD [...] Read more.
Titanium dioxide (TiO2) thin films were deposited by DC magnetron sputtering and subsequently treated in hot water at 50, 70, and 95 °C for 72 h to investigate the influence of low temperature on their structural optical and functional properties. XRD analysis revealed a progressive transformation from amorphous to anatase phase with increasing treatment temperature, accompanied by an increase in crystallite size from 5.2 to 15.1 nm. FT-IR spectroscopy confirmed enhanced surface hydroxylation and contact angle measurements showed a decrease from 77.4° to 19.7°, indicating a significant improvement in superior wettability. The transmittance spectroscopy revealed a slight narrowing of the optical band gap from 3.34 to 3.21 eV, consistent with improved visible-light absorption. Photocatalytic tests using the Resazurin indicator demonstrated that the film treated at 95 °C exhibited the highest activity, achieving a bleaching time of 245 s three times faster than treated at 50 °C and twice as fast as treated at 70 °C. Under low-intensity solar irradiation, the same sample achieved complete E. coli inactivation within 90 min. These improvements are attributed to increased crystallinity, surface hydroxyl density, and enhanced ROS generation. Overall, this study demonstrates that mild hot-water treatment is an effective, substrate-friendly route to enhance TiO2 film wettability and multifunctional performance, enabling the fabrication of self-cleaning and antibacterial coatings on fragile materials such as plastics and textiles. Full article
Show Figures

Figure 1

32 pages, 641 KB  
Review
Synergistic Effects of Graphene and SiO2 Nanoadditives on Dirt Pickup Resistance, Hydrophobicity, and Mechanical Properties of Architectural Coatings: A Systematic Review and Meta-Analysis
by Kseniia Burkovskaia, Michał Strankowski and Krzysztof Szafran
Coatings 2026, 16(1), 32; https://doi.org/10.3390/coatings16010032 - 28 Dec 2025
Viewed by 402
Abstract
This article provides a comprehensive review of the literature on the use of graphene-based nanomaterials (graphene oxide, reduced graphene oxide, and graphene nanoplatelets) and nanosilica (SiO2) in architectural paint and coatings. The aim was to quantitatively assess their effect on dirt [...] Read more.
This article provides a comprehensive review of the literature on the use of graphene-based nanomaterials (graphene oxide, reduced graphene oxide, and graphene nanoplatelets) and nanosilica (SiO2) in architectural paint and coatings. The aim was to quantitatively assess their effect on dirt pickup resistance, hydrophobicity, and mechanical properties. In a systematic search across ScienceDirect, Scopus, and Web of Science (2010–2025), 20 studies that met the set inclusion criteria were identified. We extracted and generalized data with random-effects models (REML) based on standardized mean differences, conducting subgroup and meta-regression analyses to assess filler type, loading, and binder system impact. The results reveal that graphene-based fillers and SiO2 improve coating performance at the same time, and hybrid graphene-SiO2 systems may provide a synergistic improvement depending on the binder matrix. Our results present the first quantitative evidence of graphene-SiO2 interaction in the coating formulations, identify remaining research gaps, and indicate methods for designing next-generation facade paints with better dirt repellence, durability, and sustainability. Full article
(This article belongs to the Special Issue Modern Polymer Coating Materials Containing Graphene Derivatives)
Show Figures

Graphical abstract

20 pages, 6335 KB  
Article
g-C3N4/CeO2/Bi2O3 Dual Type-II Heterojunction Photocatalysis Self-Cleaning Coatings: From Spectral Absorption Modulation to Engineering Application Characterization
by Shengchao Cui, Run Cheng, Feng Sun, Huishuang Zhao, Hang Yuan, Qing Si, Mengzhe Ai, Weiming Du, Kan Zhou, Yantao Duan and Wenke Zhou
Nanomaterials 2026, 16(1), 16; https://doi.org/10.3390/nano16010016 - 22 Dec 2025
Viewed by 435
Abstract
To enhance the purification of exhaust gas, a g-C3N4/CeO2/Bi2O3 dual type-II heterojunction photocatalysis was designed and prepared to suppress the recombination of electron–hole pairs and improve light energy utilization. The dual type-II heterojunction structure [...] Read more.
To enhance the purification of exhaust gas, a g-C3N4/CeO2/Bi2O3 dual type-II heterojunction photocatalysis was designed and prepared to suppress the recombination of electron–hole pairs and improve light energy utilization. The dual type-II heterojunction structure effectively reduced the bandgap (Eg) from 2.5 eV to 2.04 eV, thereby extending the light absorption of photocatalysis into the visible region. Following the design of the heterojunction, a self-cleaning process was developed and applied to asphalt pavement rut plates to evaluate its efficiency in degrading vehicle exhaust under real-road conditions. The coating was systematically characterized in terms of exhaust degradation efficiency, hardness, adhesion, water resistance, freeze–thaw durability, and skid resistance. Under 60 min of natural light irradiation, the purification efficiencies for HC, CO, CO2, and NOx reached 22.60%, 19.27%, 14.83%, and 50.01%, respectively. After three-repetition tests, the efficiencies remained high at 21.75%, 19.04%, 14.66%, and 49.83%, demonstrating excellent photocatalytic stability. All other road-performance indicators met the relevant China national standards. The application of this self-cleaning coating in road infrastructure presents a viable strategy for environmental remediation in transportation systems. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

13 pages, 3362 KB  
Article
Multifunctional Bamboo Fiber/Epoxy Composites Featuring Integrated Superhydrophobicity and Enhanced Mechanical–Thermal Performance
by Yanchao Liu, Ze Yu, Rumin Li, Xiaodong Wang and Yingjie Qiao
Nanomaterials 2026, 16(1), 8; https://doi.org/10.3390/nano16010008 - 19 Dec 2025
Viewed by 350
Abstract
Developing sustainable, high-performance biomass composites is crucial for replacing non-renewable structural materials. In this study, a “bamboo steel” composite was fabricated using a multilevel modification strategy involving alkali pretreatment, toughened resin impregnation, and surface functionalization. Bamboo fibers were treated to remove hemicellulose and [...] Read more.
Developing sustainable, high-performance biomass composites is crucial for replacing non-renewable structural materials. In this study, a “bamboo steel” composite was fabricated using a multilevel modification strategy involving alkali pretreatment, toughened resin impregnation, and surface functionalization. Bamboo fibers were treated to remove hemicellulose and lignin, enhancing porosity and interfacial bonding. The bamboo scaffold was subsequently impregnated with a thermo-plastic polyurethane-modified epoxy resin to create a robust, interpenetrating network. The optimized composite (treated at 80 °C) exhibited a flexural strength of 443.97 MPa and a tensile strength of 324.14 MPa, demonstrating exceptional stiffness and toughness. Furthermore, a superhydrophobic coating incorporating silica nanoparticles was applied, achieving a water contact angle exceeding 150° and excellent self-cleaning properties. This work presents a scalable strategy for producing bio-based structural materials that balance mechanical strength with environmental durability. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

14 pages, 5045 KB  
Article
Concertation of Anti-Reflective, Superhydrophobic Surface Based on Rational Assembly of Dual-Size Silica
by Lu Xu, Lei Niu, Shuqun Chen, Ting He, Junshu Wu, Jianbo Ai and Yongli Li
Materials 2025, 18(24), 5601; https://doi.org/10.3390/ma18245601 - 12 Dec 2025
Viewed by 448
Abstract
Silica-based multifunctional coatings hold great promise for applications in optical devices, lenses, and solar panels. Herein, we report a facile, low-temperature route to integrate super-hydrophobicity with high transparency and low haze. By precisely controlling particle gradation and applying fluorine passivation, a multi-scale structure [...] Read more.
Silica-based multifunctional coatings hold great promise for applications in optical devices, lenses, and solar panels. Herein, we report a facile, low-temperature route to integrate super-hydrophobicity with high transparency and low haze. By precisely controlling particle gradation and applying fluorine passivation, a multi-scale structure with micro-scale uniformity and nano-scale asperity was constructed. This unique architecture, combined with low surface energy, effectively reduces light scattering and enhances air trapping. Consequently, the coated glass achieves a high optical transmittance of 95.24% with a low haze of 0.97%, alongside a water contact angle of 153° and a sliding angle of 3°. The coating also exhibits distinct anti-reflection (an improvement of ~5.0% relative to the bare substrate) and self-cleaning properties. Furthermore, it demonstrates impressive robustness and durability, withstanding extreme conditions including cryogenic temperatures (−50 °C), hygrothermal environments, and long-term outdoor exposure. This work demonstrates the versatile potential of our strategy for fabricating highly transparent and superhydrophobic surfaces. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

39 pages, 3942 KB  
Review
Hydrophobic and Oleophobic Photocatalytic Coatings for Stones and Cementitious Building Substrates: A Bibliometric Perspective (2010–2025)
by Víctor Manuel Tena-Santafé, Gurbir Kaur, José María Fernández, Íñigo Navarro-Blasco and José Ignacio Álvarez
Coatings 2025, 15(12), 1391; https://doi.org/10.3390/coatings15121391 - 27 Nov 2025
Viewed by 1080
Abstract
Hydrophobic and oleophobic photocatalytic coatings are specialised surface treatments that combine either hydrophobicity or oleophobicity and photocatalytic activity. This combination supports applications such as self-cleaning surfaces, anti-fouling, oil–water separation, air purification, and durability enhancement in construction and other industries. These coatings work by [...] Read more.
Hydrophobic and oleophobic photocatalytic coatings are specialised surface treatments that combine either hydrophobicity or oleophobicity and photocatalytic activity. This combination supports applications such as self-cleaning surfaces, anti-fouling, oil–water separation, air purification, and durability enhancement in construction and other industries. These coatings work by creating a surface with carefully engineered surface energy and roughness that resists wetting by both water and oils, while exposing photocatalytic nanoparticles that activate under light to degrade organics. They are often transparent and durable and are now expanding to cementitious building materials, contributing to sustainable, clean, and resilient infrastructure. The motivation for conducting this bibliometric review arises from the fragmented and interdisciplinary nature of the literature on hydrophobic and oleophobic photocatalytic coatings for construction materials, the rapid growth of research in this field, and the absence of a systematic mapping that integrates publication trends, research hotspots, and practical applications. This review delivers a comprehensive quantitative analysis of publication dynamics, encompassing growth trajectories, global research distribution, and thematic evolution, while uncovering dominant and emerging topics. By mapping established innovations and milestones and exposing critical research barriers, it establishes a knowledge framework that will guide future researchers in advancing hydrophobic and oleophobic photocatalytic coatings for construction materials. Another contribution of this review is its ability to capture both past achievements, such as heritage protection and reduced maintenance of existing structures, and ongoing (as well as future) demands, including sustainability, smart city applications, and multifunctional surface technologies, thereby underscoring its relevance across the full spectrum of the built environment. Full article
Show Figures

Figure 1

26 pages, 1743 KB  
Review
Recent Advances in Bio-Inspired Superhydrophobic Coatings Utilizing Hierarchical Nanostructures for Self-Cleaning and Anti-Icing Surfaces
by Florence Acha, Daniel Egbebunmi, Shamsudeen Ahmadu, Aishat Ojuolape and Titus Egbosiuba
Physchem 2025, 5(4), 48; https://doi.org/10.3390/physchem5040048 - 4 Nov 2025
Cited by 1 | Viewed by 2537
Abstract
Bio-inspired superhydrophobic coatings have garnered significant attention in recent years due to their potential in creating self-cleaning and anti-icing surfaces. Drawing inspiration from natural systems such as lotus leaves and insect wings, these coatings leverage hierarchical nanostructures to achieve extreme water repellency and [...] Read more.
Bio-inspired superhydrophobic coatings have garnered significant attention in recent years due to their potential in creating self-cleaning and anti-icing surfaces. Drawing inspiration from natural systems such as lotus leaves and insect wings, these coatings leverage hierarchical nanostructures to achieve extreme water repellency and low surface adhesion. This review explores recent advances in the design, fabrication, and functional performance of bio-inspired superhydrophobic materials, with a focus on hierarchical micro/nanostructured surfaces. We discuss the underlying mechanisms of wettability, the role of surface chemistry, and the integration of durable nanostructures for enhanced durability. Additionally, the paper discusses the latest progress in scalable manufacturing techniques, environmental adaptability, and multifunctional performance, particularly in self-cleaning and anti-icing applications. Emerging trends, such as stimuli-responsive surfaces and smart coatings, are also examined to provide a comprehensive overview of the field. This review discusses the challenges and future directions for translating laboratory-scale innovations into real-world applications, particularly in aerospace, automotive, energy, and infrastructure sectors. Full article
(This article belongs to the Special Issue Nanocomposites for Catalysis and Environment Applications)
Show Figures

Figure 1

19 pages, 4433 KB  
Article
Simple Spray Preparation of Multifunctional Organic–Inorganic Hybrid Coatings for Surface Strengthening of Flat Thin-Sheet Materials
by Xianbo Yu, Huaxin Li, Hu Chen, Shuao Xie, Wei Han, Xiaoxue Xi, Zhongbo Hu, Xian Yue and Junhui Xiang
Coatings 2025, 15(11), 1267; https://doi.org/10.3390/coatings15111267 - 2 Nov 2025
Viewed by 1003
Abstract
To enhance the mechanical performance and surface hydrophobicity of flat thin-sheet materials, we have developed a facile, environmentally benign, and low-cost synthesis strategy for fabricating a robust waterborne superhydrophobic coating with excellent mechanical reinforcement, via simple spray coating using a non-fluorinated material system [...] Read more.
To enhance the mechanical performance and surface hydrophobicity of flat thin-sheet materials, we have developed a facile, environmentally benign, and low-cost synthesis strategy for fabricating a robust waterborne superhydrophobic coating with excellent mechanical reinforcement, via simple spray coating using a non-fluorinated material system (waterborne silicone–acrylic copolymer and silica sol). The functional coating exhibited excellent hydrophobicity (water contact angle: 150°) regardless of the compound of the substrates, which is primarily ascribed to the presence of abundant low-surface-energy methyl groups on the coating’s surface, along with the three-dimensional hierarchical network structure formed via the cross-linked silica network. Owing to the stable cross-linked structure and strong interfacial bonding between the acrylic polymer and silica network, the composite coating exhibited exceptional mechanical reinforcement, coupled with ultrahigh mechanical and chemical stability. Specifically, the maximum flexural fracture load of the modified materials increased from 119 N to 192 N, representing a 62.7% enhancement; similarly, the moisture-induced deflection of the samples had a significant increase from −14.5 mm to −3.01 mm, which confirmed that the mechanical properties of the modified sample and its deformation resistance under high humidity conditions have been significantly enhanced. Notably, the coating retained superior hydrophobicity and mechanical performance even after 50 abrasion cycles, as well as exposure to high-intensity UV radiation and corrosive acidic/alkaline environments. Furthermore, the composite functional coating demonstrated excellent self-cleaning and anti-fouling properties. This functional composite coating offers significant potential for large-scale industrial application. Full article
(This article belongs to the Special Issue Smart Coatings: Adapting to the Future)
Show Figures

Figure 1

17 pages, 5096 KB  
Article
Hot-Pressed Reinforced Photocatalyzed TiO2/Chitosan/SiO2 Nanofibers
by Jingwen Wang, Zunzhi Liu, Jingmei Zhang, Yang Liu, Chunjing Hou, Hui Cheng, Yaru Wang and Xiang Liu
Materials 2025, 18(21), 4828; https://doi.org/10.3390/ma18214828 - 22 Oct 2025
Viewed by 581
Abstract
This study introduces a novel fabrication method for high-strength, self-cleaning photocatalytic membranes through the integration of hot-pressing and TiO2/chitosan/SiO2 nanofibers. The innovation of this research lies in the hot-pressing technique, which significantly enhances the mechanical properties and photocatalytic efficiency by [...] Read more.
This study introduces a novel fabrication method for high-strength, self-cleaning photocatalytic membranes through the integration of hot-pressing and TiO2/chitosan/SiO2 nanofibers. The innovation of this research lies in the hot-pressing technique, which significantly enhances the mechanical properties and photocatalytic efficiency by improving the adhesion, dispersion, and uniformity of the TiO2/chitosan coating on SiO2 nanofibers. SiO2 nanofibers with an initial diameter of 0.79 ± 0.29 μm were coated and hot-pressed, resulting in a final diameter of 1.07 ± 0.57 μm, which corresponds to an approximate increase of 35.4%. In addition, the 1 wt% TiO2-CTS sample showed the highest adhesion and surface energy, with values of 0.1 nN/nm2, indicating the closest intermolecular binding. 3 wt% SiO2-CTS exhibits a maximum hardness of 5.23 Pa. The 3 wt% TiO2-chitosan coating demonstrated outstanding mechanical performance, achieving a fracture stress of 0.53 MPa, approximately five times that of the untreated SiO2 nanofibers, a Young’s modulus of 0.63 MPa, and a toughness to triple of 0.27 MJ/m3—representing substantial improvements over uncoated membranes. Photocatalytic efficiency was significantly enhanced, with grayscale values increasing approximately 36% UV light exposure, indicating the superior degradation of pollutants. Full article
(This article belongs to the Special Issue Surface Modification of Materials for Multifunctional Applications)
Show Figures

Figure 1

11 pages, 3402 KB  
Article
Synergistic Enhancement of Stain Resistance in Exterior Wall Coatings Using SiO2-TiO2 Composite Overlay
by Lian-Jie Dong, Hong-Ke Pan, Cheng-Di Li, Shuo-Peng Cao, Yong-Chun Ma and Jia-Hong Luo
Coatings 2025, 15(10), 1205; https://doi.org/10.3390/coatings15101205 - 13 Oct 2025
Viewed by 594
Abstract
Architectural exterior wall coatings require a balance of elasticity, stain resistance, and durability. Although nano-SiO2 enhances fracture resistance in elastic coatings, its limited hydrophobicity allows pollutant adhesion. Nano-TiO2 can photocatalytically degrade organics but is often encapsulated by the polymer matrix, reducing [...] Read more.
Architectural exterior wall coatings require a balance of elasticity, stain resistance, and durability. Although nano-SiO2 enhances fracture resistance in elastic coatings, its limited hydrophobicity allows pollutant adhesion. Nano-TiO2 can photocatalytically degrade organics but is often encapsulated by the polymer matrix, reducing its effectiveness. This study introduces a SiO2-TiO2 composite topcoat applied via aqueous dispersion to overcome these limitations. Experimental results demonstrate that the composite coating significantly outperforms single-component modifications, improving stain resistance by 21.3% after 12 months of outdoor exposure. The surface remains brighter with markedly reduced pollutant accumulation. Mechanistically, SiO2 serves as an inert mesoporous carrier that improves the dispersion and photostability of TiO2, minimizing agglomeration and photocorrosion. Its inherent hardness and hydrophobicity reduce physical adsorption sites. Together, SiO2 and TiO2 create a nanoscale rough surface that enhances hydrophobicity through a lotus-like effect. Under UV irradiation, TiO2 generates radicals that decompose organic pollutants and inhibit microbial growth, enabling efficient self-cleaning with rainwater. This synergistic mechanism addresses the limitations of individual nanoparticles, successfully integrating elasticity with long-term anti-fouling and durability. This composite demonstrates a significant advancement in stain resistance and overall durability, offering potential applications in energy-efficient and environmentally sustainable building technologies. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

22 pages, 1330 KB  
Review
Oleosome Delivery Systems: Enhancing Stability and Therapeutic Potential of Natural Products and Xenobiotics
by Marlon C. Mallillin III, Roi Martin B. Pajimna, Shengnan Zhao, Maryam Salami, Raimar Loebenberg and Neal M. Davies
Pharmaceutics 2025, 17(10), 1303; https://doi.org/10.3390/pharmaceutics17101303 - 7 Oct 2025
Cited by 1 | Viewed by 1506
Abstract
Oleosomes are submicron oil bodies of a triacylglycerol core enveloped by a phospholipid monolayer and embedded proteins, forming a naturally assembled nanocarrier with exceptional oxidative resilience, interfacial stability, and biocompatibility. Their unique architecture supports solvent-free extraction, self-emulsification, and near-complete encapsulation of highly lipophilic [...] Read more.
Oleosomes are submicron oil bodies of a triacylglycerol core enveloped by a phospholipid monolayer and embedded proteins, forming a naturally assembled nanocarrier with exceptional oxidative resilience, interfacial stability, and biocompatibility. Their unique architecture supports solvent-free extraction, self-emulsification, and near-complete encapsulation of highly lipophilic compounds (log P > 4), including curcumin and cannabidiol, with reported efficiencies exceeding 95%. These plant-derived droplets enhance oral bioavailability through lymphatic uptake and enable targeted delivery strategies such as magnetically guided chemotherapy, which has reduced tumor burden by approximately 70% in vivo. The review critically examines recent advances in oleosome research, spanning botanical sourcing, green extraction technologies, interfacial engineering, xenobiotic encapsulation, pharmacokinetics, and therapeutic applications across oncology, dermatology, metabolic disease, and regenerative medicine. Comparative analyses demonstrate that oleosomes rival or surpass synthetic lipid nanocarriers in encapsulation efficiency, oxidative stability, and cost efficiency while offering a sustainable, clean-label alternative. Remaining challenges, including low loading of hydrophilic drugs, allergenicity, and regulatory standardization, are addressed through emerging strategies such as hybrid oleosome–liposome systems, recombinant oleosin engineering, and stimulus-responsive coatings. These advances position oleosomes as a versatile and scalable platform with significant potential for food, cosmetic, and pharmaceutical applications. Full article
(This article belongs to the Special Issue Natural Pharmaceuticals Focused on Anti-inflammatory Activities)
Show Figures

Graphical abstract

Back to TopTop