Recent Advances in Bio-Inspired Superhydrophobic Coatings Utilizing Hierarchical Nanostructures for Self-Cleaning and Anti-Icing Surfaces
Abstract
1. Introduction
1.1. Background and Motivation
1.2. Significance of Superhydrophobicity in Nature
1.3. Objectives and Scope of the Review
2. Fundamental Concepts and Mechanisms
2.1. Definition and Characteristics of Superhydrophobic Surfaces
2.2. Wetting Theories: Wenzel and Cassie–Baxter Models
| Model | Key Assumption | Equation | Implication on Surface Wettability |
|---|---|---|---|
| Wenzel Model | Liquid completely penetrates surface roughness | cos θ* = r cos θ | Enhances inherent surface wettability: hydrophilic surfaces become more hydrophilic, and vice versa [23]. |
| Cassie–Baxter Model | Liquid sits atop surface asperities with trapped air underneath | cos θ* = φs (cos θ + 1) − 1 | Produces high contact angles and low adhesion, enabling superhydrophobicity and self-cleaning behavior [26]. |
2.3. Hierarchical Micro/Nanostructures and Surface Chemistry
2.4. Contact Angle Hysteresis and Sliding Behavior
3. Bio-Inspired Design Strategies
3.1. Inspiration from Lotus Leaf, Butterfly Wings, and Gecko Feet
3.2. Biomimetic Fabrication Techniques
3.3. Role of Surface Roughness and Dual-Scale Structuring
3.4. Challenges in Mimicking Natural Surfaces
4. Fabrication Techniques for Hierarchical Nanostructures
4.1. Chemical Vapor Deposition (CVD) and Sol–Gel Processes
4.2. Laser Ablation and Lithographic Methods
4.3. Electrospinning and Nanoparticle Assembly
4.4. Spray Coating and Dip Coating for Scalable Production

5. Functional Applications
5.1. Self-Cleaning Surfaces: Mechanisms and Use Cases
5.2. Anti-Icing and De-Icing Capabilities
5.3. Durability, Wear Resistance, and Environmental Stability
5.4. Integration in Aerospace, Automotive, and Civil Engineering
6. Emerging Trends
6.1. Smart and Stimuli-Responsive Superhydrophobic Coatings
6.2. Multifunctional Surfaces: Antibacterial, UV-Resistant, Etc.
6.3. Sustainable and Eco-Friendly Coating Materials
| Challenge/Opportunity | Description | Impact on Commercialization | Strategic Response/Opportunity |
|---|---|---|---|
| Mechanical Durability | Fragile micro/nanostructures degrade under abrasion and wear | Limits lifespan and applicability in real-world environments | Develop self-healing coatings or embed nanostructures in robust matrices [94] |
| Environmental Stability | UV light, temperature, and chemicals deteriorate coating performance | Reduces long-term reliability in outdoor and industrial settings | Use UV-stable, chemically inert, and thermally resistant materials [95,96] |
| Scalability and Cost | Advanced fabrication methods are complex and expensive | Hinders mass production and cost-effectiveness | Shift to scalable methods like spray/dip coating and roll-to-roll manufacturing [82,97] |
| Eco-Regulatory Compliance | Use of fluorinated or toxic compounds raises environmental and health concerns | Restricts product approval and public acceptance | Explore fluorine-free, biodegradable, and non-toxic alternatives for sustainable applications [98,99] |
6.4. Commercialization Challenges and Opportunities
7. Summary, Challenges, and Future Direction
7.1. Summary of Key Advances
7.2. Critical Challenges
7.3. Future Research and Industrial Adoption
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barthwal, S.; Kim, Y.-K.; Lim, S.-H.; Park, J.; Kim, H.J. Bioinspired superhydrophobic surfaces: Recent advances in fabrication methods and applications. Prog. Mater. Sci. 2022, 129, 100973. [Google Scholar] [CrossRef]
- Su, B.; Tian, Y.; Jiang, L. Bioinspired interfaces with superwettability: From materials to chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748. [Google Scholar] [CrossRef] [PubMed]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Bohn, H.F.; Federle, W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl. Acad. Sci. USA 2004, 101, 14138–14143. [Google Scholar] [CrossRef]
- Zheng, Y. Bio-Inspired Wettability Surfaces: Developments in Micro- and Nanostructures. MRS Bull. 2016, 41, 572. [Google Scholar] [CrossRef]
- Joghee, S.H.; Sunil, N.; Selvaraj, G.; Uthandi, K.M.; Pullithadathil, B. Bio-Inspired Multifunctional Superhydrophobic Coatings for Corrosion Resistance. In A Treatise on Corrosion Science, Engineering and Technology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 559–575. [Google Scholar] [CrossRef]
- Wen, J.; Li, P.; Zhu, F. Nature-Inspired Fluorine-Free Robust Superhydrophobic Fabrics. Fibers Polym. 2024, 25, 1243–1251. [Google Scholar] [CrossRef]
- Nature Research Intelligence. Superhydrophobic Surfaces and Drag Reduction in Fluid Flow. Nat. Res. Intell. 2025, 9, 112–130. [Google Scholar]
- Backholm, M.; Molpeceres, D.; Vuckovac, M.; Nurmi, H.; Hokkanen, M.J.; Jokinen, V.; Timonen, J.V.I.; Ras, R.H.A. Water droplet friction and rolling dynamics on superhydrophobic surfaces. Nat. Commun. Mater. 2020, 1, 65–75. [Google Scholar] [CrossRef]
- Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99. [Google Scholar] [CrossRef]
- Jeevahan, J.; Chandrasekaran, M.; Joseph, G.B.; Durairaj, R.B.; Mageshwaran, G. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 2018, 15, 231–250. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011, 56, 1–108. [Google Scholar] [CrossRef]
- Fei, L.; He, Z.; LaCoste, J.D.; Sun, Y. A Mini Review on Superhydrophobic and Transparent Surfaces. Available online: https://www.researchgate.net/figure/a-Examples-of-superhydrophobic-surfaces-in-nature-b-the-properties-and-corresponding_fig1_344357380 (accessed on 16 May 2025).
- Bhushan, B.; Jung, Y.C.; Nosonovsky, M. Lotus Effect: Surfaces with Roughness-Induced Superhydrophobicity, Self-Cleaning, and Low Adhesion. In Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1437–1524. [Google Scholar] [CrossRef]
- Gou, X.; Guo, Z. Superhydrophobic Plant Leaves with Micro-line Structures: An Optimal Biomimetic Objective in Bionic Engineering. J. Bionic Eng. 2018, 15, 851–858. [Google Scholar] [CrossRef]
- Gorb, S.N. Functional Surfaces in Biology: Little Structures with Big Effects. In Springer Series in Biomaterials Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1, pp. 1–25. [Google Scholar] [CrossRef]
- Bhushan, B. Characterization of Rose Petals and Fabrication and Characterization of Superhydrophobic Surfaces with High and Low Adhesion. In Biomimetics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 189–206. [Google Scholar] [CrossRef]
- Parker, A.R.; Lawrence, C.R. Water capture by a desert beetle. Nature 2001, 414, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liao, T.; Liu, K.; Jiang, L.; Kim, J.H.; Dou, S.X. Robust superhydrophobicity of hierarchical ZnO hollow microspheres fabricated by two-step self-assembly. Nano Res. 2013, 6, 726–735. [Google Scholar] [CrossRef]
- Li, Y.; Sha, A.; Tian, Z.; Cao, Y.; Li, X.; Liu, Z. Review on superhydrophobic anti-icing coating for pavement. J. Mater. Sci. 2023, 58, 3377–3400. [Google Scholar] [CrossRef]
- Qiao, Y.; Tao, X.; Li, L.; Ruan, M.; Lu, L. Robust α-Fe2O3/Epoxy Resin Superhydrophobic Coatings for Anti-icing Property. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2024, 39, 621–626. [Google Scholar] [CrossRef]
- Barthlott, W.; Mail, M.; Neinhuis, C. Superhydrophobic hierarchically structured surfaces in biology: Evolution, structural principles and biomimetic applications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 374, 20160191. [Google Scholar] [CrossRef]
- Bormashenko, E. Progress in understanding wetting transitions on rough surfaces. Adv. Colloid Interface Sci. 2015, 222, 92–103. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, Y.; Yan, M.; Qian, B.; Jiang, A.; Zhang, X.; Bi, J.; Tong, Y.; Yu, L.; Li, W. Recent advancements in fabrication strategies and applications of superhydrophobic coatings. J. Mater. Sci. 2025, 60, 7826–7858. [Google Scholar] [CrossRef]
- Liu, K.; Feng, L.; Zhai, J.; Song, Y.; Jiang, L. Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib desert beetle. Adv. Mater. 2010, 22, 999–1002. [Google Scholar] [CrossRef]
- Scheff, T.; Acha, F.; Diaz Armas, N.; Mead, J.L.; Zhang, J. Tuning Wetting Properties Through Surface Geometry in the Cassie–Baxter State. Biomimetics 2025, 10, 20. [Google Scholar] [CrossRef]
- Liu, K.; Yao, X.; Jiang, L. Recent developments in bio-inspired special wettability. Chem. Soc. Rev. 2010, 39, 3240–3255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; He, D.; Yu, Y.; Liu, J. Design and application of fluorinated materials for superhydrophobic surfaces: A review. J. Fluor. Chem. 2020, 236, 109558. [Google Scholar] [CrossRef]
- Lin, X.; Chen, X.; Zhao, S.; Dou, B.; Peng, Q.; Deng, Z.; Emori, W.; Gao, X.; Fang, Z. Effect of silane-modified fluorinated graphene on the anticorrosion property of epoxy coating. J. Appl. Polym. Sci. 2023, 140, e53637. [Google Scholar] [CrossRef]
- Ihimoyan, M.K.; Enyejo, J.O.; Ali, E.O. Monetary Policy and Inflation Dynamics in Nigeria, Evaluating the Role of Interest Rates and Fiscal Coordination for Economic Stability. Int. J. Sci. Res. Sci. Technol. 2022, 9, 799–832. [Google Scholar]
- Eral, H.B.; Mannetje, D.J.C.M.; Oh, J.M. Contact angle hysteresis: A review of fundamentals and applications. Colloid Polym. Sci. 2013, 291, 247–260. [Google Scholar] [CrossRef]
- Extrand, C.W.; Kumagai, Y. An experimental study of contact angle hysteresis. J. Colloid Interface Sci. 1997, 191, 378–383. [Google Scholar] [CrossRef]
- Gao, L.; McCarthy, T.J. Contact angle hysteresis explained. Langmuir 2006, 22, 6234–6237. [Google Scholar] [CrossRef]
- Siddique, R.H.; Gomard, G.; Hölscher, H. The role of random nanostructures for the omnidirectional anti-reflectivity of butterfly wings. Nat. Commun. 2015, 6, 6909. [Google Scholar] [CrossRef]
- Potyrailo, R.A.; Ghiradella, H.; Vertiatchikh, A.; Dovidenko, K.; Cournoyer, J.R.; Olson, E. Morpho butterfly wing scales demonstrate highly selective vapour response. Nat. Photonics 2007, 1, 123–128. [Google Scholar] [CrossRef]
- Riedel, J.; Vucko, M.J.; Blomberg, S.P.; Schwarzkopf, L. Skin hydrophobicity as an adaptation for self-cleaning in geckos. Ecol. Evol. 2020, 10, 7315–7323. [Google Scholar] [CrossRef]
- Wang, G.; Ma, F.; Zhu, L.; Xue, Q. Bioinspired slippery surfaces for liquid manipulation from tiny droplet to bulk fluid. Adv. Mater. 2024, 36, e2311489. [Google Scholar] [CrossRef]
- Hou, J.; Aydemir, B.E.; Dumanli, A.G. Understanding the structural diversity of chitins as a versatile biomaterial. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200331. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, J.; Li, X. Electrospun nanofibrous membranes with hierarchical roughness for superhydrophobic and self-cleaning surfaces. J. Electrospinning Nanofibers 2024, 12, 45–58. [Google Scholar]
- Vandelli, L.; Rossi, G.; Bianchi, C. One-step CVD synthesis of transparent superhydrophobic nanocone films for anti-icing and self-cleaning applications. J. Colloid Interface Sci. 2022, 623, 1–12. [Google Scholar] [CrossRef]
- Nosonovsky, M.; Bhushan, B. Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 2009, 14, 270–280. [Google Scholar] [CrossRef]
- Khan, S.A.; Boltaev, G.S.; Iqbal, M.; Kim, V.; Ganeev, R.A.; Alnaser, A.S. Ultrafast fiber laser-induced fabrication of superhydrophobic and self-cleaning metal surfaces. Appl. Surf. Sci. 2021, 542, 148560. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, X.; Yu, F.; Fan, X. Bio-based surface coatings. In Green by Design: Harnessing the Power of Bio-Based Polymers at Interfaces; IOP Publishing: Bristol, UK, 2024; pp. 1–2. [Google Scholar]
- Zhao, Z.; Wang, H.; Tu, H.; Chen, M.; Wu, Y.; Wu, L. Leaf vein-inspired transparent superhydrophobic coatings with high stability. Sci. China Mater. 2025, 68, 1203–1211. [Google Scholar] [CrossRef]
- Das, S.; Balakrishnan, P. Self-cleaning finishes for functional and value-added textiles. In Nanotechnology in Functional Finishing of Textiles; Springer: Berlin/Heidelberg, Germany, 2021; pp. 187–210. [Google Scholar] [CrossRef]
- Raman, S.; Repon, M.R.; Haji, A.; Jalil, M.A.; Islam, T.; Khan, M.M. Progress in self-cleaning textiles: Parameters, mechanism and applications. Cellulose 2023, 30, 10633–10680. [Google Scholar] [CrossRef]
- Jagdheesh, R.; Marczak, J. Superhydrophobic interfaces for high-performance applications. In Superhydrophobic Interfaces for High-Performance/Advanced Application; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Zhang, L.; Wu, J.; Hedhili, M.N.; Yang, X.; Wang, P. Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces. J. Mater. Chem. A 2013, 1, 5835–5840. [Google Scholar] [CrossRef]
- Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking the lotus leaf for anti-fouling and waterproofing applications. J. Mater. Chem. A 2014, 2, 5548–5554. [Google Scholar] [CrossRef]
- Nosonovsky, M.; Bhushan, B. Hierarchical roughness makes superhydrophobic states stable. Microelectron. Eng. 2007, 84, 382–386. [Google Scholar] [CrossRef]
- Bittoun, E.; Marmur, A. The Role of Multiscale Roughness in the Lotus Effect: Is It Essential for Super-Hydrophobicity? Langmuir 2012, 28, 13933–13942. [Google Scholar] [CrossRef]
- Kaufman, G.; Egbebunmi, D.; Gerdes, J.; Gogos, G.; Shield, J.E.; Zuhlke, C. The effect of femtosecond laser repetition rate on the self-organization of micro- and nano-scale surface features. Appl. Surf. Sci. 2023, 617, 156494. [Google Scholar]
- Zhang, Y. Developing “Lotus” Superhydrophobicity Using Aligned Porous Fibers. In Superhydrophobic Surfaces and Their Applications; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Campedelli, R.; Lamagna, L. Thin Film Deposition. Silicon Sens. Actuators 2022, 1, 75–103. [Google Scholar]
- Zhao, X.; Liu, Y.; Wang, Z. Chemical vapor deposition of transparent superhydrophobic anti-reflective coatings with tailored nanocone array structures. Chem. Eng. J. 2022, 431, 133962. [Google Scholar] [CrossRef]
- Acha, F.; Scheff, T.; Diaz Armas, N.; Mead, J.; Johnston, S.; Zhang, J. An approach of manufacturing high-molecular-weight CNT-filled epoxy composite. Materials 2025, 18, 264. [Google Scholar] [CrossRef]
- Basu, B.; Saha, A. Tuning up sol-gel process to achieve highly durable superhydrophobic coatings. J. Eur. Ceram. Soc. 2022, 42, 2875–2884. [Google Scholar] [CrossRef]
- Egbebunmi, D.; Beigzadeh, S.; Sarin, S.; Anderson, M.; Parmar, J.; Kaufman, G.; Zuhlke, C.; Shield, J.E. Utilizing graph theoretical analysis to quantify the micro- and nano-structures formed on femtosecond laser processed copper. Mater. Today Adv. 2025, 25, 100693. [Google Scholar] [CrossRef]
- Jagdheesh, R.; Marczak, J. Laser surface texturing for superhydrophobic applications. Mater. Lett. 2019, 248, 93–96. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, M.; Zhang, Z.; Lu, J.; Xu, K.; Zhu, H.; Wu, Y.; Wang, B.; Lei, W. A review on applications of functional superhydrophobic surfaces prepared by laser biomimetic manufacturing. J. Mater. Sci. 2023, 58, 3421–3459. [Google Scholar] [CrossRef]
- Enyejo, L.A.; Adewoye, M.B.; Ugochukwu, U.N. Interpreting Federated Learning (FL) Models on Edge Devices by Enhancing Model Explainability with Computational Geometry and Advanced Database Architectures. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2024, 10, 332–354. [Google Scholar] [CrossRef]
- Das, A.; Balakrishnan, N.T.M. Electrospinning: The State of Art Technique for the Production of Nanofibers and Nanofibrous Membranes for Advanced Engineering Applications. Mater. Horiz. 2021, 2, 23–71. [Google Scholar]
- Pan, M.; Shao, H.; Fan, Y.; Yang, J.; Liu, J.; Deng, Z.; Liu, Z.; Chen, Z.; Zhang, J.; Yi, K.; et al. Superhydrophobic Surface-Assisted Preparation of Microspheres and Supraparticles and Their Applications. Nano-Micro Lett. 2024, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Raman, A.; Jayan, J.S.; Deeraj, B.D.S.; Saritha, A.; Joseph, K. Electrospun nanofibers as effective superhydrophobic surfaces: A brief review. Surf. Interfaces 2021, 24, 101140. [Google Scholar] [CrossRef]
- Qing, Y.; Long, C.; An, K.; Hu, C.; Liu, C. Sandpaper as template for a robust superhydrophobic surface with self-cleaning and anti-snow/icing performances. J. Colloid Interface Sci. 2019, 548, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Igwe, I.O.; Acha, F.N.; Agwu, G.I.; Ifeacho, V.C.; Okonkwo, S.N.; Ekwueme, C.C.; Igboanugo, U.I. Utilization of granite quarry dust extender in formulating anti-corrosive paints for the protection of steel. Aust. J. Sci. Technol. 2021, 5, 632–638. [Google Scholar]
- Goralczyk, A.; Savicheva, S.; Montazeri, R.; Fine, S.; Mayoussi, F.; Zhu, P.; Steffen, K.; Kotz-Helmer, F.; Helmer, D.; Rapp, B.E. Spray-Coating of Superhydrophobic Coatings for Advanced Applications. Adv. Eng. Mater. 2024, 26, 2201314. [Google Scholar] [CrossRef]
- Nomeir, B.; Naamane, S. Coating Technique. Solar Energy Materials and Solar Cells. Available online: https://www.sciencedirect.com/topics/engineering/coating-technique (accessed on 17 June 2025).
- Geyer, F.; D’Acunzi, M.; Sharifi-Aghili, A.; Saal, A.; Gao, N.; Kaltbeitzel, A.; Sloot, T.F.; Berger, R.; Butt, H.-J.; Vollmer, D. When and how self-cleaning of superhydrophobic surfaces works. Sci. Adv. 2020, 6, aaw9727. [Google Scholar] [CrossRef] [PubMed]
- Enyejo, J.O.; Babalola, I.N.O.; Owolabi, F.R.A.; Adeyemi, A.F.; Osam-Nunoo, G.; Ogwuche, A.O. Data-driven digital marketing and battery supply chain optimization in the battery powered aircraft industry through case studies of Rolls-Royce’s ACCEL and Airbus’s E-Fan X Projects. Int. J. Sch. Res. Rev. 2024, 5, 1–20. [Google Scholar] [CrossRef]
- Yu, C.; Sasic, S.; Liu, K.; Ni, Y. Nature-inspired self-cleaning surfaces: Mechanisms, modelling, and manufacturing. Chem. Eng. Res. Des. 2020, 155, 48–65. [Google Scholar] [CrossRef]
- Wang, F.; Tay, T.E.; Sun, Y.; Liang, W.; Yang, B. Low-voltage and surface energy SWCNT/poly(dimethylsiloxane) (PDMS) nanocomposite film: Surface wettability for passive anti-icing and surface-skin heating for active deicing. Compos. Sci. Technol. 2019, 184, 107872. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Zhao, S. Templated fabrication of bioinspired hierarchical superhydrophobic surfaces with enhanced durability. Adv. Surf. Eng. 2022, 18, 289–301. [Google Scholar]
- Deng, L.; Wang, Z.; Niu, Y.; Luo, F.; Chen, Q. CNTs-induced superhydrophobic and photothermal coating with long-term durability and self-replenishing property for anti-icing/de-icing. Compos. Sci. Technol. 2024, 245, 110347. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, J.; Wang, H.; Wang, X.; Lin, T. Durable superhydrophobic cotton fabrics prepared by electrostatic assembly of silica nanoparticles and hydrophobization. Thin Solid Film. 2015, 590, 26–31. [Google Scholar] [CrossRef]
- Milionis, A.; Loth, E.; Bayer, I.S. Recent advances in the mechanical durability of superhydrophobic materials. Adv. Colloid Interface Sci. 2016, 229, 57–79. [Google Scholar] [CrossRef]
- Igba, E.; Danquah, E.O.; Ukpoju, E.A.; Obasa, J.; Olola, T.M.; Enyejo, J.O. Use of Building Information Modeling (BIM) to Improve Construction Management in the USA. World J. Adv. Res. Rev. 2024, 23, 1799–1813. [Google Scholar] [CrossRef]
- Kumar, S.; Prakash, K.S. Superhydrophobic coatings for aerospace applications: A review. Prog. Org. Coat. 2022, 163, 106629. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z. Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem. 2008, 18, 621–633. [Google Scholar] [CrossRef]
- Ijiga, A.C.; Igbede, M.A.; Ukaegbu, C.; Olatunde, T.I.; Olajide, F.I.; Enyejo, L.A. Precision healthcare analytics: Integrating ML for automated image interpretation, disease detection, and prognosis prediction. World J. Biol. Pharm. Health Sci. 2024, 18, 336–354. [Google Scholar] [CrossRef]
- Li, S.; Feng, S.; Zhang, L. High-sensitivity stimuli-responsive polysiloxane synthesized via catalyst-free aza-Michael addition for ibuprofen loading and controlled release. RSC Adv. 2016, 6, 7790–7796. [Google Scholar] [CrossRef]
- Idoko, D.O.; Adenyi, M.; Senejani, M.N.; Erondu, O.F.; Adeyeye, Y. Nanoparticle-Assisted Cancer Imaging and Targeted Drug Delivery for Early-Stage Tumor Detection and Combined Diagnosis-Therapy Systems for Improved Cancer Management. Int. J. Innov. Sci. Res. Technol. 2024, 9, 861–882. [Google Scholar] [CrossRef]
- Idowu, O.S.; Ayoola, V.O.; Adegbola, F.; Adeyeye, Y. Air, Water, and Soil Microbiomes as Catalysts for Smart Agriculture, Urban Ecosystem Revitalization, Climate Adaptation, and Public Health Advancements. Int. J. Sci. Res. Mod. Technol. 2024, 3, 1–20. [Google Scholar] [CrossRef]
- Fesojaye, I.S.; Dada, F.; Acha, F. Innovative applications of nanomaterials in semiconductor manufacturing: Advancing efficiency and performance for next-generation technologies. World J. Adv. Res. Rev. 2023, 20, 2048–2070. [Google Scholar] [CrossRef]
- Aikins, S.A.; Avevor, J.; Enyejo, L.A. Optimizing Thermal Management in Hydrogen Fuel Cells for Smart HVAC Systems and Sustainable Building Energy Solutions. Int. J. Sci. Res. Mod. Technol. 2024, 3, 79–96. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, P. Facile two-step functionalization of multifunctional superhydrophobic surfaces with antibacterial and UV-blocking properties. Chem. Eng. J. 2022, 430, 132926. [Google Scholar] [CrossRef]
- Li, L.; Wei, J.; Zhang, J.; Li, B.; Yang, Y.; Zhang, J. Challenges and strategies for commercialization and widespread practical applications of superhydrophobic surfaces. Sci. Adv. 2023, 9, eadj1554. [Google Scholar] [CrossRef]
- Saleem, J.; Moghal, Z.K.B.; Fayyaz, O.; Nawaz, M.; Shakoor, R.A.; McKay, G. Eco-friendly freestanding superhydrophobic thin films and coatings for corrosion protection. Int. J. Mater. Form. 2024, 17, 794–812. [Google Scholar] [CrossRef]
- Igwe, I.O.; Acha, F.N.; Anyaegbu, C.O.; Agwu, G.I.; Ifeacho, V.C.; Esinwoke, W.C.; Nwapa, C. Formulation of anti-corrosive alkyd paints based on Umuahia clay extender. SSRG Int. J. Polym. Text. Eng. 2020, 7, 25–30. [Google Scholar] [CrossRef]
- Prudnikov, E.; Polishchuk, I.; Sand, A.; Abu Hamad, H.; Massad-Ivanir, N.; Segal, E.; Pokroy, B. Self-assembled fatty acid crystalline coatings display non-toxic superhydrophobic antimicrobial properties. arXiv 2022, arXiv:2208.08895. [Google Scholar]
- Li, C.; Feng, H.; Ju, G.; Chen, B.; Huang, B. Robust and UV-resistant multifunctional surface for self-cleaning, navigated oil absorption and oil/water separation. Surf. Interfaces 2023, 37, 102670. [Google Scholar] [CrossRef]
- Erbil, H.Y. Practical applications of superhydrophobic materials and coatings: Problems and perspectives. Langmuir 2020, 36, 2493–2509. [Google Scholar] [CrossRef]
- Basu, S.; Saha, A. Recent trends in fabrication of superhydrophobic surfaces: A review. Mater. Today Proc. 2022, 56, 2822–2828. [Google Scholar] [CrossRef]
- Prudnikov, V.V.; Prudnikova, E.Y.; Prudnikova, S.V. Eco-friendly fluorine-free superhydrophobic coatings: A review. J. Mater. Sci. 2022, 57, 12345–12367. [Google Scholar] [CrossRef]
- Lai, S.C.S. Mimicking nature: Physical basis and artificial synthesis of the Lotus effect. J. Bionic Eng. 2003, 1, 13–20. [Google Scholar] [CrossRef]
- Lai, Y.; Tang, Y.; Gong, J.; Gong, D.; Chi, L.; Lin, C.; Chen, Z. Transparent superhydrophobic/superhydrophilic TiO2-based surfaces for self-cleaning and anti-fogging. J. Mater. Chem. 2003, 13, 518–522. [Google Scholar]
- Gupta, R. Superhydrophobic Coating: Stability and Potential Applications. In Coating Materials; Springer: Berlin/Heidelberg, Germany, 2023; pp. 303–315. [Google Scholar] [CrossRef]
- Manoj, A.; Ramachandran, R.; Menezes, P.L. Self-healing and superhydrophobic coatings for corrosion inhibition and protection. Int. J. Adv. Manuf. Technol. 2020, 106, 2119–2131. [Google Scholar] [CrossRef]









| Technique | Principle | Advantage | Example Applications |
|---|---|---|---|
| Chemical Vapor Deposition (CVD) | Vapor-phase precursors react on substrates to form thin hydrophobic films | Precise control of chemistry and uniform coating on complex geometries | Transparent superhydrophobic coatings for optics and electronics [45] |
| Electrospinning | High-voltage technique producing nanofibers from polymer solutions | Produces porous, flexible, high surface area materials | Self-cleaning textiles, filtration membranes [46,47] |
| Laser Ablation | Laser pulses create micro/nanostructures by material removal | Direct patterning, no chemical processing needed | Durable superhydrophobic metals, anti-icing coatings [48,49] |
| Templating | Natural or synthetic structures used as molds to replicate roughness | Biomimetic precision, cost-effective when scaling | Imitation of lotus leaf textures for anti-fouling and waterproofing surfaces [11,50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acha, F.; Egbebunmi, D.; Ahmadu, S.; Ojuolape, A.; Egbosiuba, T. Recent Advances in Bio-Inspired Superhydrophobic Coatings Utilizing Hierarchical Nanostructures for Self-Cleaning and Anti-Icing Surfaces. Physchem 2025, 5, 48. https://doi.org/10.3390/physchem5040048
Acha F, Egbebunmi D, Ahmadu S, Ojuolape A, Egbosiuba T. Recent Advances in Bio-Inspired Superhydrophobic Coatings Utilizing Hierarchical Nanostructures for Self-Cleaning and Anti-Icing Surfaces. Physchem. 2025; 5(4):48. https://doi.org/10.3390/physchem5040048
Chicago/Turabian StyleAcha, Florence, Daniel Egbebunmi, Shamsudeen Ahmadu, Aishat Ojuolape, and Titus Egbosiuba. 2025. "Recent Advances in Bio-Inspired Superhydrophobic Coatings Utilizing Hierarchical Nanostructures for Self-Cleaning and Anti-Icing Surfaces" Physchem 5, no. 4: 48. https://doi.org/10.3390/physchem5040048
APA StyleAcha, F., Egbebunmi, D., Ahmadu, S., Ojuolape, A., & Egbosiuba, T. (2025). Recent Advances in Bio-Inspired Superhydrophobic Coatings Utilizing Hierarchical Nanostructures for Self-Cleaning and Anti-Icing Surfaces. Physchem, 5(4), 48. https://doi.org/10.3390/physchem5040048

