Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,128)

Search Parameters:
Keywords = secure AI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2217 KiB  
Review
A Comprehensive Review of Artificial Intelligence-Based Algorithms for Predicting the Remaining Useful Life of Equipment
by Weihao Li, Jianhua Chen, Sijuan Chen, Peilin Li, Bing Zhang, Ming Wang, Ming Yang, Jipu Wang, Dejian Zhou and Junsen Yun
Sensors 2025, 25(14), 4481; https://doi.org/10.3390/s25144481 - 18 Jul 2025
Abstract
In the contemporary big data era, data-driven prognostic and health management (PHM) methodologies have emerged as indispensable tools for ensuring the secure and reliable operation of complex equipment systems. Central to these methodologies is the accurate prediction of remaining useful life (RUL), which [...] Read more.
In the contemporary big data era, data-driven prognostic and health management (PHM) methodologies have emerged as indispensable tools for ensuring the secure and reliable operation of complex equipment systems. Central to these methodologies is the accurate prediction of remaining useful life (RUL), which serves as a pivotal cornerstone for effective maintenance and operational decision-making. While significant advancements in computer hardware and artificial intelligence (AI) algorithms have catalyzed substantial progress in AI-based RUL prediction, extant research frequently exhibits a narrow focus on specific algorithms, neglecting a comprehensive and comparative analysis of AI techniques across diverse equipment types and operational scenarios. This study endeavors to bridge this gap through the following contributions: (1) A rigorous analysis and systematic categorization of application scenarios for equipment RUL prediction, elucidating their distinct characteristics and requirements. (2) A comprehensive summary and comparative evaluation of several AI algorithms deemed suitable for RUL prediction, delineating their respective strengths and limitations. (3) An in-depth comparative analysis of the applicability of AI algorithms across varying application contexts, informed by a nuanced understanding of different application scenarios and AI algorithm research. (4) An insightful discussion on the current challenges confronting AI-based RUL prediction technology, coupled with a forward-looking examination of its future prospects. By furnishing a meticulous and holistic understanding of the traits of various AI algorithms and their contextual applicability, this study aspires to facilitate the attainment of optimal application outcomes in the realm of equipment RUL prediction. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 1019 KiB  
Article
Blockchain-Based Decentralized Identity Management System with AI and Merkle Trees
by Hoang Viet Anh Le, Quoc Duy Nam Nguyen, Nakano Tadashi and Thi Hong Tran
Computers 2025, 14(7), 289; https://doi.org/10.3390/computers14070289 - 18 Jul 2025
Abstract
The Blockchain-based Decentralized Identity Management System (BDIMS) is an innovative framework designed for digital identity management, utilizing the unique attributes of blockchain technology. The BDIMS categorizes entities into three distinct groups: identity providers, service providers, and end-users. The system’s efficiency in identifying and [...] Read more.
The Blockchain-based Decentralized Identity Management System (BDIMS) is an innovative framework designed for digital identity management, utilizing the unique attributes of blockchain technology. The BDIMS categorizes entities into three distinct groups: identity providers, service providers, and end-users. The system’s efficiency in identifying and extracting information from identification cards is enhanced by the integration of artificial intelligence (AI) algorithms. These algorithms decompose the extracted fields into smaller units, facilitating optical character recognition (OCR) and user authentication processes. By employing Merkle Trees, the BDIMS ensures secure authentication with service providers without the need to disclose any personal information. This advanced system empowers users to maintain control over their private information, ensuring its protection with maximum effectiveness and security. Experimental results confirm that the BDIMS effectively mitigates identity fraud while maintaining the confidentiality and integrity of sensitive data. Full article
21 pages, 2065 KiB  
Article
Enhancing Security in 5G and Future 6G Networks: Machine Learning Approaches for Adaptive Intrusion Detection and Prevention
by Konstantinos Kalodanis, Charalampos Papapavlou and Georgios Feretzakis
Future Internet 2025, 17(7), 312; https://doi.org/10.3390/fi17070312 - 18 Jul 2025
Abstract
The evolution from 4G to 5G—and eventually to the forthcoming 6G networks—has revolutionized wireless communications by enabling high-speed, low-latency services that support a wide range of applications, including the Internet of Things (IoT), smart cities, and critical infrastructures. However, the unique characteristics of [...] Read more.
The evolution from 4G to 5G—and eventually to the forthcoming 6G networks—has revolutionized wireless communications by enabling high-speed, low-latency services that support a wide range of applications, including the Internet of Things (IoT), smart cities, and critical infrastructures. However, the unique characteristics of these networks—extensive connectivity, device heterogeneity, and architectural flexibility—impose significant security challenges. This paper introduces a comprehensive framework for enhancing the security of current and emerging wireless networks by integrating state-of-the-art machine learning (ML) techniques into intrusion detection and prevention systems. It also thoroughly explores the key aspects of wireless network security, including architectural vulnerabilities in both 5G and future 6G networks, novel ML algorithms tailored to address evolving threats, privacy-preserving mechanisms, and regulatory compliance with the EU AI Act. Finally, a Wireless Intrusion Detection Algorithm (WIDA) is proposed, demonstrating promising results in improving wireless network security. Full article
(This article belongs to the Special Issue Advanced 5G and Beyond Networks)
Show Figures

Figure 1

16 pages, 10129 KiB  
Article
PestOOD: An AI-Enabled Solution for Advancing Grain Security via Out-of-Distribution Pest Detection
by Jida Tian, Chuanyang Ma, Jiangtao Li and Huiling Zhou
Electronics 2025, 14(14), 2868; https://doi.org/10.3390/electronics14142868 - 18 Jul 2025
Abstract
Detecting stored-grain pests on the surface of the grain pile plays an important role in integrated pest management (IPM), which is crucial for grain security. Recently, numerous deep learning-based pest detection methods have been proposed. However, a critical limitation of existing methods is [...] Read more.
Detecting stored-grain pests on the surface of the grain pile plays an important role in integrated pest management (IPM), which is crucial for grain security. Recently, numerous deep learning-based pest detection methods have been proposed. However, a critical limitation of existing methods is their inability to detect out-of-distribution (OOD) categories that are unseen during training. When encountering such objects, these methods often misclassify them as in-distribution (ID) categories. To address this challenge, we propose a one-stage framework named PestOOD for out-of-distribution stored-grain pest detection via flow-based feature reconstruction. Specifically, we propose a novel Flow-Based OOD Feature Generation (FOFG) module that generates OOD features for detector training via feature reconstruction. This helps the detector learn to recognize OOD objects more effectively. Additionally, to prevent network overfitting that may lead to an excessive focus on ID feature extraction, we propose a Noisy DropBlock (NDB) module and integrate it into the backbone network. Finally, to ensure effective network convergence, a Stage-Wise Training Strategy (STS) is proposed. We conducted extensive experiments on our previously established multi-class stored-grain pest dataset. The results show that our proposed PestOOD demonstrates superior performance over state-of-the-art methods, providing an effective AI-enabled solution to ensure grain security. Full article
Show Figures

Figure 1

24 pages, 2173 KiB  
Article
A Novel Ensemble of Deep Learning Approach for Cybersecurity Intrusion Detection with Explainable Artificial Intelligence
by Abdullah Alabdulatif
Appl. Sci. 2025, 15(14), 7984; https://doi.org/10.3390/app15147984 - 17 Jul 2025
Abstract
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and [...] Read more.
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and respond to complex and evolving attacks. To address these challenges, Artificial Intelligence and machine learning have emerged as powerful tools for enhancing the accuracy, adaptability, and automation of IDS solutions. This study presents a novel, hybrid ensemble learning-based intrusion detection framework that integrates deep learning and traditional ML algorithms with explainable artificial intelligence for real-time cybersecurity applications. The proposed model combines an Artificial Neural Network and Support Vector Machine as base classifiers and employs a Random Forest as a meta-classifier to fuse predictions, improving detection performance. Recursive Feature Elimination is utilized for optimal feature selection, while SHapley Additive exPlanations (SHAP) provide both global and local interpretability of the model’s decisions. The framework is deployed using a Flask-based web interface in the Amazon Elastic Compute Cloud environment, capturing live network traffic and offering sub-second inference with visual alerts. Experimental evaluations using the NSL-KDD dataset demonstrate that the ensemble model outperforms individual classifiers, achieving a high accuracy of 99.40%, along with excellent precision, recall, and F1-score metrics. This research not only enhances detection capabilities but also bridges the trust gap in AI-powered security systems through transparency. The solution shows strong potential for application in critical domains such as finance, healthcare, industrial IoT, and government networks, where real-time and interpretable threat detection is vital. Full article
Show Figures

Figure 1

40 pages, 2206 KiB  
Review
Toward Generative AI-Based Intrusion Detection Systems for the Internet of Vehicles (IoV)
by Isra Mahmoudi, Djallel Eddine Boubiche, Samir Athmani, Homero Toral-Cruz and Freddy I. Chan-Puc
Future Internet 2025, 17(7), 310; https://doi.org/10.3390/fi17070310 - 17 Jul 2025
Abstract
The increasing complexity and scale of Internet of Vehicles (IoV) networks pose significant security challenges, necessitating the development of advanced intrusion detection systems (IDS). Traditional IDS approaches, such as rule-based and signature-based methods, are often inadequate in detecting novel and sophisticated attacks due [...] Read more.
The increasing complexity and scale of Internet of Vehicles (IoV) networks pose significant security challenges, necessitating the development of advanced intrusion detection systems (IDS). Traditional IDS approaches, such as rule-based and signature-based methods, are often inadequate in detecting novel and sophisticated attacks due to their limited adaptability and dependency on predefined patterns. To overcome these limitations, machine learning (ML) and deep learning (DL)-based IDS have been introduced, offering better generalization and the ability to learn from data. However, these models can still struggle with zero-day attacks, require large volumes of labeled data, and may be vulnerable to adversarial examples. In response to these challenges, Generative AI-based IDS—leveraging models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Transformers—have emerged as promising solutions that offer enhanced adaptability, synthetic data generation for training, and improved detection capabilities for evolving threats. This survey provides an overview of IoV architecture, vulnerabilities, and classical IDS techniques while focusing on the growing role of Generative AI in strengthening IoV security. It discusses the current landscape, highlights the key challenges, and outlines future research directions aimed at building more resilient and intelligent IDS for the IoV ecosystem. Full article
Show Figures

Figure 1

29 pages, 1169 KiB  
Review
Harnessing AI and Quantum Computing for Accelerated Drug Discovery: Regulatory Frameworks for In Silico to In Vivo Validation
by David Melvin Braga and Bharat S. Rawal
J. Pharm. BioTech Ind. 2025, 2(3), 11; https://doi.org/10.3390/jpbi2030011 - 17 Jul 2025
Abstract
Developing a new drug costs approximately one to three billion dollars and takes around ten years; however, this process has only a ten percent success rate. To address this issue, new technologies that combine artificial intelligence (AI) and quantum computing can be leveraged [...] Read more.
Developing a new drug costs approximately one to three billion dollars and takes around ten years; however, this process has only a ten percent success rate. To address this issue, new technologies that combine artificial intelligence (AI) and quantum computing can be leveraged in the pharmaceutical industry. The RSA cryptographic algorithm, developed by Rivest, Shamir, and Adleman in 1977, is one of the most widely used public-key encryption schemes in modern digital security. Its security foundation lies in the computational difficulty of factoring the product of two large prime numbers, a problem considered intractable for classical computers when the key size is sufficiently large (e.g., 2048 bits or more). A future application of using a detailed structural model of a protein is that digital drug design can be used to predict potential drug candidates, thereby reducing or eliminating the need for time-consuming laboratory and animal testing. Knowing the molecular structure of a possible candidate drug can provide insights into how drugs interact with targets at an atomic level, at significantly lower expenditures, and with maximum effectiveness. AI and quantum computers can rapidly screen out potential new drug candidates, determine the toxicity level of a known drug, and eliminate drugs with high toxicity at the beginning of the drug development phase, thereby avoiding expensive laboratory and animal testing. The Food and Drug Administration (FDA) and other regulatory bodies are increasingly supporting the use of in silico to in vitro/in vivo validation methods and assessments of drug safety and efficacy. Full article
Show Figures

Figure 1

43 pages, 2816 KiB  
Article
Generative AI-Driven Smart Contract Optimization for Secure and Scalable Smart City Services
by Sameer Misbah, Muhammad Farrukh Shahid, Shahbaz Siddiqui, Tariq Jamil S. Khanzada, Rehab Bahaaddin Ashari, Zahid Ullah and Mona Jamjoom
Smart Cities 2025, 8(4), 118; https://doi.org/10.3390/smartcities8040118 - 16 Jul 2025
Viewed by 97
Abstract
Smart cities use advanced infrastructure and technology to improve the quality of life for their citizens. Collaborative services in smart cities are making the smart city ecosystem more reliable. These services are required to enhance the operation of interoperable systems, such as smart [...] Read more.
Smart cities use advanced infrastructure and technology to improve the quality of life for their citizens. Collaborative services in smart cities are making the smart city ecosystem more reliable. These services are required to enhance the operation of interoperable systems, such as smart transportation services that share their data with smart safety services to execute emergency response, surveillance, and criminal prevention measures. However, an important issue in this ecosystem is data security, which involves the protection of sensitive data exchange during the interoperability of heterogeneous smart services. Researchers have addressed these issues through blockchain integration and the implementation of smart contracts, where collaborative applications can enhance both the efficiency and security of the smart city ecosystem. Despite these facts, complexity is an issue in smart contracts since complex coding associated with their deployment might influence the performance and scalability of collaborative applications in interconnected systems. These challenges underscore the need to optimize smart contract code to ensure efficient and scalable solutions in the smart city ecosystem. In this article, we propose a new framework that integrates generative AI with blockchain in order to eliminate the limitations of smart contracts. We make use of models such as GPT-2, GPT-3, and GPT4, which natively can write and optimize code in an efficient manner and support multiple programming languages, including Python 3.12.x and Solidity. To validate our proposed framework, we integrate these models with already existing frameworks for collaborative smart services to optimize smart contract code, reducing resource-intensive processes while maintaining security and efficiency. Our findings demonstrate that GPT-4-based optimized smart contracts outperform other optimized and non-optimized approaches. This integration reduces smart contract execution overhead, enhances security, and improves scalability, paving the way for a more robust and efficient smart contract ecosystem in smart city applications. Full article
Show Figures

Figure 1

22 pages, 1837 KiB  
Article
Big Data Reference Architecture for the Energy Sector
by Katharina Wehrmeister, Alexander Pastor, Leonardo Carreras Rodriguez and Antonello Monti
Sustainability 2025, 17(14), 6488; https://doi.org/10.3390/su17146488 - 16 Jul 2025
Viewed by 149
Abstract
Data sharing within and across large, complex systems is one of the most topical challenges in the current IT landscape, and the energy domain is no exception. As the sector becomes more and more digitized, decentralized, and complex, new Big Data and AI [...] Read more.
Data sharing within and across large, complex systems is one of the most topical challenges in the current IT landscape, and the energy domain is no exception. As the sector becomes more and more digitized, decentralized, and complex, new Big Data and AI tools are constantly emerging to empower stakeholders to exploit opportunities and tackle challenges. They enable advancements such as the efficient operation and maintenance of assets, forecasting of demand and production, and improved decision-making. However, in turn, innovative systems are necessary for using and operating such tools, as they often require large amounts of disparate data and intelligent preprocessing. The integration of and communication between numerous up-and-coming technologies is necessary to ensure the maximum exploitation of renewable energy. Building on existing developments and initiatives, this paper introduces a multi-layer Reference Architecture for the reliable, secure, and trusted exchange of data and facilitation of services within the energy domain. Full article
Show Figures

Figure 1

11 pages, 1017 KiB  
Communication
Engineering Oilseed Microbiome Synergy for Saline Alkaline Soil Restoration
by Shijie Ma, Tong Tang, Chang Du, Zheng Yang and Binjie Gan
Plants 2025, 14(14), 2197; https://doi.org/10.3390/plants14142197 - 16 Jul 2025
Viewed by 190
Abstract
Soil salinization poses a critical threat to global agriculture, necessitating innovative strategies for sustainable remediation. This review synthesizes advances in leveraging plant–microbe interactions to remediate saline–alkali soils, focusing on oilseed crops—Brassica napus, Glycine max, Arachis hypogaea, Helianthus annuus, [...] Read more.
Soil salinization poses a critical threat to global agriculture, necessitating innovative strategies for sustainable remediation. This review synthesizes advances in leveraging plant–microbe interactions to remediate saline–alkali soils, focusing on oilseed crops—Brassica napus, Glycine max, Arachis hypogaea, Helianthus annuus, and Sesamum indicum—as keystone species for ecosystem restoration. These crops exhibit unique adaptive strategies, including root architectural plasticity and exudate-mediated recruitment of stress-resilient microbiomes (Proteobacteria, Actinobacteria, and Ascomycota), which collectively stabilize soil structure and enhance nutrient cycling, ion homeostasis, and soil aggregation to mitigate soil salinity and alkalinity. Emerging technologies further amplify these natural synergies: nanomaterials optimize nutrient delivery and microbial colonization, while artificial intelligence (AI) models predict optimal plant growth-promoting rhizobacteria (PGPR) combinations and simulate remediation outcomes. This integration establishes a roadmap for precision microbiome engineering, offering scalable strategies to restore soil health and ensure food security in saline–alkali ecosystems. Full article
Show Figures

Figure 1

29 pages, 2885 KiB  
Article
Embedding Security Awareness in IoT Systems: A Framework for Providing Change Impact Insights
by Masrufa Bayesh and Sharmin Jahan
Appl. Sci. 2025, 15(14), 7871; https://doi.org/10.3390/app15147871 - 14 Jul 2025
Viewed by 110
Abstract
The Internet of Things (IoT) is rapidly advancing toward increased autonomy; however, the inherent dynamism, environmental uncertainty, device heterogeneity, and diverse data modalities pose serious challenges to its reliability and security. This paper proposes a novel framework for embedding security awareness into IoT [...] Read more.
The Internet of Things (IoT) is rapidly advancing toward increased autonomy; however, the inherent dynamism, environmental uncertainty, device heterogeneity, and diverse data modalities pose serious challenges to its reliability and security. This paper proposes a novel framework for embedding security awareness into IoT systems—where security awareness refers to the system’s ability to detect uncertain changes and understand their impact on its security posture. While machine learning and deep learning (ML/DL) models integrated with explainable AI (XAI) methods offer capabilities for threat detection, they often lack contextual interpretation linked to system security. To bridge this gap, our framework maps XAI-generated explanations to a system’s structured security profile, enabling the identification of components affected by detected anomalies or threats. Additionally, we introduce a procedural method to compute an Importance Factor (IF) for each component, reflecting its operational criticality. This framework generates actionable insights by highlighting contextual changes, impacted components, and their respective IFs. We validate the framework using a smart irrigation IoT testbed, demonstrating its capability to enhance security awareness by tracking evolving conditions and providing real-time insights into potential Distributed Denial of Service (DDoS) attacks. Full article
(This article belongs to the Special Issue Trends and Prospects for Wireless Sensor Networks and IoT)
Show Figures

Figure 1

26 pages, 736 KiB  
Review
Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities
by Kayode Ebenezer Ojo, Akshay Kumar Saha and Viranjay Mohan Srivastava
Energies 2025, 18(14), 3704; https://doi.org/10.3390/en18143704 - 14 Jul 2025
Viewed by 172
Abstract
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing [...] Read more.
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing energy efficiency. Accordingly, researchers have embraced the involvement of many control capacities through voltage and frequency stability, optimal power sharing, and system optimization in response to the progressively complex and expanding power systems in recent years. Advanced control techniques have garnered significant interest among these management strategies because of their high accuracy and efficiency, flexibility and adaptability, scalability, and real-time predictive skills to manage non-linear systems. This study provides insight into various facets of microgrids (MGs), literature review, and research gaps, particularly concerning their control layers. Additionally, the study discusses new developments like Supervisory Control and Data Acquisition (SCADA), blockchain-based cybersecurity, smart monitoring systems, and AI-driven control for MGs optimization. The study concludes with recommendations for future research, emphasizing the necessity of stronger control systems, cutting-edge storage systems, and improved cybersecurity to guarantee that MGs continue to be essential to the shift to a decentralized, low-carbon energy future. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

36 pages, 1120 KiB  
Article
Triple-Shield Privacy in Healthcare: Federated Learning, p-ABCs, and Distributed Ledger Authentication
by Sofia Sakka, Nikolaos Pavlidis, Vasiliki Liagkou, Ioannis Panges, Despina Elizabeth Filippidou, Chrysostomos Stylios and Anastasios Manos
J. Cybersecur. Priv. 2025, 5(3), 45; https://doi.org/10.3390/jcp5030045 - 12 Jul 2025
Viewed by 289
Abstract
The growing influence of technology in the healthcare industry has led to the creation of innovative applications that improve convenience, accessibility, and diagnostic accuracy. However, health applications face significant challenges concerning user privacy and data security, as they handle extremely sensitive personal and [...] Read more.
The growing influence of technology in the healthcare industry has led to the creation of innovative applications that improve convenience, accessibility, and diagnostic accuracy. However, health applications face significant challenges concerning user privacy and data security, as they handle extremely sensitive personal and medical information. Privacy-Enhancing Technologies (PETs), such as Privacy-Attribute-based Credentials, Differential Privacy, and Federated Learning, have emerged as crucial tools to tackle these challenges. Despite their potential, PETs are not widely utilized due to technical and implementation obstacles. This research introduces a comprehensive framework for protecting health applications from privacy and security threats, with a specific emphasis on gamified mental health apps designed to manage Attention Deficit Hyperactivity Disorder (ADHD) in children. Acknowledging the heightened sensitivity of mental health data, especially in applications for children, our framework prioritizes user-centered design and strong privacy measures. We suggest an identity management system based on blockchain technology to ensure secure and transparent credential management and incorporate Federated Learning to enable privacy-preserving AI-driven predictions. These advancements ensure compliance with data protection regulations, like GDPR, while meeting the needs of various stakeholders, including children, parents, educators, and healthcare professionals. Full article
(This article belongs to the Special Issue Data Protection and Privacy)
Show Figures

Figure 1

45 pages, 2126 KiB  
Review
An Overview of Autonomous Parking Systems: Strategies, Challenges, and Future Directions
by Javier Santiago Olmos Medina, Jessica Gissella Maradey Lázaro, Anton Rassõlkin and Hernán González Acuña
Sensors 2025, 25(14), 4328; https://doi.org/10.3390/s25144328 - 10 Jul 2025
Cited by 1 | Viewed by 284
Abstract
Autonomous Parking Systems (APSs) are rapidly evolving, promising enhanced convenience, safety, and efficiency. This review critically examines the current strategies in perception, path planning, and vehicle control, alongside system-level aspects like integration, validation, and security. While significant progress has been made, particularly with [...] Read more.
Autonomous Parking Systems (APSs) are rapidly evolving, promising enhanced convenience, safety, and efficiency. This review critically examines the current strategies in perception, path planning, and vehicle control, alongside system-level aspects like integration, validation, and security. While significant progress has been made, particularly with the advent of deep learning and sophisticated sensor fusion, formidable challenges persist. This paper delves into the inherent trade-offs, such as balancing computational cost with real-time performance demands; unresolved foundational issues, including the verification of non-deterministic AI components; and the profound difficulty of ensuring robust real-world deployment across diverse and unpredictable conditions, ranging from cluttered urban canyons to poorly lit, ambiguously marked parking structures. We also explore the limitations of current technologies, the complexities of safety assurance in dynamic environments, the pervasive impact of cost considerations on system capabilities, and the critical, often underestimated, need for genuine user trust. Future research must address not only these technological gaps with innovative solutions but also the intricate socio-technical dimensions to realize the full potential of APS. Full article
(This article belongs to the Special Issue Intelligent Sensors for Smart and Autonomous Vehicles)
Show Figures

Figure 1

28 pages, 521 KiB  
Article
Provably Secure and Privacy-Preserving Authentication Scheme for IoT-Based Smart Farm Monitoring Environment
by Hyeonjung Jang, Jihye Choi, Seunghwan Son, Deokkyu Kwon and Youngho Park
Electronics 2025, 14(14), 2783; https://doi.org/10.3390/electronics14142783 - 10 Jul 2025
Viewed by 162
Abstract
Smart farming is an agricultural technology integrating advanced technology such as cloud computing, Artificial Intelligence (AI), the Internet of Things (IoT), and robots into traditional farming. Smart farming can help farmers by increasing agricultural production and managing resources efficiently. However, malicious attackers can [...] Read more.
Smart farming is an agricultural technology integrating advanced technology such as cloud computing, Artificial Intelligence (AI), the Internet of Things (IoT), and robots into traditional farming. Smart farming can help farmers by increasing agricultural production and managing resources efficiently. However, malicious attackers can attempt security attacks because communication in smart farming is conducted via public channels. Therefore, an authentication scheme is necessary to ensure security in smart farming. In 2024, Rahaman et al. proposed a privacy-centric authentication scheme for smart farm monitoring. However, we demonstrated that their scheme is vulnerable to stolen mobile device, impersonation, and ephemeral secret leakage attacks. This paper suggests a secure and privacy-preserving scheme to resolve the security defects of the scheme proposed by Rahaman et al. We also verified the security of our scheme through “the Burrows-Abadi-Needham (BAN) logic”, “Real-or-Random (RoR) model”, and “Automated Validation of Internet Security Protocols and Application (AVISPA) tool”. Furthermore, a performance analysis of the proposed scheme compared with related studies was conducted. The comparison result proves that our scheme was more efficient and secure than related studies in the smart farming environment. Full article
(This article belongs to the Special Issue Trends in Information Systems and Security)
Show Figures

Figure 1

Back to TopTop