Big Data Reference Architecture for the Energy Sector †
Abstract
1. Introduction
1.1. Motivation
1.2. Methodology
1.3. Document Structure
2. Related Architectures and Initiatives
2.1. Purpose of a Reference Architecture
- Capturing knowledge from existing architectures;
- Guiding the creation and evolution of new architectures;
- Addressing technical architectures, business architectures, and customer context;
- Being presented alongside sufficiently concrete information and guidelines.
2.2. Architectural Models and Implementations in Big Data Systems
2.2.1. Relevance and Distinction of Data Spaces and Big Data
2.2.2. Relation of BD4NRG to Big Data Concepts
2.3. European Landscape
2.3.1. BRIDGE DERA
2.3.2. IDS-RAM
- Core Participants include members directly involved in any data exchange, namely the Data Owner, Data Provider, Data Consumer, and Application Provider.
- Intermediary Participants are responsible for the connection between participants and the discovery and registration of the assets of a DS. They are The Metadata Broker Service Provider, Clearing House, Identity Provider, App Store, and Vocabulary Provider.
- Software and Services, as a category according to its name, includes Software and Service Providers; Software Providers are responsible for the actual implementation of functionalities required by the DS, and Service Providers offer additional services to participants (such as analytics).
- Governance Bodies represent the IDSA itself, as well as a Certification Body and Evaluation Facility, which are responsible for governing the participants and components within a DS, ensuring certification for collective quality assurance and standardization.
2.3.3. Common European Data Space
2.3.4. BD4NRG: First Version
3. Derivation of Requirements
3.1. Basic Use Cases
3.2. Requirements
4. The BD4NRG Reference Architecture
4.1. Description of the Reference Architecture
4.2. Indicators
4.2.1. Alignment with Existing Initiatives
4.2.2. Support for Instantiation
4.2.3. Documentation
4.2.4. Adaptability
4.2.5. Understandability
4.2.6. Accessibility Within Organization
4.2.7. Inclusion of Key Issues of Specific Domains
5. Exemplary Implementations
5.1. BD-4-NET
5.1.1. Data Sources
5.1.2. Data Interoperability
5.1.3. Functional Layer
5.1.4. Business Actors & Ecosystems
5.1.5. Data Space Pillar
5.2. BD-4-DER
5.2.1. Data Sources
5.2.2. Data Interoperability
5.2.3. Functional Layer
5.2.4. Business Actors & Ecosystems
5.2.5. Data Space Pillar
5.3. BD-4-ENEF
5.3.1. Data Sources
5.3.2. Data Interoperability
5.3.3. Functional Layer
5.3.4. Business Actors & Ecosystems
5.3.5. Data Space Pillar
5.4. Applicability and Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Couto, J.; Monti, A.; Kotsalos, K.; Valino, J.; Kukk, K. BRIDGE, Cooperation Between Horizon 2020 and Horizon Europe Projects in the Fields of Smart Grid, Energy Storage, Islands, and Digitalisation–2023 Brochure; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- BD4NRG. BD4NRG Project Site. 2022. Available online: https://www.bd4nrg.eu/pilots-applications (accessed on 26 October 2023).
- Bucarelli, M.A.; Santori, F.; Bragatto, T.B.; Kerin, U.; Bečan, M.; Kozjek, D.K.; Francesco, B.; Mancinelli, E.; Gubina, A.; Medved, T.; et al. BD4NRG Deliverable 7.1; Technical Report; BD4NRG: Rome, Italy, 2021. [Google Scholar]
- Bhattarai, B.P.; Paudyal, S.; Luo, Y.; Mohanpurkar, M.; Cheung, K.; Tonkoski, R.; Hovsapian, R.; Myers, K.S.; Zhang, R.; Zhao, P.; et al. Big data analytics in smart grids: State-of-the-art, challenges, opportunities, and future directions. IET Smart Grid 2019, 2, 141–154. [Google Scholar] [CrossRef]
- Gokhale, G.; Van Gompel, J.; Claessens, B.; Develder, C. Transfer Learning in Transformer-Based Demand Forecasting For Home Energy Management System. In Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 15–16 November 2023; BuildSys ’23. pp. 458–462. [Google Scholar] [CrossRef]
- Hu, J.; Vasilakos, A.V. Energy Big Data Analytics and Security: Challenges and Opportunities. IEEE Trans. Smart Grid 2016, 7, 2423–2436. [Google Scholar] [CrossRef]
- Cloutier, R.; Muller, G.; Verma, D.; Nilchiani, R.; Hole, E.; Bone, M. The concept of reference architectures. Syst. Eng. 2010, 13, 14–27. [Google Scholar] [CrossRef]
- Siriweera, A.; Paik, I. AutoBDA: Model-Driven Reference Architecture for Automated Big Data Analysis Framework. IEEE Trans. Serv. Comput. 2025, 18, 1293–1307. [Google Scholar] [CrossRef]
- Ataei, P.; Litchfield, A.T. Big data reference architectures, a systematic literature review. In Proceedings of the ACIS 2020, Wellington, New Zealand, 1–4 December 2020. [Google Scholar]
- Gottschalk, M.; Uslar, M.; Delfs, C. The smart grid architecture model–SGAM. In The Use Case and Smart Grid Architecture Model Approach: The IEC 62559-2 Use Case Template and the SGAM Applied in Various Domains; Springer Briefs in Energy: Berlin, Germany, 2017; pp. 41–61. [Google Scholar]
- Wilker, S.; Meisel, M.; Piatkowska, E.; Sauter, T.; Jung, O. Smart Grid Reference Architecture, an Approach on a Secure and Model-Driven Implementation. In Proceedings of the 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), Cairns, Australia, 13–15 June 2018; pp. 74–79. [Google Scholar] [CrossRef]
- Wehrmeister, K.; Pastor, A.; Carreras, L.; Dähling, S.; Mammina, M.; Rossi, A.; Profeta, D.; Bothos, E.; Magoutas, B.; Karakolis, V.; et al. BD4NRG Deliverable 2.5; Technical Report; BD4NRG: Rome, Italy, 2021. [Google Scholar]
- Otto, B.; Steinbuß, S.; Teuscher, A.; Lohmann, S. IDSA Reference Architecture Model Version 3.0; Technical Report; International Data Spaces Association: Dortmund, Germany, 2019. [Google Scholar]
- Wehrmeister, K.A.; Bothos, E.; Marinakis, V.; Magoutas, B.; Pastor, A.; Carreras, L.; Monti, A. The BD4NRG Reference Architecture for Big Data Driven Energy Applications. In Proceedings of the 2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA), Corfu, Greece, 18–20 July 2022; IEEE: New York, NY, USA, 2022; pp. 1–8. [Google Scholar]
- Wehrmeister, K.; Pastor, A.; Carreras, L.; Mammina, M.; Herrmann, E.; Medela, A.; Abella, A.; vd Berg, W.; Dimitropoulos, N.; Karakolis, V.; et al. BD4NRG Deliverable 2.6; Technical Report; BD4NRG: Rome, Italy, 2022. [Google Scholar]
- Nakagawa, E.Y.; Oliveira Antonino, P.; Becker, M. Reference Architecture and Product Line Architecture: A Subtle But Critical Difference. In Proceedings of the Software Architecture; Crnkovic, I., Gruhn, V., Book, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 207–211. [Google Scholar]
- Galster, M.; Avgeriou, P. Empirically-Grounded Reference Architectures: A Proposal. In Proceedings of the Joint ACM SIGSOFT Conference–QoSA and ACM SIGSOFT Symposium–ISARCS on Quality of Software Architectures–QoSA and Architecting Critical Systems–ISARCS, New York, NY, USA, 20 June 2011; QoSA-ISARCS ’11. pp. 153–158. [Google Scholar] [CrossRef]
- Alexopoulos, K.; Bakopoulos, E.; Larrinaga Barrenechea, F.; Castellvi, S.; Firouzi, F.; Luca, G.d.; Maló, P.; Marguglio, A.; Meléndez, F.; Meyer, T.; et al. Bridging the Gap Between IDS and Industry 4.0-Lessons Learned and Recommendations for the Future; Technical Report; IDSA: Dortmund, Germany, 2024. [Google Scholar]
- De Mauro, A.; Greco, M.; Grimaldi, M. What is big data? A consensual definition and a review of key research topics. In Proceedings of the AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2015; Volume 1644, pp. 97–104. [Google Scholar]
- Definitions-JRC Data Spaces Knowledge Base-EC Public Wiki. Available online: https://wikis.ec.europa.eu/spaces/jrcdataspaceswiki/pages/57443811/1.3%2BDefinitions?utm_source=chatgpt.com (accessed on 10 March 2025).
- ISO/IEC 20547-3; Information Technology—Big Data Reference Architecture—Part 3: Reference Architecture. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/71277.html (accessed on 20 June 2025).
- Chang, W.; Boyd, D.; Levin, O. NIST Big Data Interoperability Framework: Volume 6, Reference Architecture; Special Publication (NIST SP) 1500-6r2; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Marz, N.; Warren, J. Big Data: Principles and Best Practices of Scalable Real-Time Data Systems; Manning Publications: Shelter Island, NY, USA, 2015. [Google Scholar]
- DIN. DIN SPEC 91345. 2016. Available online: https://www.dinmedia.de/de/technische-regel/din-spec-91345/250940128 (accessed on 11 July 2025).
- Lin, S.W.; Murphy, B.; Clauer, E.; Loewen, U.; Neubert, R.; Bachmann, G.; Pai, M.; Henkel, M. Architecture Alignment and Interoperability; Technical Report; Plattform Industrie 4.0: Dortmund, Germany, 2017. [Google Scholar]
- Dehghani, Z. Data Mesh: Delivering Data-Driven Value at Scale; O’Reilly Media: Sebastopol, CA, USA, 2022. [Google Scholar]
- Foundation, C.N.C. CNCF Cloud Native Landscape, 2025. Available online: https://landscape.cncf.io/ (accessed on 21 March 2025).
- GAIA-X European Association for Data and Cloud. Gaia-X Architecture Document. 2023. Available online: https://docs.gaia-x.eu/technical-committee/architecture-document/23.10/ (accessed on 28 December 2023).
- Lambert, E.; Boultadakis, G.; Kukk, K.; Kotsalos, K.; Bilidis, N. European Energy Data Exchange Reference Architecture. 2021. Available online: https://energy.ec.europa.eu/publications/bridge-reports_en (accessed on 13 July 2025).
- Kukk, K.; Kotsalos, K. European (energy) Data Exchange Reference Architecture 2.0– Data Management Working Group–June 2022; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Otto, B. The evolution of data spaces. In Designing Data Spaces: The Ecosystem Approach to Competitive Advantage; Springer International Publishing: Cham, Switzerland, 2022; pp. 3–15. [Google Scholar]
- Dognini, A.; Monti, A.; Kung, A.; Medela, A.; Joglekar, C.; Schaffer, C.; Stampatori, D.; Jimenez, D.; Maqueda, E.; Coelho, F.; et al. Blueprint of the Common European Energy Data Space; Technical Report; Entec: Dortmund, Germany, 2024. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO); International Electrotechnical Commission (IEC); Institute of Electrical and Electronics Engineers (IEEE). Enterprise, Systems and Software—Reference Architectures, 2025. Committee Draft P42042/CD1, Unapproved Draft. Available online: https://www.iso.org/standard/87310.html (accessed on 13 July 2025).
- Scavo, F.B.; Castro, G.; De Benedetti, M.; Lanuzza, L. BD4NRG Deliverable 8.4; Technical Report; BD4NRG: Rome, Italy, 2023. [Google Scholar]
- Bothos, E.; Magoutas, B.; Abella, A.; Wehrmeister, K.; Dähling, S.; Carreras, L.; Pastor, A.; Buyuk, A.; Gazioglu, I.; vd Berg, W. BD4NRG Deliverable 2.3; Technical Report; BD4NRG: Rome, Italy, 2021. [Google Scholar]
- Zucika, A.; Rodionovs, R.; Sarmas, E. BD4NRG Deliverable 9.4-LSP 12 Pilot Documentation; Technical Report; BD4NRG: Rome, Italy, 2023. [Google Scholar]
- Kruchten, P. The 4 + 1 View Model of architecture. IEEE Softw. 1995, 12, 42–50. [Google Scholar] [CrossRef]
- Kapetanios, A.; Bilidis, N.; Rossi, A.; Ropolo, A.; Marinakis, V.; Karakolis, V.; Dimitropoulos, N.; Medela, A.; Malo, P.; Di’Orio, G.; et al. BD4NRG Deliverable 3.2; Technical Report; BD4NRG: Rome, Italy, 2022. [Google Scholar]
- Bucarelli, M.A.; Ghoreishi, M.; Santori, F.; Natalini, A.; Arnone, D.; Mammina, M.M.; Sarmas, E.; Bellesini, F.; Smolnikar, M.; Craciunescu, V.; et al. BD4NRG Deliverable 7.4; Technical Report; BD4NRG: Rome, Italy, 2023. [Google Scholar]
- ISO/IEC/IEEE. Systems and Software Engineering–Architecture Description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000) 2011, pp. 1–46. Available online: https://ieeexplore.ieee.org/document/6129467 (accessed on 13 July 2025).
- Georgiadou, V.; Hofbauer, E.; Sarmas, E.; Marinakis, V.; Castro, G.; Campos, J.; Heylen, E.; Meier, D.; Krisper, U.; Kordes, A. BD4NRG Deliverable 8.1; Technical Report; BD4NRG: Rome, Italy, 2021. [Google Scholar]
- González, V.; Palencia, S.; Hernández Moral, G.; Lorenzo, M.; Tribino, J.; Sanz, J.; Zucika, A.; Karklins, G.; Rodionovs, R.; Oliver, M.; et al. BD4NRG Deliverable 9.1; Technical Report; BD4NRG: Rome, Italy, 2021. [Google Scholar]
- Sarmas, E.; Strompolas, S.; Marinakis, V.; Santori, F.; Bucarelli, M.A.; Doukas, H. An Incremental Learning Framework for Photovoltaic Production and Load Forecasting in Energy Microgrids. Electronics 2022, 11, 3962. [Google Scholar] [CrossRef]
- Bucarelli, M.A.; Santori, F.; Sarmas, E.; Cipolla, S.; Marinakis, V.; Natalini, A.; Mammina, M. Application of Big Data Analytics in the Electrical Sector: A Real Case Study. In Proceedings of the 2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA), Volos, Greece, 10–12 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Ruiz, B.; Medela, A.; Iuhasz, G.; Teleaga, D.; Sarno, C.; Rossi, A.; Mammina, M.; D’Auria, A.; de Graaf, E.; Pastor, A. BD4NRG Deliverable 5.4; Technical Report; BD4NRG: Rome, Italy, 2023. [Google Scholar]
- Noce, C.; Lanuzza, L.; De Benedetti, M.M. Electrification technologies and grid services testing inside Enel X labs. In Proceedings of the 27th International Conference on Electricity Distribution (CIRED 2023), Rome, Italy, 12–15 June 2023; IET: Rome, Italy, 2023; Volume 2023, pp. 266–270. [Google Scholar]
- Sarmas, E.; Marinakis, V.; Doukas, H. A data-driven multicriteria decision making tool for assessing investments in energy efficiency. Oper. Res. 2022, 22, 5597–5616. [Google Scholar] [CrossRef]
- Sarmas, E.; Spiliotis, E.; Marinakis, V.; Koutselis, T.; Doukas, H. A meta-learning classification model for supporting decisions on energy efficiency investments. Energy Build. 2022, 258, 111836. [Google Scholar] [CrossRef]
- Sarmas, E.; Forouli, A.; Marinakis, V.; Doukas, H. Baseline energy modeling for improved measurement and verification through the use of ensemble artificial intelligence models. Inf. Sci. 2024, 654, 119879. [Google Scholar] [CrossRef]
- Sarmas, E.; Kleideri, M.; Zučika, A.; Marinakis, V.; Doukas, H. Improving energy performance of buildings: Dataset of implemented energy efficiency renovation projects in Latvia. Data Brief 2023, 48, 109225. [Google Scholar] [CrossRef] [PubMed]
- Brito Palma, L. Hybrid Approach for Detection and Diagnosis of Short-Circuit Faults in Power Transmission Lines. Energies 2024, 17, 2169. [Google Scholar] [CrossRef]
- Zupančič, J.; Medved, T.; Gubina, A.F.; Antončič, M.; Bečan, M.; Kerin, U. Cross-functional Integration of Grid Operation with Predictive Asset Management. In Proceedings of the 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Novi Sad, Serbia, 10–12 October 2022; pp. 1–5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wehrmeister, K.; Pastor, A.; Carreras Rodriguez, L.; Monti, A. Big Data Reference Architecture for the Energy Sector. Sustainability 2025, 17, 6488. https://doi.org/10.3390/su17146488
Wehrmeister K, Pastor A, Carreras Rodriguez L, Monti A. Big Data Reference Architecture for the Energy Sector. Sustainability. 2025; 17(14):6488. https://doi.org/10.3390/su17146488
Chicago/Turabian StyleWehrmeister, Katharina, Alexander Pastor, Leonardo Carreras Rodriguez, and Antonello Monti. 2025. "Big Data Reference Architecture for the Energy Sector" Sustainability 17, no. 14: 6488. https://doi.org/10.3390/su17146488
APA StyleWehrmeister, K., Pastor, A., Carreras Rodriguez, L., & Monti, A. (2025). Big Data Reference Architecture for the Energy Sector. Sustainability, 17(14), 6488. https://doi.org/10.3390/su17146488