Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (528)

Search Parameters:
Keywords = seasonal decomposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 12136 KiB  
Article
Integrated Analysis of Satellite and Geological Data to Characterize Ground Deformation in the Area of Bologna (Northern Italy) Using a Cluster Analysis-Based Approach
by Alberto Manuel Garcia Navarro, Celine Eid, Vera Rocca, Christoforos Benetatos, Claudio De Luca, Giovanni Onorato and Riccardo Lanari
Remote Sens. 2025, 17(15), 2645; https://doi.org/10.3390/rs17152645 - 30 Jul 2025
Viewed by 260
Abstract
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human [...] Read more.
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human activities (e.g., ground water production and underground gas storage—UGS). We apply a multidisciplinary approach integrating subsurface geology, ground water production, advanced differential interferometry synthetic aperture radar—DInSAR, gas storage data, and land use information to characterize and analyze the spatial and temporal variations in vertical ground deformations. Seasonal and trend decomposition using loess (STL) and cluster analysis techniques are applied to historical DInSAR vertical time series, targeting three representatives areas close to the city of Bologna. The main contribution of the study is the attempt to correlate the lateral extension of ground water bodies with seasonal ground deformations and water production data; the results are validated via knowledge of the geological characteristics of the uppermost part of the Po Plain area. Distinct seasonal patterns are identified and correlated with ground water production withdrawal and UGS operations. The results highlight the influence of superficial aquifer characteristics—particularly the geometry, lateral extent, and hydraulic properties of sedimentary bodies—on the ground movements behavior. This case study outlines an effective multidisciplinary approach for subsidence characterization providing critical insights for risk assessment and mitigation strategies, relevant for the future development of CO2 and hydrogen storage in depleted reservoirs and saline aquifers. Full article
Show Figures

Figure 1

20 pages, 11785 KiB  
Article
Spatiotemporal Variation in NDVI in the Sunkoshi River Watershed During 2000–2021 and Its Response to Climate Factors and Soil Moisture
by Zhipeng Jian, Qinli Yang, Junming Shao, Guoqing Wang and Vishnu Prasad Pandey
Water 2025, 17(15), 2232; https://doi.org/10.3390/w17152232 - 26 Jul 2025
Viewed by 434
Abstract
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference [...] Read more.
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference Vegetation Index (NDVI), during 2000–2021 and identify the dominant driving factors of vegetation change. Based on the NDVI dataset (MOD13A1), we used the simple linear trend model, seasonal and trend decomposition using loess (STL) method, and Mann–Kendall test to investigate the spatiotemporal variation features of NDVI during 2000–2021 on multiple scales (annual, seasonal, monthly). We used the partial correlation coefficient (PCC) to quantify the response of the NDVI to land surface temperature (LST), precipitation, humidity, and soil moisture. The results indicate that the annual NDVI in 52.6% of the study area (with elevation of 1–3 km) increased significantly, while 0.9% of the study area (due to urbanization) degraded significantly during 2000–2021. Daytime LST dominates NDVI changes on spring, summer, and winter scales, while precipitation, soil moisture, and nighttime LST are the primary impact factors on annual NDVI changes. After removing the influence of soil moisture, the contributions of climate factors to NDVI change are enhanced. Precipitation shows a 3-month lag effect and a 5-month cumulative effect on the NDVI; both daytime LST and soil moisture have a 4-month lag effect on the NDVI; and humidity exhibits a 2-month cumulative effect on the NDVI. Overall, the study area turned green during 2000–2021. The dominant driving factors of NDVI change may vary on different time scales. The findings will be beneficial for climate change impact assessment on the regional eco-environment, and for integrated watershed management. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

30 pages, 8885 KiB  
Article
Seasonally Adaptive VMD-SSA-LSTM: A Hybrid Deep Learning Framework for High-Accuracy District Heating Load Forecasting
by Yu Zhang, Keyong Hu, Lei Lu, Qingqing Yang and Min Fang
Mathematics 2025, 13(15), 2406; https://doi.org/10.3390/math13152406 - 26 Jul 2025
Viewed by 221
Abstract
To improve the accuracy of heating load forecasting and effectively address the energy waste caused by supply–demand imbalances and uneven thermal distribution, this study innovatively proposes a hybrid prediction model incorporating seasonal adjustment strategies. The model establishes a dynamically adaptive forecasting framework through [...] Read more.
To improve the accuracy of heating load forecasting and effectively address the energy waste caused by supply–demand imbalances and uneven thermal distribution, this study innovatively proposes a hybrid prediction model incorporating seasonal adjustment strategies. The model establishes a dynamically adaptive forecasting framework through synergistic integration of the Sparrow Search Algorithm (SSA), Variational Mode Decomposition (VMD), and Long Short-Term Memory (LSTM) network. Specifically, VMD is first employed to decompose the historical heating load data from Arizona State University’s Tempe campus into multiple stationary modal components, aiming to reduce data complexity and suppress noise interference. Subsequently, the SSA is utilized to optimize the hyperparameters of the LSTM network, with targeted adjustments made according to the seasonal characteristics of the heating load, enabling the identification of optimal configurations for each season. Comprehensive experimental evaluations demonstrate that the proposed model achieves the lowest values across three key performance metrics—Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE)—under various seasonal conditions. Notably, the MAPE values are reduced to 1.3824%, 0.9549%, 6.4018%, and 1.3272%, with average error reductions of 9.4873%, 3.8451%, 6.6545%, and 6.5712% compared to alternative models. These results strongly confirm the superior predictive accuracy and fitting capability of the proposed model, highlighting its potential to support energy allocation optimization in district heating systems. Full article
Show Figures

Figure 1

11 pages, 1161 KiB  
Proceeding Paper
Spatio-Temporal PM2.5 Forecasting Using Machine Learning and Low-Cost Sensors: An Urban Perspective
by Mateusz Zareba, Szymon Cogiel and Tomasz Danek
Eng. Proc. 2025, 101(1), 6; https://doi.org/10.3390/engproc2025101006 - 25 Jul 2025
Viewed by 209
Abstract
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and [...] Read more.
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and generating nearly 20,000 observations per month. The network captured both spatial and temporal variability. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test confirmed trend-based non-stationarity, which was addressed through differencing, revealing distinct daily and 12 h cycles linked to traffic and temperature variations. Additive seasonal decomposition exhibited time-inconsistent residuals, leading to the adoption of multiplicative decomposition, which better captured pollution outliers associated with agricultural burning. Machine learning models—Ridge Regression, XGBoost, and LSTM (Long Short-Term Memory) neural networks—were evaluated under high spatial and temporal variability (winter) and low variability (summer) conditions. Ridge Regression showed the best performance, achieving the highest R2 (0.97 in winter, 0.93 in summer) and the lowest mean squared errors. XGBoost showed strong predictive capabilities but tended to overestimate moderate pollution events, while LSTM systematically underestimated PM2.5 levels in December. The residual analysis confirmed that Ridge Regression provided the most stable predictions, capturing extreme pollution episodes effectively, whereas XGBoost exhibited larger outliers. The study proved the potential of low-cost sensor networks and machine learning in urban air quality forecasting focused on rare smog episodes (RSEs). Full article
Show Figures

Figure 1

33 pages, 3902 KiB  
Article
A Predictive Method for Temperature Based on Ensemble EMD with Linear Regression
by Yujun Yang, Yimei Yang and Huijuan Liao
Algorithms 2025, 18(8), 458; https://doi.org/10.3390/a18080458 - 23 Jul 2025
Viewed by 166
Abstract
Temperature prediction plays a crucial role across various sectors, including agriculture and climate research. Understanding weather patterns, seasonal shifts, and climate dynamics heavily relies on accurate temperature forecasts. This paper presents an innovative hybrid method, EEMD-LR, that combines ensemble empirical mode decomposition (EEMD) [...] Read more.
Temperature prediction plays a crucial role across various sectors, including agriculture and climate research. Understanding weather patterns, seasonal shifts, and climate dynamics heavily relies on accurate temperature forecasts. This paper presents an innovative hybrid method, EEMD-LR, that combines ensemble empirical mode decomposition (EEMD) with linear regression (LR) for temperature prediction. EEMD is used to decompose temperature signals into stable sub-signals, enhancing their predictability. LR is then applied to forecast each sub-signal, and the resulting predictions are integrated to obtain the final temperature forecast. The proposed EEMD-LR model achieved RMSE, MAE, and R2 values of 0.000027, 0.000021, and 1.000000, respectively, on the sine simulation time-series data used in this study. For actual temperature time-series data, the model achieved RMSE, MAE, and R2 values of 0.713150, 0.512700, and 0.994749, respectively. The experimental results on these two datasets indicate that the EEMD-LR model demonstrates superior predictive performance compared to alternative methods. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

31 pages, 28883 KiB  
Article
Exploring Precipitable Water Vapor (PWV) Variability and Subregional Declines in Eastern China
by Taixin Zhang, Jiayu Xiong, Shunqiang Hu, Wenjie Zhao, Min Huang, Li Zhang and Yu Xia
Sustainability 2025, 17(15), 6699; https://doi.org/10.3390/su17156699 - 23 Jul 2025
Viewed by 313
Abstract
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite [...] Read more.
In recent years, China has experienced growing impacts from extreme weather events, emphasizing the importance of understanding regional atmospheric moisture dynamics, particularly Precipitable Water Vapor (PWV), to support sustainable environmental and urban planning. This study utilizes ten years (2013–2022) of Global Navigation Satellite System (GNSS) observations in typical cities in eastern China and proposes a comprehensive multiscale frequency-domain analysis framework that integrates the Fourier transform, Bayesian spectral estimation, and wavelet decomposition to extract the dominant PWV periodicities. Time-series analysis reveals an overall increasing trend in PWV across most regions, with notably declining trends in Beijing, Wuhan, and southern Taiwan, primarily attributed to groundwater depletion, rapid urban expansion, and ENSO-related anomalies, respectively. Frequency-domain results indicate distinct latitudinal and coastal–inland differences in the PWV periodicities. Inland stations (Beijing, Changchun, and Wuhan) display annual signals alongside weaker semi-annual components, while coastal stations (Shanghai, Kinmen County, Hong Kong, and Taiwan) mainly exhibit annual cycles. High-latitude stations show stronger seasonal and monthly fluctuations, mid-latitude stations present moderate-scale changes, and low-latitude regions display more diverse medium- and short-term fluctuations. In the short-term frequency domain, GNSS stations in most regions demonstrate significant PWV periodic variations over 0.5 days, 1 day, or both timescales, except for Changchun, where weak diurnal patterns are attributed to local topography and reduced solar radiation. Furthermore, ERA5-derived vertical temperature profiles are incorporated to reveal the thermodynamic mechanisms driving these variations, underscoring region-specific controls on surface evaporation and atmospheric moisture capacity. These findings offer novel insights into how human-induced environmental changes modulate the behavior of atmospheric water vapor. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

20 pages, 5571 KiB  
Proceeding Paper
A Forecasting Method Based on a Dynamical Approach and Time Series Data for Vehicle Service Parts Demand
by Vinh Long Phan, Makoto Taniguchi and Hidenori Yabushita
Eng. Proc. 2025, 101(1), 3; https://doi.org/10.3390/engproc2025101003 - 21 Jul 2025
Viewed by 178
Abstract
In the automotive industry, the supply of service parts—such as bumpers, batteries, and aero parts—is required even after the end of vehicle production, as customers need them for maintenance and repairs. To earn customer confidence, manufacturers must ensure timely availability of these parts [...] Read more.
In the automotive industry, the supply of service parts—such as bumpers, batteries, and aero parts—is required even after the end of vehicle production, as customers need them for maintenance and repairs. To earn customer confidence, manufacturers must ensure timely availability of these parts while managing inventory efficiently. An excess of inventory can increase warehousing costs, while stock shortages can lead to supply delays. Accurate demand forecasting is essential to balance these factors, considering the changing demand characteristics over time, such as long-term trends, seasonal fluctuations, and irregular variations. This paper introduces a novel method for time series forecasting that employs Ensemble Empirical Mode Decomposition (EEMD) and Dynamic Mode Decomposition (DMD) to analyze service part demand. EEMD decomposes historical order data into multiple modes, and DMD is used to predict transitions within these modes. The proposed method demonstrated an approximately 30% reduction in forecasting error compared to comparative methods, showcasing its effectiveness in accurately predicting service parts demand across various patterns. Full article
Show Figures

Figure 1

16 pages, 855 KiB  
Article
Evaluating Time Series Models for Monthly Rainfall Forecasting in Arid Regions: Insights from Tamanghasset (1953–2021), Southern Algeria
by Ballah Abderrahmane, Morad Chahid, Mourad Aqnouy, Adam M. Milewski and Benaabidate Lahcen
Geosciences 2025, 15(7), 273; https://doi.org/10.3390/geosciences15070273 - 20 Jul 2025
Viewed by 330
Abstract
Accurate precipitation forecasting remains a critical challenge due to the nonlinear and multifactorial nature of rainfall dynamics. This is particularly important in arid regions like Tamanghasset, where precipitation is the primary driver of agricultural viability and water resource management. This study evaluates the [...] Read more.
Accurate precipitation forecasting remains a critical challenge due to the nonlinear and multifactorial nature of rainfall dynamics. This is particularly important in arid regions like Tamanghasset, where precipitation is the primary driver of agricultural viability and water resource management. This study evaluates the performance of several time series models for monthly rainfall prediction, including the autoregressive integrated moving average (ARIMA), Exponential Smoothing State Space Model (ETS), Seasonal and Trend decomposition using Loess with ETS (STL-ETS), Trigonometric Box–Cox transform with ARMA errors, Trend and Seasonal components (TBATS), and neural network autoregressive (NNAR) models. Historical monthly precipitation data from 1953 to 2020 were used to train and test the models, with lagged observations serving as input features. Among the approaches considered, the NNAR model exhibited superior performance, as indicated by uncorrelated residuals and enhanced forecast accuracy. This suggests that NNAR effectively captures the nonlinear temporal patterns inherent in the precipitation series. Based on the best-performing model, rainfall was projected for the year 2021, providing actionable insights for regional hydrological and agricultural planning. The results highlight the relevance of neural network-based time series models for climate forecasting in data-scarce, climate-sensitive regions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

16 pages, 3372 KiB  
Article
Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing
by Qing He, Hehe Liu, Lu Wei, Jing Ding, Heling Sun and Zhen Zhang
Appl. Sci. 2025, 15(14), 7991; https://doi.org/10.3390/app15147991 - 17 Jul 2025
Viewed by 297
Abstract
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution [...] Read more.
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution of land subsidence from 2018 to 2024. A total of 207 Sentinel-1 SAR images were first processed using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to generate high-resolution surface deformation time series. Subsequently, the seasonal-trend decomposition using the LOESS (STL) model was applied to extract annual cyclic deformation components from the InSAR-derived time series. To quantitatively assess the delayed response of land subsidence to groundwater level changes and subsurface strain evolution, time-lagged cross-correlation (TLCC) analysis was performed between surface deformation and both groundwater level data and distributed fiber-optic strain measurements within the 5–50 m depth interval. The strain data was collected using a borehole-based automated distributed fiber-optic sensing system. The results indicate that land subsidence is primarily concentrated in the urban core, with annual cyclic amplitudes ranging from 10 to 18 mm and peak values reaching 22 mm. The timing of surface rebound shows spatial variability, typically occurring in mid-February in residential areas and mid-May in agricultural zones. The analysis reveals that surface deformation lags behind groundwater fluctuations by approximately 2 to 3 months, depending on local hydrogeological conditions, while subsurface strain changes generally lead surface subsidence by about 3 months. These findings demonstrate the strong predictive potential of distributed fiber-optic sensing in capturing precursory deformation signals and underscore the importance of integrating InSAR, hydrological, and geotechnical data for advancing the understanding of subsidence mechanisms and improving monitoring and mitigation efforts. Full article
Show Figures

Figure 1

23 pages, 1983 KiB  
Article
CoTD-VAE: Interpretable Disentanglement of Static, Trend, and Event Components in Complex Time Series for Medical Applications
by Li Huang and Qingfeng Chen
Appl. Sci. 2025, 15(14), 7975; https://doi.org/10.3390/app15147975 - 17 Jul 2025
Viewed by 247
Abstract
Interpreting complex clinical time series is vital for patient safety and care, as it is both essential for supporting accurate clinical assessment and fundamental to building clinician trust and promoting effective clinical action. In complex time series analysis, decomposing a signal into meaningful [...] Read more.
Interpreting complex clinical time series is vital for patient safety and care, as it is both essential for supporting accurate clinical assessment and fundamental to building clinician trust and promoting effective clinical action. In complex time series analysis, decomposing a signal into meaningful underlying components is often a crucial means for achieving interpretability. This process is known as time series disentanglement. While deep learning models excel in predictive performance in this domain, their inherent complexity poses a major challenge to interpretability. Furthermore, existing time series disentanglement methods, including traditional trend or seasonality decomposition techniques, struggle to adequately separate clinically crucial specific components: static patient characteristics, condition trend, and acute events. Thus, a key technical challenge remains: developing an interpretable method capable of effectively disentangling these specific components in complex clinical time series. To address this challenge, we propose CoTD-VAE, a novel variational autoencoder framework for interpretable component disentanglement. CoTD-VAE incorporates temporal constraints tailored to the properties of static, trend, and event components, such as leveraging a Trend Smoothness Loss to capture gradual changes and an Event Sparsity Loss to identify potential acute events. These designs help the model effectively decompose time series into dedicated latent representations. We evaluate CoTD-VAE on critical care (MIMIC-IV) and human activity recognition (UCI HAR) datasets. Results demonstrate successful component disentanglement and promising performance enhancement in downstream tasks. Ablation studies further confirm the crucial role of our proposed temporal constraints. CoTD-VAE offers a promising interpretable framework for analyzing complex time series in critical applications like healthcare. Full article
Show Figures

Figure 1

25 pages, 7697 KiB  
Article
Wind-Speed Prediction in Renewable-Energy Generation Using an IHOA
by Guoxiong Lin, Yaodan Chi, Xinyu Ding, Yao Zhang, Junxi Wang, Chao Wang, Ying Song and Yang Zhao
Sustainability 2025, 17(14), 6279; https://doi.org/10.3390/su17146279 - 9 Jul 2025
Viewed by 276
Abstract
Accurate wind-speed prediction plays an important role in improving the operation stability of wind-power generation systems. However, the inherent complexity of meteorological dynamics poses a major challenge to forecasting accuracy. In order to overcome these limitations, we propose a new hybrid framework, which [...] Read more.
Accurate wind-speed prediction plays an important role in improving the operation stability of wind-power generation systems. However, the inherent complexity of meteorological dynamics poses a major challenge to forecasting accuracy. In order to overcome these limitations, we propose a new hybrid framework, which combines variational mode decomposition (VMD) for signal processing, enhanced quantum particle swarm optimization (e-QPSO), an improved walking optimization algorithm (IHOA) for feature selection and the long short-term memory (LSTM) network, and which finally establishes a reliable prediction architecture. The purpose of this paper is to optimize VMD by using the e-QPSO algorithm to improve the problems of excessive filtering or error filtering caused by parameter problems in VMD, as the noise signal cannot be filtered completely, and the number of sources cannot be accurately estimated. The IHOA algorithm is used to find the optimal hyperparameters of LSTM to improve the learning efficiency of neurons and improve the fitting ability of the model. The proposed e-QPSO-VMD-IHOA-LSTM model is compared with six established benchmark models to verify its predictive ability. The effectiveness of the model is verified by experiments using the hourly wind-speed data measured in four seasons in Changchun in 2023. The MAPE values of the four datasets were 0.0460, 0.0212, 0.0263, and 0.0371, respectively. The results show that e-QPSO-VMD effectively processes the data and avoids the problem of error filtering, while IHOA effectively optimizes the LSTM parameters and improves prediction performance. Full article
Show Figures

Figure 1

21 pages, 1414 KiB  
Article
An xLSTM–XGBoost Ensemble Model for Forecasting Non-Stationary and Highly Volatile Gasoline Price
by Fujiang Yuan, Xia Huang, Hong Jiang, Yang Jiang, Zihao Zuo, Lusheng Wang, Yuxin Wang, Shaojie Gu and Yanhong Peng
Computers 2025, 14(7), 256; https://doi.org/10.3390/computers14070256 - 29 Jun 2025
Viewed by 638
Abstract
High-frequency fluctuations in the international crude oil market have led to multilevel characteristics in China’s domestic refined oil pricing mechanism. To address the poor fitting performance of single deep learning models on oil price data, which hampers accurate gasoline price prediction, this paper [...] Read more.
High-frequency fluctuations in the international crude oil market have led to multilevel characteristics in China’s domestic refined oil pricing mechanism. To address the poor fitting performance of single deep learning models on oil price data, which hampers accurate gasoline price prediction, this paper proposes a gasoline price prediction method based on a combined xLSTM–XGBoost model. Using gasoline price data from June 2000 to November 2024 in Sichuan Province as a sample, the data are decomposed via STL decomposition to extract trend, residual, and seasonal components. The xLSTM model is then employed to predict the trend and seasonal components, while XGBoost predicts the residual component. Finally, the predictions from both models are combined to produce the final forecast. The experimental results demonstrate that the proposed xLSTM–XGBoost model reduces the MAE by 14.8% compared to the second-best sLSTM–XGBoost model and by 83% compared to the traditional LSTM model, significantly enhancing prediction accuracy. Full article
(This article belongs to the Special Issue Machine Learning and Statistical Learning with Applications 2025)
Show Figures

Figure 1

21 pages, 3562 KiB  
Article
Quantitative Assessment Method for Industrial Demand Response Potential Integrating STL Decomposition and Load Step Characteristics
by Zhuo-Wei Yang, Kai Chang, Ming-Di Shao, Hao Lei and Zhi-Wei Liu
Energies 2025, 18(13), 3398; https://doi.org/10.3390/en18133398 - 27 Jun 2025
Viewed by 255
Abstract
With the increasing penetration of renewable energy, power grids face significant challenges in balancing fluctuating renewable generation with flexible demand-side resources. Industrial loads, characterized by substantial consumption and high adjustability, provide critical flexibility to address these challenges; however, existing methods for quantifying their [...] Read more.
With the increasing penetration of renewable energy, power grids face significant challenges in balancing fluctuating renewable generation with flexible demand-side resources. Industrial loads, characterized by substantial consumption and high adjustability, provide critical flexibility to address these challenges; however, existing methods for quantifying their response potential lack sufficient accuracy and comprehensive uncertainty characterization. This study proposes an integrated quantitative assessment framework combining Seasonal-Trend decomposition using Loess (STL), load-step feature extraction, and Gaussian Process Regression (GPR). Historical industrial load data are first decomposed using STL to isolate trend and periodic patterns, while mathematically defined load-step indicators quantify intrinsic adjustability. Concurrently, a multi-dimensional willingness index reflecting past response behaviors and participation records comprehensively characterizes user response capabilities and inclinations. A GPR-based nonlinear mapping between extracted load features and response potential enables precise quantification and robust uncertainty estimation. Case studies verify the effectiveness of the proposed approach, achieving an assessment accuracy of 91.4% and improved confidence interval characterization compared to traditional methods. These findings demonstrate the framework’s significant capability in supporting precise flexibility utilization, thereby enhancing operational stability in power grids with high renewable energy penetration. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

29 pages, 4817 KiB  
Article
Comprehensive Analysis of the Driving Forces Behind NDVI Variability in China Under Climate Change Conditions and Future Scenario Projections
by Ao Li, Shuai Yin, Nan Li and Chong Shi
Atmosphere 2025, 16(6), 738; https://doi.org/10.3390/atmos16060738 - 17 Jun 2025
Viewed by 476
Abstract
Climate change has a significant impact on vegetation development. While existing studies provide some insights, long-term trend analysis and multifactor driver assessments for China are still lacking. At the same time, research on the future vegetation development under different climate change scenarios needs [...] Read more.
Climate change has a significant impact on vegetation development. While existing studies provide some insights, long-term trend analysis and multifactor driver assessments for China are still lacking. At the same time, research on the future vegetation development under different climate change scenarios needs further strengthening. In response to these issues, this study analyzed China’s normalized difference vegetation index (NDVI) data from 2001 to 2023, exploring vegetation cover trends, driving factors, and predicting the impact of future climate change. Firstly, this study decomposed the time series data into seasonal, trend, and residual components using the Seasonal–Trend decomposition using Loess (STL) decomposition method, quantifying vegetation changes across different climate zones. Partial least squares (PLS) regression analysis was then used to examine the relationship between NDVI and driving factors, and the contribution of these factors to NDVI variation was determined through the variable importance in projection (VIP) score. The results show that NDVI has significantly increased over the past two decades, especially since 2010. Further analysis revealed that vegetation growth is primarily influenced by soil moisture, shortwave radiation, and total precipitation (VIP scores > 0.8). Utilizing machine learning with Coupled Model Intercomparison Project Phase 6 (CMIP6) multimodel data, this study predicts NDVI trends from 2023 to 2100 under four emission scenarios (SSP126, SSP245, SSP370, SSP585), quantifying future meteorological factors such as temperature, precipitation, and radiation to NDVI. Findings indicate that under high-emission scenarios, the vegetation greenness in some regions may experience improved vegetation conditions despite global warming challenges. Future land management strategies must consider climate change impacts on ecosystems to ensure sustainability and enhance ecosystem services. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

17 pages, 1232 KiB  
Article
Wohlfahrtia nuba (Wiedemann, 1830) (Diptera: Sarcophagidae) Development and Survival Under Fluctuating Temperatures
by Abeer S. Yamany, Manal F. Elkhadragy and Rewaida Abdel-Gaber
Insects 2025, 16(6), 628; https://doi.org/10.3390/insects16060628 - 13 Jun 2025
Viewed by 578
Abstract
The flesh fly, Wohlfahrtia nuba (Wiedemann) (Diptera: Sarcophagidae), is one of the first necrophagous insects to arrive on a cadaver and is vital for understanding decomposition. Environmental factors, especially temperature, influence insect development, which is crucial for estimating postmortem interval (PMI) in forensic [...] Read more.
The flesh fly, Wohlfahrtia nuba (Wiedemann) (Diptera: Sarcophagidae), is one of the first necrophagous insects to arrive on a cadaver and is vital for understanding decomposition. Environmental factors, especially temperature, influence insect development, which is crucial for estimating postmortem interval (PMI) in forensic entomology. This study explored how seasonal temperature variations affect the survival and development of W. nuba’s immature stages. The W. nuba colony was reared in the laboratory for four seasons from 3 October 2023 to 30 September 2024. The duration of the larval and pupal phases, the percentage of survival and mortality of the larvae and pupae, the larval growth rate, the percentage of emergence, fecundity, the sex ratio, and the pre-larviposition period were among the many life cycle characteristics that were documented during the study. Research indicates that seasonal changes affect development, shortening the growth period as temperatures rise. Flies raised at an average temperature of 38.3 °C grew faster but experienced higher larval mortality and lower survival rates. The average duration of larval and pupal stages was reduced, with an optimal development temperature of 27.9 °C showing higher survival rates, maximum body weight, and fecundity. The largest mortality rate occurred during winter at an average temperature of 18.5 °C, with males and females showing significant pupal elongation. The findings could help forensic entomologists working on legal investigations to ascertain PMI. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

Back to TopTop