Wohlfahrtia nuba (Wiedemann, 1830) (Diptera: Sarcophagidae) Development and Survival Under Fluctuating Temperatures
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Location and Experimental Design
2.2. Laboratory Rearing of Wohlfahrtia nuba Colony
2.3. Developmental Duration
2.3.1. Larval Stage
2.3.2. Pupal Stage
2.3.3. Adult Stage
2.4. Measurements
2.5. Statistical Analysis
3. Results
3.1. The Effects of Temperature Fluctuations Throughout the Four Seasons on the Larval Growth Rate and Duration of Immature Stages of W. nuba
3.1.1. Larval and Pupal Durations and Total Developmental Duration
3.1.2. Larval Growth Rate (LGR)
3.2. Effects of Temperature Fluctuations Throughout the Four Seasons on the Survival and Mortality of W. nuba Larvae and Pupae
3.3. Effects of Temperature Fluctuations Throughout the Four Seasons on the Weight and Length of W. nuba Larvae During Each of Their Three Feeding, Prepupae, and Pupae Stages
3.4. The Effects of Temperature Fluctuations Throughout the Four Seasons on the Percentage of Adult Emergence of Females and Males, Sex Ratio, Pre-Larviposition Period, and Fecundity of W. nuba
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PMI | Post-mortem interval |
mPMI | Minimum post-mortem interval |
LGR | Larval growth rate |
P | Pupa |
References
- Samerjai, C.; Sukontason, K.L.; Sontigun, N.; Sukontason, K.; Klong-Klaew, T.; Chareonviriyaphap, T.; Wannasan, A. Mitochondrial DNA-based identification of forensically important flesh flies (Diptera: Sarcophagidae) in Thailand. Insects 2019, 11, 2. [Google Scholar] [CrossRef]
- Goff, M.L. A fly for the Prosecution: How Insect Evidence Helps Solve Crimes; Harvard University Press: Cambridge, MA, USA, 2000; pp. 1–225. [Google Scholar]
- Watson, E.J.G. Faunal Succession of Necrophilous Insects Associated with High-Profile Wildlife Carcasses in Louisiana. Ph.D. Thesis, Louisiana State University and Agricultural & Mechanical College, Washington University, Bellingham, WA, USA, 2004. [Google Scholar]
- Stamper, T.; Dahlem, G.A.; Cookman, C.; Debry, R.W. Phylogenetic relationships of flesh flies in the subfamily Sarcophaginae based on three mtDNA fragments (Diptera: Sarcophagidae). Syst. Entomol. 2013, 38, 35–44. [Google Scholar] [CrossRef]
- Spradbery, J.P. A Manual for the Diagnosis of Screw-Worm Fly; Department of Agriculture, Fisheries and Forestry, Australia: Canberra, Australia, 2002; pp. 60–62. [Google Scholar]
- Al-Mesbah, H.; Moffatt, C.; El-Azazy, O.M.; Majeed, Q.A. The decomposition of rabbit carcasses and associated necrophagous Diptera in Kuwait. Forensic Sci. Int. 2012, 217, 27–31. [Google Scholar] [CrossRef]
- Al-Khalifa, M.S.; Mashaly, A.M.; Al-Qahtni, A.H. Insect species colonized indoor and outdoor human corpses in Riyadh, Saudi Arabia. J. King Saud. Univ. Sci. 2020, 32, 1812–1817. [Google Scholar] [CrossRef]
- Goodbrod, J.R.; Goff, M.L. Effects of larval population density on rates of development and interactions between two species of Chrysomya (Diptera: Calliphoridae) in laboratory culture. J. Med. Entomol. 1990, 27, 338–343. [Google Scholar] [CrossRef]
- Moura, M.O.; de Carvalho, C.J.; Monteiro-Filho, E.L. A preliminary analysis of insects of medico-legal importance in Curitiba, State of Paraná. Mem. Inst. Oswaldo Cruz. 1997, 92, 269–274. [Google Scholar] [CrossRef]
- Povolny, D.; Verves, J. The Flesh-Flies of Central Europe (Insecta, Diptera, Sarcophagidae); Pfeil Verlag Publisher: Bergkirchen, Germany, 1997; Volume 24, pp. 1–260. [Google Scholar]
- Anderson, G.S. Minimum and maximum development rates of some forensically important Calliphoridae (Diptera). J. Forensic Sci. 2000, 45, 824–832. [Google Scholar] [CrossRef]
- Byrd, J.H.; Castner, J.L. Forensic Entomology: The Utility of Arthropods in Legal Investigations, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 43–79. [Google Scholar]
- Dadour, I.R.; Cook, D.F.; Fissioli, J.N.; Bailey, W.J. Forensic entomology: Application, education and research in Western Australia. Forensic Sci. Int. 2001, 120, 48–52. [Google Scholar] [CrossRef]
- de Carvalho, L.M.L.; Linhares, A.X. Seasonality of insect succession and pig carcass decomposition in a natural forest area in southeastern Brazil. J. Forensic Sci. 2001, 46, 604–608. [Google Scholar] [CrossRef]
- Souza, A.S.B.D.; Kirst, F.D.; Krüger, R.F. Insects of forensic importance from Rio Grande do Sul state in southern Brazil. Rev. Bras. Entomol. 2008, 52, 641–646. [Google Scholar] [CrossRef]
- Prado, C.; García, M.D.; Arnaldos, M.I.; González-Mora, D. Sarcophagidae (Diptera) atraídos a cadáveres de cochinillo, con nuevas citas para la fauna portuguesa. Graellsia 2010, 66, 285–294. [Google Scholar] [CrossRef]
- Cherix, D.; Wyss, C.; Pape, T. Occurrences of flesh flies (Diptera: Sarcophagidae) on human cadavers in Switzerland, and their importance as forensic indicators. Forensic Sci. Int. 2012, 220, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.D.; MacInnis, A.E.; Dsouza, M.A.; Ul Abdin, Z.; Al Mughawi, S.; Al Khloofi, M.; Sajwani, M.; Al Maidoor, M.; Saeed, A.; Ahli, H.; et al. Forensic entomology when the evidence is “no insect.” Best carrion fly species for predicting maximum postmortem interval in the United Arab Emirates. Forensic Sci. Int. 2021, 328, 110999. [Google Scholar] [CrossRef]
- Mann, R.W.; Bass, W.M.; Meadows, L. Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J. Forensic Sci. 1990, 35, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Turchetto, M.; Vanin, S. Forensic entomology and climatic change. Forensic Sci. Int. 2004, 146, S207–S209. [Google Scholar] [CrossRef]
- Gullan, P.J.; Cranston, P.S. The Insects: An Outline of Entomology, 4th ed.; Blackwell: New York, NY, USA, 2010; 584p. [Google Scholar]
- Sert, O.; Özdemir, S.; Şabanoğlu, B. Effect of constant and fluctuating temperature on the intrapuparial development of Sarcophaga argyrostoma (Robineau-Desvoidy, 1830; Diptera: Sarcophagidae). J. Exp. Zool. B Mol. Dev. Evol. 2021, 336, 511–521. [Google Scholar] [CrossRef]
- Lord, W.D.; Goff, M.L.; Adkins, T.R.; Haskell, N.H. The Black Soldier Fly (Diptera: Stratiomyidae) As a Potential Measure of Human Postmortem Interval: Observations and Case Histories. J. Forensic Sci. 1994, 39, 215–222. [Google Scholar] [CrossRef]
- Anderson, G.S. The use of insects to determine time of decapitation: A case study from British Columbia. J. Forensic Sci. 1997, 42, 947–950. [Google Scholar] [CrossRef]
- Ratte, H.T. Temperature and insect development. Environmental Physiology and Biochemistry of Insects; Springer: Berlin/Heidelberg, Germany, 1984; pp. 33–66. [Google Scholar]
- Davies, L.; Ratcliffe, G.G. Development rates of some pre-adult stages in blowflies with reference to low temperatures. Med. Vet. Entomol. 1994, 8, 245–254. [Google Scholar] [CrossRef]
- Greenberg, B.; Kunich, J.C. Entomology and the Law: Flies as Forensic Indicators; Cambridge University Press: Cambridge, UK, 2002; 315p. [Google Scholar]
- Clarkson, C.A.; Hobischak, N.R.; Anderson, G.S. A comparison of the development rate of Protophormia terraenovae (Robineau-Desvoidy) raised under constant and fluctuating temperature regimes. Can. Soc. Forensic Sci. 2004, 37, 95–101. [Google Scholar] [CrossRef]
- Niederegger, S.; Pastuschek, J.; Mall, G. Preliminary studies of the influence of fluctuating temperatures on the development of various forensically relevant flies. Forensic Sci. Int. 2010, 199, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Amendt, J.; Richards, C.S.; Campobasso, C.P.; Zehner, R.; Hall, M.J. Forensic entomology: Applications and limitations. Forensic Sci. Med. Pathol. 2011, 7, 379–392. [Google Scholar] [CrossRef]
- Warren, J.A.; Anderson, G.S. Effect of fluctuating temperatures on the development of a forensically important blow fly, Protophormia terraenovae (Diptera: Calliphoridae). Environ. Entomol. 2013, 42, 167–172. [Google Scholar] [CrossRef]
- Siddiki, S.; Zambare, S.P. Effect of seasonal temperature variation on the duration of life cycle stages of the fly of forensic importance, parasarcophga dux (thomson) (Diptera: Sarcophagidae). Int. J. Adv. Res. 2017, 5, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.L.; Perrault, K.A.; Stefanuto, P.H.; Nizio, K.D.; Focant, J.F. Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PLoS ONE 2014, 9, e113681. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.H.; Adham, F.K.; Solimnn, F.S.; Khedre, A. Laboratory rearing of Wohlfahrtia nuba Wiedemann (Diptera-Sarcophagidae) in Egypt. J. Egypt. Soc. Parasitol. 1992, 22, 271–278. [Google Scholar]
- Amoudi, M.A. Effect of temperature on the developmental stages of Wohlfahrtia nuba (Diptera: Sarcophagidae). J. Egypt. Soc. Parasitol. 1993, 23, 697–705. [Google Scholar]
- Farkas, R.; Hell, E.; Hall, M.J.R.; Gyurkovszky, M. In vitro rearing of the screwworm fly Wohlfahrtia magnifica. Med. Vet. Entomol. 2005, 19, 22–26. [Google Scholar] [CrossRef]
- Sukontason, K.; Sukontason, K.L.; Piangjai, S.; Chaiwong, T.; Boonchu, N.; Kurahashi, H.; Vogtsberger, R.C. Larval ultrastructure of Parasarcophaga dux (Thomson) (Diptera: Sarcophagidae). Micron. 2003, 34, 359–364. [Google Scholar] [CrossRef]
- Banziger, H.; Pape, T. Flowers; Faeces and cadavers: Natural feeding and laying habits of flesh flies in Thailand (Diptera: Sarcophagidae, Sarcophaga spp.). J. Nat. Hist. 2004, 38, 1677–1694. [Google Scholar] [CrossRef]
- Bansode, S.A.; More, V.R.; Zambare, S.P. Effect of different constant temperature on the life cycle of a fly of forensic importance Lucilia cuprina. Entomol. Ornithol. Herpetol. Curr Res. 2016, 5, 3. [Google Scholar] [CrossRef]
- Ren, L.; Shang, Y.; Chen, W.; Meng, F.; Cai, J.; Zhu, G.; Chen, L.; Wang, Y.; Deng, J.; Guo, Y. A brief review of forensically important flesh flies (Diptera: Sarcophagidae). Forensic Sci. Res. 2018, 3, 16–26. [Google Scholar] [CrossRef]
- Dufek, M.I.; Damborsky, M.P.; Mulieri, P.R. Seasonal fluctuations in sarcophagidae (Diptera: Calyptratae) assemblages in the humid chaco ecoregion, Argentina. J. Med. Entomol. 2021, 58, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; An, X.; Zhou, J.; Ba, L.; Cha, H.; Bao, H.; Yang, B.; Li, Y.; Er, D. Morphological observation of the Wohlfahrtia magnifica in mongolia plateau. J. Camel Pract. Res. 2020, 27, 351–357. [Google Scholar] [CrossRef]
- Adams, Z.J.; Hall, M.J. Methods used for the killing and preservation of blowfly larvae, and their effect on postmortem larval length. Forensic Sci. Int. 2003, 138, 50–61. [Google Scholar] [CrossRef]
- Grassberger, M.; Reiter, C. Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen-and isomorphen-diagram. Forensic Sci. Int. 2001, 120, 32–36. [Google Scholar] [CrossRef]
- Grassberger, M.; Friedrich, E.; Reiter, C. The blowfly Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae) as a new forensic indicator in Central Europe. Int. J. Leg. Med. 2003, 117, 75–81. [Google Scholar] [CrossRef]
- Al-Shareef, L.A.; Al-Qurashi, S.I. Study of some biological aspects of the blowfly Chrysomya albiceps (Wiedemann 1819) (Diptera: Calliphoridae) in Jeddah, Saudi Arabia. Egypt. J. Forensic Sci. 2016, 6, 11–16. [Google Scholar] [CrossRef]
- Salimi, M.; Rassi, Y.; Oshaghi, M.; Chatrabgoun, O.; Limoee, M.; Rafizadeh, S. Temperature requirements for the growth of immature stages of blowflies species, Chrysomya albiceps and Calliphora vicina (Diptera: Calliphoridae) under laboratory conditions. Egypt. J. Forensic Sci. 2018, 8, 28. [Google Scholar] [CrossRef]
- Queiroz, M.M.D.C. Temperature requirements of Chrysomya albiceps (Wiedemann, 1819) (Diptera, Calliphoridae) under laboratory conditions. Mem. Inst. Oswaldo Cruz. 1996, 91, 785–788. [Google Scholar] [CrossRef]
- Augul, R.S.; Jassim, S.Y. Study of some biological and ecological aspects of the fly Chrysomya albiceps (Wiedemann) (Diptera; Calliphoridae). J. Uni. Anbar. Pure Sci. 2009, 3, 12–15. [Google Scholar] [CrossRef]
- Kotzé, Z.; Villet, M.H.; Weldon, C.W. Effect of temperature on development of the blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Int. J. Leg. Med. 2015, 129, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Amendt, J.; Wang, Y.; Ren, L.; Yang, F.; Zhang, X.; Guo, Y. Multimethod combination for age estimation of Sarcophaga peregrina (Diptera: Sarcophagidae) with implications for estimation of the postmortem interval. Int. J. Leg. Med. 2023, 137, 329–344. [Google Scholar] [CrossRef]
- Catts, E.P.; Goff, M.L. Forensic entomology in criminal investigations. Annu. Rev. Entomol. 1992, 37, 253–272. [Google Scholar] [CrossRef]
- Ames, C.; Turner, B. Low temperature episodes in development of blowflies: Implications for postmortem interval estimation. Med. Vet. Entomol. 2003, 17, 178–186. [Google Scholar] [CrossRef]
- Gomes, L.; Gomes, G.; Von Zuben, C.J. The influence of temperature on the behavior of burrowing in larvae of the blowflies, Chrysomya albiceps and Lucilia cuprina, under controlled conditions. J. Insect Sci. 2009, 9, 14. [Google Scholar] [CrossRef]
- Gallagher, M.B.; Sandhu, S.; Kimsey, R. Variation in developmental time for geographically distinct populations of the common green bottle fly, Lucilia sericata (Meigen). J. Forensic Sci. 2010, 55, 438–442. [Google Scholar] [CrossRef]
- Tarone, A.M.; Picard, C.J.; Spiegelman, C.; Foran, D.R. Population and temperature effects on Lucilia sericata (Diptera: Calliphoridae) body size and minimum development time. J. Med. Entomol. 2011, 48, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Chippendale, G.M. Phenological adaptations of a colonizing insect: The southwestern corn borer, Diatraea grandiosella. Oecologia. 1982, 53, 386–393. [Google Scholar] [CrossRef]
- Grassberger, M.; Reiter, C. Effect of temperature on development of the forensically important holarctic blow fly Protophormia terraenovae (Robineau-Desvoidy) (Diptera: Calliphoridae). Forensic Sci. Int. 2002, 128, 177–182. [Google Scholar] [CrossRef]
- Abd Al Galil, F.M.; Zambare, S. Effect of temperature on the development of calliphorid fly of forensic importance, Chrysomya rufifacies (Macquart, 1842). Int. J. Adv. Res. 2015, 3, 1099–1103. [Google Scholar]
- Jeffrey, D.W.; Joshua, L.; Smith, M.F.S. First Report of Blaesoxiphaplin thopyga (Diptera: Sarcophagidae) from a Human Corpse in the U.S.A. and a New State Geographic Record Based on Specimen Genotype. J. Forensic Sci. 2013, 58, 1378–1380. [Google Scholar] [CrossRef]
- Al-Algalil, F.A. Effect of temperature on development and mortality of immature Sarcophaga (Liosarcophaga) dux Thomson (Diptera: Sarcophagidae). J. King Saud. Univ. Agri Sci. 2004, 16, 53–60. [Google Scholar]
- Amoudi, M.A.; Diab, F.M.; Abou-Fannah, S.S. Development rate and mortality of immature Parasarcophaga (Liopygia) ruficornis (Diptera: Sarcophagidae) at constant laboratory temperatures. J. Med. Entomol. 1994, 31, 168–170. [Google Scholar] [CrossRef]
- Pohjoismäki, J.L.; Karhunen, P.J.; Goebeler, S.; Saukko, P.; Sääksjärvi, I.E. Indoors forensic entomology: Colonization of human remains in closed environments by specific species of sarcosaprophagous flies. Forensic Sci. Int. 2010, 199, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Shiravi, A.H.; Mostafavi, R.; Akbarzadeh, K.; Oshaghi, M.A. Temperature requirements of some common forensically important blow and flesh flies (Diptera) under laboratory conditions. Iran. J. Arthropod Borne Dis. 2011, 5, 54–62. [Google Scholar]
- Rashed, S.S.; Yamany, A.S.; El-Basheir, Z.M.; Zaher, E.E. Influence of fluctuated room conditions on the development of the forensically important Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae). Br. J. Med. Med. Res. 2015, 5, 1413–1421. [Google Scholar] [CrossRef]
- Al-Misned, F.A.M.; Amoudi, M.A.; Abou-Fannah, S.S.M. Development rate, mortality and growth rate of immature Chrysmya albiceps (Wiedemann)(Diptera: Calliphoridae) at constant laboratory temperatures. J. King Saud. Uni. Sci. 2003, 15, 49–58. [Google Scholar]
- Marchenko, M.I. Medicolegal relevance of cadaver entomofauna for the determination of the time of death. Forensic Sci. Int. 2001, 120, 89–109. [Google Scholar] [CrossRef]
- Aguiar-Coelho, V.M.; Milward-De-Azevedo, E.M.V. Combined rearing of Cochliomyia macellaria (Fabr.), Chrysomya megacephala (Fabr.) and Chrysomya albiceps (Wied.) (Dipt., Calliphoridae) under laboratory conditions. J. Appl. Entomol. 1998, 122, 551–554. [Google Scholar] [CrossRef]
- Dallwitz, R. The influence of constant and fluctuating temperatures on development rate and survival of pupae of the Australian sheep blowfly Lucilia cuprina. Entomol. Exp. Appl. 1984, 36, 89–95. [Google Scholar] [CrossRef]
- Al-Misned, F.A.M.; Abou-Fannah, S.S.M. Development rate and mortality of immature Bercaea cruentata (Meigen) (Diptera: Sarcophagidae) at constant laboratory temperatures. Pak. J. Zool. 2000, 32, 151–155. [Google Scholar]
- El-Shazly, M.M.; El-Sherif, H.A.; Omar, A.H. A comparative study on the reproductive strategies of a larviparous and an oviparous fly associated with carrion. Mitteilungen-Schweiz. Entomol. Ges. 1995, 68, 323–330. [Google Scholar] [CrossRef]
- Nietschke, B.S.; Magarey, R.D.; Borchert, D.M.; Calvin, D.D.; Jones, E. A developmental database to support insect phenology models. Crop. Prot. 2007, 26, 1444–1448. [Google Scholar] [CrossRef]
- Browne, L.B. Quantitative aspects of the regulation of ovarian development in selected anautogenous Diptera: Integration of endocrinology and nutrition. Entomol. Exp. Appl. 2001, 100, 137–149. [Google Scholar] [CrossRef]
- Abou Zied, E.M.; Gabre, R.M.; Chi, H. Life table of the Australian sheep blowfly Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Egypt. J. Zool. 2003, 41, 29–45. [Google Scholar]
Temp. °C (Season) Mean (Range) | Larval Duration (Days) Mean ± SE | Pupal Duration (Days) Mean ± SE (Range) | Total (Mean ± SE) | ||
---|---|---|---|---|---|
Female | Male | Female | Male | ||
27.9 °C (Spring) (17.11–29.47) 26.97% RH | 7.57 ± 0.14 a (6–10) | 12.48 ± 0.23 a (9–15) | 12.59 ± 0.24 a (9–15) | 18.77 ± 0.28 a | 18.92 ± 0.29 a |
38.3 °C (Summer) (30.66–46.83) 17.23% RH | 3.81 ± 0.04 b (3–4) | 8.69 ± 0.12 a (8–11) | 8.88 ± 0.19 a (7–10) | 13.59 ± 0.16 b | 14.00 ± 0.35 b |
35.8 °C (Autumn) (27.35–43.5) 21.36% RH | 4.26 ± 0.06 c (3–5) | 9.43 ± 0.15 a (8–12) | 9.65 ± 0.24 a (7–11) | 12.33 ± 0.13 b | 12.68 ± 0.25 b |
18.5 °C (Winter) (13.65–22.83) 41.39% RH | 10.28 ± 0.07 d (8–12) | 62.57 ± 7.04 b (39–121) | 64.83 ± 5.80 b (38–119) | 72.17 ± 7.09 c | 73.50 ± 9.61 c |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Temp. °C (Season) Mean (Range) | Larval Growth Rate (mg/day) (Mean ± SE) |
---|---|
27.9 °C (Spring) (17.11–29.47) 26.97% RH | 22.97 ± 0.19 a |
38.3 °C (Summer) (30.66–46.83) 17.23% RH | 38.61 ± 0.46 b |
35.8 °C (Autumn) (27.35–43.5) 21.36% RH | 37.11 ± 0.83 b |
18.5 °C (Winter) (13.65–22.83) 41.39% RH | 13.46 ± 0.52 c |
p | 0.000 |
Temp. °C (Season) Mean (Range) | Larval Survival (%) Percentage of L1 Reached Pupae (Mean ± SE) | Pupal Survival (%) Percentage of Pupae Reached Adult (Mean ± SE) | Larval Mortality (%) (Mean ± SE) | Pupal Mortality (%) (Mean ± SE) | Mortality Number | |
---|---|---|---|---|---|---|
Larvae | Pupae | |||||
27.9 °C (Spring) (17.11–29.47) 26.97% RH | 95.75 ± 0.82 a | 97.18 ± 0.44 a | 4.25 ± 0.82 a | 3.18 ± 0.29 a | 4 (100) | 3 (96) |
38.3 °C (Summer) (30.66–46.83) 17.23% RH | 58.57 ± 8.96 b | 81.64 ± 0.72 b | 41.43 ± 8.96 b | 10.92 ± 0.33 b | 41(100) | 11 (59) |
35.8 °C (Autumn) (27.35–43.5) 21.36% RH | 74.57 ± 5.77 c | 90.64 ± 0.77 c | 25.43 ± 5.77 c | 6.92 ± 0.47 c | 25 (100) | 7 (75) |
35.8 °C (Autumn) (27.35–43.5) 21.36% RH | 74.57 ± 5.77 c | 90.64 ± 0.77 c | 25.43 ± 5.77 c | 6.92 ± 0.47 c | 25 (100) | 7 (75) |
18.5 °C (Winter) (13.65–22.83) 41.39% RH | 91.73 ± 2.02 a | 45.73 ± 0.99 d | 9.36 ± 8.59 d | 45.67 ± 0.49 d | 9 (100) | 46 (92) |
p | 0.000 | 0.000 | 0.000 | 0.000 |
Temp. °C (Season) Mean (Range) | Developmental Stage Weight (mg) (Mean ± SE) | Developmental Stage Length (mm) (Mean ± SE) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Feeding Larvae | PrePupae | Pupae | Feeding Larvae | Pre Pupae | Pupae | |||||
First Instar | Second Instar | Third Instar | First Instar | Second Instar | Third Instar | |||||
27.9 °C (Spring) (17.11–29.47) 26.97% RH | 17.49 ± 0.36 a | 111.25 ± 3.92 a | 191.82 ± 1.54 a | 124.95± 2.56 a | 109.71 ± 2.57 a | 6.07 ± 0.31 a | 18.82 ± 0.49 a | 26.11 ± 0.33 a | 22.44 ± 0.32 a | 13.91 ± 0.29 a |
38.3 °C (Summer) (30.66–46.83) 17.23% RH | 15.24 ± 0.37 b | 90.50 ± 2.11 b | 160.53± 2.47 b | 105.0 ± 3.45 b | 91.57 ± 2.12 b | 4.93 ± 0.36 b | 17.39 ± 0.52 b | 24.33± 0.46 b | 21.39 ± 0.27 b | 12.98 ± 0.19 b |
35.8 °C (Autumn) (27.35–43.5) 21.36% RH | 16.66 ± 0.28 a | 97.75 ± 2.22 b | 178.06 ± 4.29 c | 117.26± 4.29 c | 99.95 ± 9.89 c | 5.14 ± 0.33 b | 17.71 ± 0.58 b | 25.11 ± 0.46 a | 21.89 ± 0.29 b | 13.25 ± 0.35 a |
18.5 °C (Winter) (13.65–22.83) 41.39% RH | 12.41 ± 0.41 c | 70.47 ± 4.06 c | 141.41 ± 4.02 d | 104.57± 3.36 b | 88.25 ± 2.72 d | 4.29 ± 0.39 b | 16.18 ± 0.37 c | 22.82 ± 0.38 c | 18.72 ± 0.39 c | 12.57 ± 0.20 b |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.007 | 0.002 | 0.000 | 0.000 | 0.000 |
Temp. °C (Season) Mean (Range) | Number of Adults Emerged (Mean ± SE) | % Emergence | Sex Ratio | Pre-Larviposition Period | No. of Larvae Laid/Female (Fecundity) (Mean ± SE) (Range) | |||
---|---|---|---|---|---|---|---|---|
Female | Male | Female | Male | Female | Male | |||
27.9 °C (Spring) (17.11–29.47) 26.97% RH | 55.67 ± 0.56 a | 37.17 ± 0.87 a | 60 | 40 | 1.50 | 1 | 7.83 ± 0.35 a | 51.42 ± 1.22 a (43–55) |
38.3 °C (Summer) (30.66–46.83) 17.23% RH | 26.83 ± 0.75 b | 20.83 ± 0.79 b | 56.25 | 43.75 | 1.29 | 1 | 4.17 ± 0.31 b | 42.08 ± 0.65 b (39–45) |
35.8 °C (Autumn) (27.35–43.5) 21.36% RH | 39.67 ± 0.80 c | 31.17 ± 0.84 c | 57.35 | 45.59 | 1.26 | 1 | 5.76 ± 0.41 b | 45.83 ± 0.52 c (43–48) |
18.5 °C (Winter) (13.65–22.83) 41.39% RH | 23.83 ± 0.54 d | 14.67 ± 1.12 d | 61.54 | 38.462 | 1.60 | 1 | 11.25 ± 0.33 c | 39.58 ± 0.34 d (38–41) |
P | 0.00 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamany, A.S.; Elkhadragy, M.F.; Abdel-Gaber, R. Wohlfahrtia nuba (Wiedemann, 1830) (Diptera: Sarcophagidae) Development and Survival Under Fluctuating Temperatures. Insects 2025, 16, 628. https://doi.org/10.3390/insects16060628
Yamany AS, Elkhadragy MF, Abdel-Gaber R. Wohlfahrtia nuba (Wiedemann, 1830) (Diptera: Sarcophagidae) Development and Survival Under Fluctuating Temperatures. Insects. 2025; 16(6):628. https://doi.org/10.3390/insects16060628
Chicago/Turabian StyleYamany, Abeer S., Manal F. Elkhadragy, and Rewaida Abdel-Gaber. 2025. "Wohlfahrtia nuba (Wiedemann, 1830) (Diptera: Sarcophagidae) Development and Survival Under Fluctuating Temperatures" Insects 16, no. 6: 628. https://doi.org/10.3390/insects16060628
APA StyleYamany, A. S., Elkhadragy, M. F., & Abdel-Gaber, R. (2025). Wohlfahrtia nuba (Wiedemann, 1830) (Diptera: Sarcophagidae) Development and Survival Under Fluctuating Temperatures. Insects, 16(6), 628. https://doi.org/10.3390/insects16060628