Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (356)

Search Parameters:
Keywords = satellite identification system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1037 KiB  
Review
Machine Learning for Flood Resiliency—Current Status and Unexplored Directions
by Venkatesh Uddameri and E. Annette Hernandez
Environments 2025, 12(8), 259; https://doi.org/10.3390/environments12080259 - 28 Jul 2025
Viewed by 472
Abstract
A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural [...] Read more.
A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural networks (CNNs) and other object identification algorithms are being explored in assessing levee and flood wall failures. The use of ML methods in pump station operations is limited due to lack of public-domain datasets. Reinforcement learning (RL) has shown promise in controlling low-impact development (LID) systems for pluvial flood management. Resiliency is defined in terms of the vulnerability of a community to floods. Multi-criteria decision making (MCDM) and unsupervised ML methods are used to capture vulnerability. Supervised learning is used to model flooding hazards. Conventional approaches perform better than deep learners and ensemble methods for modeling flood hazards due to paucity of data and large inter-model predictive variability. Advances in satellite-based, drone-facilitated data collection and Internet of Things (IoT)-based low-cost sensors offer new research avenues to explore. Transfer learning at ungauged basins holds promise but is largely unexplored. Explainable artificial intelligence (XAI) is seeing increased use and helps the transition of ML models from black-box forecasters to knowledge-enhancing predictors. Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
Show Figures

Figure 1

26 pages, 11237 KiB  
Article
Reclassification Scheme for Image Analysis in GRASS GIS Using Gradient Boosting Algorithm: A Case of Djibouti, East Africa
by Polina Lemenkova
J. Imaging 2025, 11(8), 249; https://doi.org/10.3390/jimaging11080249 - 23 Jul 2025
Viewed by 436
Abstract
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping [...] Read more.
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping of environmental dynamics enables us to define factors that trigger these processes and are crucial for our understanding of Earth system processes. In this study, a reclassification scheme of image analysis was developed for mapping the adjusted categorisation of land cover types using multispectral remote sensing datasets and Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS) software. The data included four Landsat 8–9 satellite images on 2015, 2019, 2021 and 2023. The sequence of time series was used to determine land cover dynamics. The classification scheme consisting of 17 initial land cover classes was employed by logical workflow to extract 10 key land cover types of the coastal areas of Bab-el-Mandeb Strait, southern Red Sea. Special attention is placed to identify changes in the land categories regarding the thermal saline lake, Lake Assal, with fluctuating salinity and water levels. The methodology included the use of machine learning (ML) image analysis GRASS GIS modules ‘r.reclass’ for the reclassification of a raster map based on category values. Other modules included ‘r.random’, ‘r.learn.train’ and ‘r.learn.predict’ for gradient boosting ML classifier and ‘i.cluster’ and ‘i.maxlik’ for clustering and maximum-likelihood discriminant analysis. To reveal changes in the land cover categories around the Lake of Assal, this study uses ML and reclassification methods for image analysis. Auxiliary modules included ‘i.group’, ‘r.import’ and other GRASS GIS scripting techniques applied to Landsat image processing and for the identification of land cover variables. The results of image processing demonstrated annual fluctuations in the landscapes around the saline lake and changes in semi-arid and desert land cover types over Djibouti. The increase in the extent of semi-desert areas and the decrease in natural vegetation proved the processes of desertification of the arid environment in Djibouti caused by climate effects. The developed land cover maps provided information for assessing spatial–temporal changes in Djibouti. The proposed ML-based methodology using GRASS GIS can be employed for integrating techniques of image analysis for land management in other arid regions of Africa. Full article
(This article belongs to the Special Issue Self-Supervised Learning for Image Processing and Analysis)
Show Figures

Figure 1

35 pages, 2590 KiB  
Review
Advanced Chemometric Techniques for Environmental Pollution Monitoring and Assessment: A Review
by Shaikh Manirul Haque, Yunusa Umar and Abuzar Kabir
Chemosensors 2025, 13(7), 268; https://doi.org/10.3390/chemosensors13070268 - 21 Jul 2025
Viewed by 352
Abstract
Chemometrics has emerged as a powerful approach for deciphering complex environmental systems, enabling the identification of pollution sources through the integration of faunal community structures with physicochemical parameters and in situ analytical data. Leveraging advanced technologies—including satellite imaging, drone surveillance, sensor networks, and [...] Read more.
Chemometrics has emerged as a powerful approach for deciphering complex environmental systems, enabling the identification of pollution sources through the integration of faunal community structures with physicochemical parameters and in situ analytical data. Leveraging advanced technologies—including satellite imaging, drone surveillance, sensor networks, and Internet of Things platforms—chemometric methods facilitate real-time and longitudinal monitoring of both pristine and anthropogenically influenced ecosystems. This review provides a critical and comprehensive overview of the foundational principles underpinning chemometric applications in environmental science. Emphasis is placed on identifying pollution sources, their ecological distribution, and potential impacts on human health. Furthermore, the study highlights the role of chemometrics in interpreting multidimensional datasets, thereby enhancing the accuracy and efficiency of modern environmental monitoring systems across diverse geographic and industrial contexts. A comparative analysis of analytical techniques, target analytes, application domains, and the strengths and limitations of selected in situ and remote sensing-based chemometric approaches is also presented. Full article
(This article belongs to the Special Issue Chemometrics Tools Used in Chemical Detection and Analysis)
Show Figures

Figure 1

23 pages, 5058 KiB  
Article
Integrated Assessment of Lake Degradation and Revitalization Pathways: A Case Study of Phewa Lake, Nepal
by Avimanyu Lal Singh, Bharat Raj Pahari and Narendra Man Shakya
Sustainability 2025, 17(14), 6572; https://doi.org/10.3390/su17146572 - 18 Jul 2025
Viewed by 292
Abstract
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from [...] Read more.
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from its catchment using RUSLE, shoreline encroachment analysis via satellite imagery and historical records, and identification of pollution sources and socio-economic factors through field surveys and community consultations. The results show that steep, sparsely vegetated slopes are the primary sediment sources, with Harpan Khola (a tributary of Phewa Lake) contributing over 80% of the estimated 339,118 tons of annual sediment inflow. From 1962 to 2024, the lake has lost approximately 5.62 sq. km of surface area, primarily due to a combination of sediment deposition and human encroachment. Pollution from untreated sewage, urban runoff, and invasive aquatic weeds further degrades water quality and threatens biodiversity. Based on the findings, this study proposes a way forward to mitigate sedimentation, encroachment, and pollution, along with a sustainable revitalization plan. The approach of this study, along with the proposed sustainability measures, can be replicated in other lake systems within Nepal and in similar watersheds elsewhere. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

30 pages, 12494 KiB  
Article
Satellite-Based Approach for Crop Type Mapping and Assessment of Irrigation Performance in the Nile Delta
by Samar Saleh, Saher Ayyad and Lars Ribbe
Earth 2025, 6(3), 80; https://doi.org/10.3390/earth6030080 - 16 Jul 2025
Viewed by 430
Abstract
Water scarcity, exacerbated by climate change, population growth, and competing sectoral demands, poses a major threat to agricultural sustainability, particularly in irrigated regions such as the Nile Delta in Egypt. Addressing this challenge requires innovative approaches to evaluate irrigation performance despite the limitations [...] Read more.
Water scarcity, exacerbated by climate change, population growth, and competing sectoral demands, poses a major threat to agricultural sustainability, particularly in irrigated regions such as the Nile Delta in Egypt. Addressing this challenge requires innovative approaches to evaluate irrigation performance despite the limitations in ground data availability. Traditional assessment methods are often costly, labor-intensive, and reliant on field data, limiting their scalability, especially in data-scarce regions. This paper addresses this gap by presenting a comprehensive and scalable framework that employs publicly accessible satellite data to map crop types and subsequently assess irrigation performance without the need for ground truthing. The framework consists of two parts: First, crop mapping, which was conducted seasonally between 2015 and 2020 for the four primary crops in the Nile Delta (rice, maize, wheat, and clover). The WaPOR v2 Land Cover Classification layer was used as a substitute for ground truth data to label the Landsat-8 images for training the random forest algorithm. The crop maps generated at 30 m resolution had moderate to high accuracy, with overall accuracy ranging from 0.77 to 0.80 in summer and 0.87–0.95 in winter. The estimated crop areas aligned well with national agricultural statistics. Second, based on the mapped crops, three irrigation performance indicators—adequacy, reliability, and equity—were calculated and compared with their established standards. The results reveal a good level of equity, with values consistently below 10%, and a relatively reliable water supply, as indicated by the reliability indicator (0.02–0.08). Average summer adequacy ranged from 0.4 to 0.63, indicating insufficient supply, whereas winter values (1.3 to 1.7) reflected a surplus. A noticeable improvement gradient was observed for all indicators toward the north of the delta, while areas located in the delta’s new lands consistently displayed unfavorable conditions in all indicators. This approach facilitates the identification of regions where agricultural performance falls short of its potential, thereby offering valuable insights into where and how irrigation systems can be strategically improved to enhance overall performance sustainably. Full article
Show Figures

Figure 1

17 pages, 7849 KiB  
Article
Applicability of Multi-Sensor and Multi-Geometry SAR Data for Landslide Detection in Southwestern China: A Case Study of Qijiang, Chongqing
by Haiyan Wang, Xiaoting Liu, Guangcai Feng, Pengfei Liu, Wei Li, Shangwei Liu and Weiming Liao
Sensors 2025, 25(14), 4324; https://doi.org/10.3390/s25144324 - 10 Jul 2025
Viewed by 332
Abstract
The southwestern mountainous region of China (SMRC), characterized by complex geological environments, experiences frequent landslide disasters that pose significant threats to local residents. This study focuses on the Qijiang District of Chongqing, where we conduct a systematic evaluation of wavelength and observation geometry [...] Read more.
The southwestern mountainous region of China (SMRC), characterized by complex geological environments, experiences frequent landslide disasters that pose significant threats to local residents. This study focuses on the Qijiang District of Chongqing, where we conduct a systematic evaluation of wavelength and observation geometry effects on InSAR-based landslide monitoring. Utilizing multi-sensor SAR imagery (Sentinel-1 C-band, ALOS-2 L-band, and LUTAN-1 L-band) acquired between 2018 and 2025, we integrate time-series InSAR analysis with geological records, high-resolution topographic data, and field investigation findings to assess representative landslide-susceptible zones in the Qijiang District. The results indicate the following: (1) L-band SAR data demonstrates superior monitoring precision compared to C-band SAR data in the SMRC; (2) the combined use of LUTAN-1 ascending/descending orbits significantly improved spatial accuracy and detection completeness in complex landscapes; (3) multi-source data fusion effectively mitigated limitations of single SAR systems, enhancing identification of small- to medium-scale landslides. This study provides critical technical support for multi-source landslide monitoring and early warning systems in Southwest China while demonstrating the applicability of China’s SAR satellites for geohazard applications. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

15 pages, 4920 KiB  
Article
Mapping Illegal Dumping Sites in a Low-Resource Region Using GIS and Remote Sensing: The Case of Blantyre City, Malawi
by Richard Lizwe Steven Mvula, Yanjanani Miston Banda, Mike Allan Njunju, Harineck Mayamiko Tholo, Chikondi Chisenga, Jabulani Nyengere, John Njalam’mano, Fasil Ejigu Eregno and Wilfred Kadewa
Urban Sci. 2025, 9(7), 254; https://doi.org/10.3390/urbansci9070254 - 2 Jul 2025
Viewed by 583
Abstract
Malawi’s Blantyre City faces escalating waste management challenges due to increased urbanization and inadequate waste collection services. This research utilized remote sensing (RS) and geographic information system (GIS) techniques to map potential illegal dump sites (PIDSs). MODIS and Sentinel-5P satellite imagery and GPS [...] Read more.
Malawi’s Blantyre City faces escalating waste management challenges due to increased urbanization and inadequate waste collection services. This research utilized remote sensing (RS) and geographic information system (GIS) techniques to map potential illegal dump sites (PIDSs). MODIS and Sentinel-5P satellite imagery and GPS locations of dumpsites were used to extract environmental and spatial variables, including land surface temperature (LST), the enhanced vegetation index (EVI), Formaldehyde (HCHO), and distances from highways, rivers, and official dumps. An analytical hierarchical process (AHP) pairwise comparison matrix was used to assign weights for the six-factor variables. Further, fuzzy logic was applied, and weighted overlay analysis was used to generate the PIDS map. The results indicated that 10.27% of the study area has a “very high” probability of illegal dumping, while only 2% exhibited a “very low” probability. Validation with field data showed that the GIS and RS were effective, as about 89% of the illegal dumping sites were identified. Zonal statistics identified rivers as the most significant contributor to PIDS identification. The findings of this study underscore the significance of mapping PIDS in low-resource regions like Blantyre, Malawi, where inadequate waste management and illegal dumping are prevalent. Future studies should consider additional factors and account for seasonal variations. Full article
Show Figures

Figure 1

26 pages, 9416 KiB  
Article
Multi-Component Remote Sensing for Mapping Buried Water Pipelines
by John Lioumbas, Thomas Spahos, Aikaterini Christodoulou, Ioannis Mitzias, Panagiota Stournara, Ioannis Kavouras, Alexandros Mentes, Nopi Theodoridou and Agis Papadopoulos
Remote Sens. 2025, 17(12), 2109; https://doi.org/10.3390/rs17122109 - 19 Jun 2025
Viewed by 542
Abstract
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV [...] Read more.
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV (unmanned aerial vehicle)-borne near-infrared (NIR) surveys, multi-temporal Sentinel-2 imagery, and historical Google Earth orthophotos to precisely map pipeline locations and establish a surface baseline for future monitoring. Each dataset was processed within a unified least-squares framework to delineate pipeline axes from surface anomalies (vegetation stress, soil discoloration, and proxies) and rigorously quantify positional uncertainty, with findings validated against RTK-GNSS (Real-Time Kinematic—Global Navigation Satellite System) surveys of an excavated trench. The combined approach yielded sub-meter accuracy (±0.3 m) with UAV data, meter-scale precision (≈±1 m) with Google Earth, and precision up to several meters (±13.0 m) with Sentinel-2, significantly improving upon inaccurate legacy maps (up to a 300 m divergence) and successfully guiding excavation to locate a pipeline segment. The methodology demonstrated seasonal variability in detection capabilities, with optimal UAV-based identification occurring during early-vegetation growth phases (NDVI, Normalized Difference Vegetation Index ≈ 0.30–0.45) and post-harvest periods. A Sentinel-2 analysis of 221 cloud-free scenes revealed persistent soil discoloration patterns spanning 15–30 m in width, while Google Earth historical imagery provided crucial bridging data with intermediate spatial and temporal resolution. Ground-truth validation confirmed the pipeline location within 0.4 m of the Google Earth-derived position. This integrated, cost-effective workflow provides a transferable methodology for enhanced pipeline mapping and establishes a vital baseline of surface signatures, enabling more effective future monitoring and proactive maintenance to detect leaks or structural failures. This methodology is particularly valuable for water utility companies, municipal infrastructure managers, consulting engineers specializing in buried utilities, and remote-sensing practitioners working in pipeline detection and monitoring applications. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Infrastructures)
Show Figures

Graphical abstract

22 pages, 5407 KiB  
Article
Low-Power Constant Current Driver for Stepper Motors in Aerospace Applications
by Leijie Jiang, Lixun Zhu and Chuande Liu
Energies 2025, 18(12), 3173; https://doi.org/10.3390/en18123173 - 17 Jun 2025
Viewed by 311
Abstract
Stepper motors are used in satellites for various drive operations that are achieved by custom designs. This paper presents a stepper motor driver for satellite systems. It takes rotor position and phase current as inputs and employs a current subdivision method with back-propagation [...] Read more.
Stepper motors are used in satellites for various drive operations that are achieved by custom designs. This paper presents a stepper motor driver for satellite systems. It takes rotor position and phase current as inputs and employs a current subdivision method with back-propagation neural network (BPNN) to achieve constant current control of the motor. The driver can ensure the smooth operation and the positioning accuracy of the motor with a filter wheel that is 0.1944 kg·m2 in the moment of inertia and satisfy self-adaption of the load without system parameter identification. Compared to the previous scheme, the proposed scheme can reduce the power consumption by about 21.15% when the motor runs at 2 r/s, which is beneficial to the reduction in the size and the mass of some power supply modules. The performances of the developed driver are implemented on a field programmable gate array (FPGA) circuit board. The experimental results are conducted to verify the claims presented. The proposed scheme can be extended to other stepper motor systems with large moment of inertia loads within spacecraft. Full article
Show Figures

Figure 1

29 pages, 5178 KiB  
Article
HASSDE-NAS: Heuristic–Adaptive Spectral–Spatial Neural Architecture Search with Dynamic Cell Evolution for Hyperspectral Water Body Identification
by Feng Chen, Baishun Su and Zongpu Jia
Information 2025, 16(6), 495; https://doi.org/10.3390/info16060495 - 13 Jun 2025
Viewed by 424
Abstract
The accurate identification of water bodies in hyperspectral images (HSIs) remains challenging due to hierarchical representation imbalances in deep learning models, where shallow layers overly focus on spectral features, boundary ambiguities caused by the relatively low spatial resolution of satellite imagery, and limited [...] Read more.
The accurate identification of water bodies in hyperspectral images (HSIs) remains challenging due to hierarchical representation imbalances in deep learning models, where shallow layers overly focus on spectral features, boundary ambiguities caused by the relatively low spatial resolution of satellite imagery, and limited detection capability for small-scale aquatic features such as narrow rivers. To address these challenges, this study proposes Heuristic–Adaptive Spectral–Spatial Neural Architecture Search with Dynamic Cell Evaluation (HASSDE-NAS). The architecture integrates three specialized units; a spectral-aware dynamic band selection cell suppresses redundant spectral bands, while a geometry-enhanced edge attention cell refines fragmented spatial boundaries. Additionally, a bidirectional fusion alignment cell jointly optimizes spectral and spatial dependencies. A heuristic cell search algorithm optimizes the network architecture through architecture stability, feature diversity, and gradient sensitivity analysis, which improves search efficiency and model robustness. Evaluated on the Gaofen-5 datasets from the Guangdong and Henan regions, HASSDE-NAS achieves overall accuracies of 92.61% and 96%, respectively. This approach outperforms existing methods in delineating narrow river systems and resolving water bodies with weak spectral contrast under complex backgrounds, such as vegetation or cloud shadows. By adaptively prioritizing task-relevant features, the framework provides an interpretable solution for hydrological monitoring and advances neural architecture search in intelligent remote sensing. Full article
Show Figures

Figure 1

24 pages, 7065 KiB  
Article
Center of Mass Auto-Location in Space
by Lucas McLeland, Brian Erickson, Brendan Ruchlin, Eryn Daman, James Mejia, Benjamin Ho, Joshua Lewis, Bryan Mann, Connor Paw, James Ross, Christopher Reis, Scott Walter, Stefanie Coward, Thomas Post, Andrew Freeborn and Timothy Sands
Technologies 2025, 13(6), 246; https://doi.org/10.3390/technologies13060246 - 12 Jun 2025
Viewed by 393
Abstract
Maintaining a spacecraft’s center of mass at the origin of a body-fixed coordinate system is often key to precision trajectory tracking. Typically, the inertia matrix is estimated and verified with preliminary ground testing. This article presents groundbreaking preliminary results and significant findings from [...] Read more.
Maintaining a spacecraft’s center of mass at the origin of a body-fixed coordinate system is often key to precision trajectory tracking. Typically, the inertia matrix is estimated and verified with preliminary ground testing. This article presents groundbreaking preliminary results and significant findings from on-orbit space experiments validating recently proposed methods as part of a larger study over multiple years. Time-varying estimates of inertia moments and products are used to reveal time-varying estimates of the location of spacecraft center of mass using geosynchronous orbiting test satellites proposing a novel two-norm optimal projection learning method. Using the parallel axis theorem, the location of the mass center is parameterized using the cross products of inertia, and that information is extracted from spaceflight maneuver data validating modeling and simulation. Mass inertia properties are discerned, and the mass center is experimentally revealed to be over thirty centimeters away from the assumed locations in two of the three axes. Rotation about one axis is found to be very well balanced, with the center of gravity lying on that axis. Two-to-three orders of magnitude corrections to inertia identification are experimentally demonstrated. Combined-axis three-dimensional maneuvers are found to obscure identification compared with single-axis maneuvering as predicted by the sequel analytic study. Mass center location migrates 36–95% and subsequent validating experiments duplicate the results to within 0.1%. Full article
(This article belongs to the Special Issue Advanced Autonomous Systems and Artificial Intelligence Stage)
Show Figures

Figure 1

19 pages, 2375 KiB  
Technical Note
Synergizing Multi-Temporal Remote Sensing and Systemic Resilience for Rainstorm–Flood Risk Zoning in the Northern Qinling Foothills: A Geospatial Modeling Approach
by Dong Liu, Jiaqi Zhang, Xin Wang, Jianbing Peng, Rui Wang, Xiaoyan Huang, Denghui Li, Long Shao and Zixuan Hao
Remote Sens. 2025, 17(12), 2009; https://doi.org/10.3390/rs17122009 - 11 Jun 2025
Viewed by 501
Abstract
The northern foothills of the Qinling Mountains, a critical ecological barrier and urban–rural transition zone in China, face intensifying rainstorm–flood disasters under climate extremes and rapid urbanization. This study pioneers a remote sensing-driven, dynamically coupled framework by integrating multi-source satellite data, system resilience [...] Read more.
The northern foothills of the Qinling Mountains, a critical ecological barrier and urban–rural transition zone in China, face intensifying rainstorm–flood disasters under climate extremes and rapid urbanization. This study pioneers a remote sensing-driven, dynamically coupled framework by integrating multi-source satellite data, system resilience theory, and spatial modeling to develop a novel “risk identification–resilience assessment–scenario simulation” chain. This framework quantitatively evaluates the nonlinear response mechanisms of town–village systems to flood disasters, emphasizing the synergistic effects of spatial scale, morphology, and functional organization. The proposed framework uniquely integrates three innovative modules: (1) a hybrid risk identification engine combining normalized difference vegetation index (NDVI) temporal anomaly detection and spatiotemporal hotspot analysis; (2) a morpho-functional resilience quantification model featuring a newly developed spatial morphological resilience index (SMRI) that synergizes landscape compactness, land-use diversity, and ecological connectivity through the entropy-weighted analytic hierarchy process (AHP); and (3) a dynamic scenario simulator embedding rainfall projections into a coupled hydrodynamic model. Key advancements over existing methods include the multi-temporal SMRI and the introduction of a nonlinear threshold response function to quantify “safe-fail” adaptation capacities. Scenario simulations reveal a reduction in flood losses under ecological priority strategies, outperforming conventional engineering-based solutions by resilience gain. The proposed zoning strategy prioritizing ecological restoration, infrastructure hardening, and community-based resilience units provides a scalable framework for disaster-adaptive spatial planning, underpinned by remote sensing-driven dynamic risk mapping. This work advances the application of satellite-aided geospatial analytics in balancing ecological security and socioeconomic resilience across complex terrains. Full article
Show Figures

Figure 1

21 pages, 8280 KiB  
Article
Segmentation of Multitemporal PlanetScope Data to Improve the Land Parcel Identification System (LPIS)
by Marco Obialero and Piero Boccardo
Remote Sens. 2025, 17(12), 1962; https://doi.org/10.3390/rs17121962 - 6 Jun 2025
Viewed by 714
Abstract
The 1992 reform of the European Common Agricultural Policy (CAP) introduced the Land Parcel Identification System (LPIS), a geodatabase of land parcels used to monitor and regulate agricultural subsidies. Traditionally, the LPIS has relied on high-resolution aerial orthophotos; however, recent advancements in very-high-resolution [...] Read more.
The 1992 reform of the European Common Agricultural Policy (CAP) introduced the Land Parcel Identification System (LPIS), a geodatabase of land parcels used to monitor and regulate agricultural subsidies. Traditionally, the LPIS has relied on high-resolution aerial orthophotos; however, recent advancements in very-high-resolution (VHR) satellite imagery present new opportunities to enhance its effectiveness. This study explores the feasibility of utilizing PlanetScope, a commercial VHR optical satellite constellation, to map agricultural parcels within the LPIS. A test was conducted in Umbria, Italy, integrating existing datasets with a series of PlanetScope images from 2023. A segmentation workflow was designed, employing the Normalized difference Vegetation Index (NDVI) alongside the Edge segmentation method with varying sensitivity thresholds. An accuracy evaluation based on geometric metrics, comparing detected parcels with cadastral references, revealed that a 30% scale threshold yielded the most reliable results, achieving an accuracy rate of 83.3%. The results indicate that the short revisit time of PlanetScope compensates for its lower spatial resolution compared to traditional orthophotos, allowing accurate delineation of parcels. However, challenges remain in automating parcel matching and integrating alternative methods for accuracy assessment. Further research should focus on refining segmentation parameters and optimizing PlanetScope’s temporal and spectral resolution to strengthen LPIS performance, ultimately fostering more sustainable and data-driven agricultural management. Full article
Show Figures

Figure 1

23 pages, 9220 KiB  
Article
Machine Learning-Enhanced River Ice Identification in the Complex Tibetan Plateau
by Xin Pang, Hongyi Li, Hongrui Ren, Yaru Yang, Qin Zhao, Yiwei Liu, Xiaohua Hao and Liting Niu
Remote Sens. 2025, 17(11), 1889; https://doi.org/10.3390/rs17111889 - 29 May 2025
Viewed by 446
Abstract
Accurate remote sensing identification of river ice not only provides scientific evidence for climate change but also offers early warning information for disasters such as ice jams. Currently, many researchers have used remote sensing index-based methods to identify river ice in alpine regions. [...] Read more.
Accurate remote sensing identification of river ice not only provides scientific evidence for climate change but also offers early warning information for disasters such as ice jams. Currently, many researchers have used remote sensing index-based methods to identify river ice in alpine regions. However, in high-altitude areas, these index-based methods face limitations in recognizing river ice and distinguishing ice-snow mixtures. With the rapid advancement of machine learning techniques, some scholars have begun to use machine learning methods to extract river ice in northern latitudes. However, there is still a lack of systematic studies on the ability of machine learning to enhance river ice identification in high-altitude, complex terrains. The study evaluates the performance of machine learning methods and the RDRI index method across six aspects: river type, altitude, river width, ice periods, satellite data, and snow cover interference. The results show that machine learning, particularly the RF method, demonstrates superior generalization ability and higher recognition accuracy for river ice in the complex high-altitude terrain of the Tibetan Plateau by leveraging a variety of input data, including spectral and topographical information. The RF model performs best under all types of test conditions, with an average Kappa coefficient of 0.9088, outperforming other machine learning methods and significantly outperforming the traditional exponential method, demonstrating stronger recognition capabilities. Machine learning methods are adaptable to different types of river ice, showing particularly improved recognition of river ice in braided river systems. RF and SVM exhibit more accurate river ice recognition across different altitudinal gradients, with RF and SVM significantly improving the identification accuracy of river ice (0–90 m) on the plateau. RF and SVM methods offer more precise boundary recognition when identifying river ice across different ice periods. Additionally, RF demonstrates better generalization in the transfer of multisource satellite data. RF’s performance is outstanding under different snow cover conditions, overcoming the limitations of traditional methods in identifying river ice under thick snow. Machine learning methods, which are well suited for large sample learning and have strong generalization capabilities, show significant potential for application in river ice identification within high-altitude, complex terrains. Full article
Show Figures

Figure 1

25 pages, 5209 KiB  
Article
Enhancing Indoor Positioning with GNSS-Aided In-Building Wireless Systems
by Shuya Zhou, Xinghe Chu and Zhaoming Lu
Electronics 2025, 14(10), 2079; https://doi.org/10.3390/electronics14102079 - 21 May 2025
Cited by 1 | Viewed by 583
Abstract
Wireless indoor positioning systems are challenged by the reliance on densely deployed hardware and exhaustive site surveys, leading to elevated deployment and maintenance costs that limit scalability. This paper introduces a novel positioning framework that enhances the existing In-Building Wireless (IBW) infrastructure by [...] Read more.
Wireless indoor positioning systems are challenged by the reliance on densely deployed hardware and exhaustive site surveys, leading to elevated deployment and maintenance costs that limit scalability. This paper introduces a novel positioning framework that enhances the existing In-Building Wireless (IBW) infrastructure by retransmitting Global Navigation Satellite System (GNSS) signals. Pseudorange residuals extracted from raw GNSS measurements, when mapped against known cable lengths, facilitate anchor identification and precise ranging. In parallel, directional and inertial measurements are derived from the channel state information (CSI) of cellular reference signals. Building upon these observations, we develop a Hybrid Adaptive Filter-Graph Fusion (HAF-GF) algorithm for high-precision positioning, wherein the adaptive filter modulates observation noise based on Line-of-Sight (LoS) conditions, while a factor graph optimization over multiple positional constraints ensures global consistency and accelerates convergence. Ray tracing-based simulations in a complex office environment validate the efficacy of the proposed approach, demonstrating a 30% improvement in positioning accuracy and at least a threefold increase in deployment efficiency compared to conventional methods. Full article
(This article belongs to the Special Issue Mobile Positioning and Tracking Using Wireless Networks)
Show Figures

Figure 1

Back to TopTop