Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,037)

Search Parameters:
Keywords = saline water irrigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9248 KiB  
Article
Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia
by Chenwei Tu, Wanrui Wang, Weihua Wang, Farong Huang, Minmin Gao, Yanchun Liu, Peiyao Gong and Yuan Yao
Agriculture 2025, 15(15), 1704; https://doi.org/10.3390/agriculture15151704 - 7 Aug 2025
Abstract
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability [...] Read more.
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability and its interaction with surface water is essential for water–ecology–agriculture security in arid areas. This study evaluates the irrigation water quality and groundwater–surface water interaction influenced by agricultural activities in a typical arid plain region using hydrochemical and stable isotopic data from 51 water samples. The results reveal that the area of cultivated land increases by 658.9 km2 from 2000 to 2023, predominantly resulting from the conversion of bare land. Groundwater TDS (total dissolved solids) value exhibits significant spatial heterogeneity, ranging from 516 to 2684 mg/L. Cl, SO42−, and Na+ are the dominant ions in groundwater, with a widespread distribution of brackish water. Groundwater δ18O values range from −9.4‰ to −5.4‰, with the mean value close to surface water. In total, 86% of the surface water samples are good and suitable for agricultural irrigation, while 60% of shallow groundwater samples are marginally suitable or unsuitable for irrigation at present. Groundwater hydrochemistry is largely controlled by intensive evaporation, water–rock interaction, and agricultural activities (e.g., cultivated land expansion, irrigation, groundwater exploitation, and fertilizers). Agricultural activities could cause shallow groundwater salinization, even confined water deterioration, with an intense and frequent exchange between groundwater and surface water. In order to sustainably manage groundwater and maintain ecosystem stability in arid plain regions, controlling cultivated land area and irrigation water amount, enhancing water utilization efficiency, limiting groundwater exploitation, and fully utilizing floodwater resources would be the viable ways. The findings will help to deepen the understanding of the groundwater quality evolution mechanism in arid irrigated regions and also provide a scientific basis for agricultural water management in the context of extreme climatic events and anthropogenic activities. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

21 pages, 3488 KiB  
Article
Effects of Continuous Saline Water Irrigation on Soil Salinization Characteristics and Dryland Jujube Tree
by Qiao Zhao, Mingliang Xin, Pengrui Ai and Yingjie Ma
Agronomy 2025, 15(8), 1898; https://doi.org/10.3390/agronomy15081898 - 7 Aug 2025
Abstract
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the [...] Read more.
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the effects of six irrigation water salinity levels (CK: 0.87 g·L−1, S1: 2 g·L−1, S2: 4 g·L−1, S3: 6 g·L−1, S4: 8 g·L−1, S5: 10 g·L−1) on soil salinization dynamics and jujube growth during a three-year field experiment (2020–2022). The results showed that soil salinity within the 0–1 m profile significantly increased with rising irrigation water salinity and prolonged irrigation duration, with the 0–0.4 m layer accounting for 50.27–74.95% of the total salt accumulation. A distinct unimodal salt distribution was observed in the 0.3–0.6 m soil zone, with the salinity peak shifting downward from 0.4 to 0.5 m over time. Meanwhile, soil pH and sodium adsorption ratio (SAR) increased steadily over the study period. The dominant hydrochemical type shifted from SO42−-Ca2+·Mg2+ to Cl-Na+·Mg2+. Crop performance exhibited a nonlinear response to irrigation salinity levels. Low salinity (2 g·L−1) significantly enhanced plant height, stem diameter, leaf area index (LAI), vitamin C content, and yield, with improvements of up to 12.11%, 3.96%, 16.67%, 16.24%, and 16.52% in the early years. However, prolonged exposure to saline irrigation led to significant declines in both plant growth and water productivity (WP) by 2022. Under high-salinity conditions (S5), yield decreased by 16.75%, while WP declined by more than 30%. To comprehensively evaluate the trade-off between economic effects and soil environment, the entropy weight TOPSIS method was employed to identify S1 as the optimal irrigation treatment for the 2020–2021 period and control (CK) as the optimal treatment for 2022. Through fitting analysis, the optimal irrigation water salinity levels over 3 years were determined to be 2.75 g·L−1, 2.49 g·L−1, and 0.87 g·L−1, respectively. These findings suggest that short-term irrigation of jujube trees with saline water at concentrations ≤ 3 g·L−1 is agronomically feasible. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

13 pages, 3187 KiB  
Article
An Approach to Improve Land–Water Salt Flux Modeling in the San Francisco Estuary
by John S. Rath, Paul H. Hutton and Sujoy B. Roy
Water 2025, 17(15), 2278; https://doi.org/10.3390/w17152278 - 31 Jul 2025
Viewed by 261
Abstract
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study [...] Read more.
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study area, is affected by channel salinity. The DSM2 approach has been adopted by several hydrodynamic models of the estuary to enforce water volume balance between diversions, evapotranspiration and drainage at the land–water interface, but does not explicitly enforce salt balance. We found deviations from salt balance to be quite large, albeit variable in magnitude due to the heterogeneity of hydrodynamic and salinity conditions across the study area. We implemented a procedure that approximately enforces salt balance through iterative updates of the baseline drain salinity boundary conditions (termed loose coupling). We found a reasonable comparison with field measurements of drainage salinity. In particular, the adjusted boundary conditions appear to capture the range of observed interannual variability better than the baseline periodic estimates. The effect of the iterative adjustment procedure on channel salinity showed substantial spatial variability: locations dominated by large flows were minimally impacted, and in lower flow channels, deviations between baseline and adjusted channel salinity series were notable, particularly during the irrigation season. This approach, which has the potential to enhance the simulation of extreme salinity intrusion events (when high channel salinity significantly impacts drainage salinity), is essential for robustly modeling hydrodynamic conditions that pre-date contemporary water management infrastructure. We discuss limitations associated with this approach and recommend that—for this case study—further improvements could best be accomplished through code modification rather than coupling of transport and island water balance models. Full article
(This article belongs to the Special Issue Advances in Coastal Hydrological and Geological Processes)
Show Figures

Figure 1

18 pages, 3738 KiB  
Article
Effect of Alternate Sprinkler Irrigation with Saline and Fresh Water on Soil Water–Salt Transport and Corn Growth
by Yue Jiang, Luya Wang, Yanfeng Li, Hao Li and Run Xue
Agronomy 2025, 15(8), 1854; https://doi.org/10.3390/agronomy15081854 - 31 Jul 2025
Viewed by 310
Abstract
To address freshwater scarcity and the underutilization of low-saline water in the North China Plain, a field study was conducted to evaluate the effects of alternating sprinkler irrigation using saline and fresh water on soil water–salt dynamics and corn growth. Two salinity levels [...] Read more.
To address freshwater scarcity and the underutilization of low-saline water in the North China Plain, a field study was conducted to evaluate the effects of alternating sprinkler irrigation using saline and fresh water on soil water–salt dynamics and corn growth. Two salinity levels (3 and 5 g·L−1, representing S1 and S2, respectively) and three irrigation strategies—saline–fresh–saline–fresh (F1), saline–fresh (F2), and mixed saline–fresh (F3)—were tested, resulting in six treatments: S1F1, S1F2, S1F3, S2F1, S2F2, and S2F3. S1F1 significantly improved soil water retention at a 30–50 cm depth and reduced surface electrical conductivity (EC) and Na+ concentration (p < 0.05). S1F1 also promoted more uniform Mg2+ distribution and limited Ca2+ loss. Under high salinity (5 g·L−1), surface salt accumulation and ion concentration (Na+, Mg2+, and Ca2+) increased, particularly in S2F3. Corn growth under alternating irrigation (F1/F2) outperformed the mixed mode (F3), with S1F1 achieving the highest plant height, leaf area, grain number, and 100-grain weight. The S1F1 yield surpassed others by 0.4–3.0% and maintained a better ion balance. These results suggest that alternating irrigation with low-salinity water (S1F1) effectively regulates root-zone salinity and improves crop productivity, offering a practical strategy for the sustainable use of low-saline water resources. Full article
Show Figures

Figure 1

16 pages, 1023 KiB  
Article
Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species
by María Rita Guzman, Xavier Rojas-Ruilova, Catarina Gomes-Domingues and Isabel Marques
Agronomy 2025, 15(8), 1802; https://doi.org/10.3390/agronomy15081802 - 25 Jul 2025
Viewed by 295
Abstract
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with [...] Read more.
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with 0, 50, 100, or 300 mM NaCl for 10 days. Salinity significantly enhanced proline content and the activity of key antioxidant enzymes (catalase, peroxidase, and ascorbate peroxidase), reflecting the activation of stress defense mechanisms. However, these defenses failed to fully protect reproductive organs. Flower number and size were consistently more sensitive to salinity than vegetative traits, with significant reductions observed even at 50 mM NaCl. Responses varied between species, with Zinnia elegans and Calendula officinalis exhibiting pronounced sensitivity to salinity, whereas Tagetes patula showed relative tolerance, particularly under moderate stress conditions. The results show that flower structures are more vulnerable to ionic and osmotic disturbances than vegetative tissues, likely due to their higher metabolic demands and developmental sensitivity. Their heightened vulnerability underscores the need to prioritize reproductive performance when evaluating stress tolerance. Incorporating these traits into breeding programs is essential for developing salt-tolerant floriculture species that maintain aesthetic quality under limited water availability. Full article
(This article belongs to the Special Issue Effect of Brackish and Marginal Water on Irrigated Agriculture)
Show Figures

Figure 1

19 pages, 4641 KiB  
Article
The Hydrochemical Dynamics and Water Quality Evolution of the Rizhao Reservoir and Its Tributary Systems
by Qiyuan Feng, Youcheng Lv, Jianguo Feng, Weidong Lei, Yuqi Zhang, Mingyu Gao, Linghui Zhang, Baoqing Zhao, Dongliang Zhao and Kexin Lou
Water 2025, 17(15), 2224; https://doi.org/10.3390/w17152224 - 25 Jul 2025
Viewed by 293
Abstract
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This [...] Read more.
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This study systematically collected 66 surface water samples to elucidate the hydrochemical characteristics within the reservoir area, identify the principal influencing factors, and clarify the sources of dissolved ions, aiming to enhance the understanding of the prevailing water quality conditions. A systematic analysis of hydrochemical facies, solute provenance, and governing processes in the study area’s surface water was conducted, employing an integrated mathematical and statistical approach, comprising Piper trilinear diagrams, correlation analysis, and ionic ratios. Meanwhile, the entropy weight-based water quality index (EWQI) and irrigation water quality evaluation methods were employed to assess the surface water quality in the study area quantitatively. Analytical results demonstrate that the surface water system within the study area is classified as freshwater with circumneutral to slightly alkaline properties, predominantly characterized by Ca-HCO3 and Ca-Mg-SO4-Cl hydrochemical facies. The evolution of solute composition is principally governed by rock–water interactions, whereas anthropogenic influences and cation exchange processes exert comparatively minor control. Dissolved ions mostly originate from silicate rock weathering, carbonate rock dissolution, and sulfate mineral dissolution processes. Potability assessment via the entropy-weighted water quality index (EWQI) classifies surface waters in the study area as Grade I (Excellent), indicating compliance with drinking water criteria under defined boundary conditions. Irrigation suitability analysis confirms minimal secondary soil salinization risk during controlled agricultural application, with all samples meeting standards for direct irrigation use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

25 pages, 1882 KiB  
Article
An Assessment of Collector-Drainage Water and Groundwater—An Application of CCME WQI Model
by Nilufar Rajabova, Vafabay Sherimbetov, Rehan Sadiq and Alaa Farouk Aboukila
Water 2025, 17(15), 2191; https://doi.org/10.3390/w17152191 - 23 Jul 2025
Viewed by 528
Abstract
According to Victor Ernest Shelford’s ‘Law of Tolerance,’ organisms within ecosystems thrive optimally when environmental conditions are favorable. Applying this principle to ecosystems and agro-ecosystems facing water scarcity or environmental challenges can significantly enhance their productivity. In these ecosystems, phytocenosis adjusts its conditions [...] Read more.
According to Victor Ernest Shelford’s ‘Law of Tolerance,’ organisms within ecosystems thrive optimally when environmental conditions are favorable. Applying this principle to ecosystems and agro-ecosystems facing water scarcity or environmental challenges can significantly enhance their productivity. In these ecosystems, phytocenosis adjusts its conditions by utilizing water with varying salinity levels. Moreover, establishing optimal drinking water conditions for human populations within an ecosystem can help mitigate future negative succession processes. The purpose of this study is to evaluate the quality of two distinct water sources in the Amudarya district of the Republic of Karakalpakstan, Uzbekistan: collector-drainage water and groundwater at depths of 10 to 25 m. This research is highly relevant in the context of climate change, as improper management of water salinity, particularly in collector-drainage water, may exacerbate soil salinization and degrade drinking water quality. The primary methodology of this study is as follows: The Food and Agriculture Organization of the United Nations (FAO) standard for collector-drainage water is applied, and the water quality index is assessed using the CCME WQI model. The Canadian Council of Ministers of the Environment (CCME) model is adapted to assess groundwater quality using Uzbekistan’s national drinking water quality standards. The results of two years of collected data, i.e., 2021 and 2023, show that the water quality index of collector-drainage water indicates that it has limited potential for use as secondary water for the irrigation of sensitive crops and has been classified as ‘Poor’. As a result, salinity increased by 8.33% by 2023. In contrast, groundwater quality was rated as ‘Fair’ in 2021, showing a slight deterioration by 2023. Moreover, a comparative analysis of CCME WQI values for collector-drainage and groundwater in the region, in conjunction with findings from Ethiopia, India, Iraq, and Turkey, indicates a consistent decline in water quality, primarily due to agriculture and various other anthropogenic pollution sources, underscoring the critical need for sustainable water resource management. This study highlights the need to use organic fertilizers in agriculture to protect drinking water quality, improve crop yields, and promote soil health, while reducing reliance on chemical inputs. Furthermore, adopting WQI models under changing climatic conditions can improve agricultural productivity, enhance groundwater quality, and provide better environmental monitoring systems. Full article
Show Figures

Figure 1

25 pages, 5096 KiB  
Article
Scenario Analysis in Intensively Irrigated Semi-Arid Watershed Using a Modified SWAT Model
by Pratikshya Neupane and Ryan T. Bailey
Geosciences 2025, 15(7), 272; https://doi.org/10.3390/geosciences15070272 - 20 Jul 2025
Viewed by 277
Abstract
Intensive irrigation in arid and semi-arid regions can cause significant environmental issues, including salinity, waterlogging, and water quality deterioration. Watershed modeling helps us understand essential water balance components in these areas. This study implemented a modified SWAT (Soil and Water Assessment Tool) model [...] Read more.
Intensive irrigation in arid and semi-arid regions can cause significant environmental issues, including salinity, waterlogging, and water quality deterioration. Watershed modeling helps us understand essential water balance components in these areas. This study implemented a modified SWAT (Soil and Water Assessment Tool) model tailored to capture irrigation practices within a 15,900 km2 area of the Arkansas River Basin from 1990 to 2014. The model analyzed key water balance elements: surface runoff, evapotranspiration, soil moisture, lateral flow, and groundwater return flow, distinguishing between wet and dry years. Over 90% of precipitation is consumed by evapotranspiration. The average watershed water yield comprises 19% surface runoff, 39% groundwater return flow, and 42% lateral flow. Various irrigation scenarios were simulated, revealing that transitioning from flood to sprinkler irrigation reduced surface runoff by over 90% without affecting crop water availability in the intensively irrigated region of the watershed. Canal sealing scenarios showed substantial groundwater return flow reductions: approximately 15% with 20% sealing and around 57% with 80% sealing. Scenario-based analyses like these provide valuable insights for optimizing water resource management in intensively irrigated watersheds. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 7163 KiB  
Article
Saline Water Stress in Caatinga Species with Potential for Reforestation in the Face of Advancing Desertification in the Brazilian Semiarid Region
by Márcia Bruna Marim de Moura, Tays Ferreira Barros, Thieres George Freire da Silva, Wagner Martins dos Santos, Lady Daiane Costa de Sousa Martins, Elania Freire da Silva, João L. M. P. de Lima, Xuguang Tang, Alexandre Maniçoba da Rosa Ferraz Jardim, Carlos André Alves de Souza, Klébia Raiane Siqueira de Souza and Luciana Sandra Bastos de Souza
Environments 2025, 12(7), 239; https://doi.org/10.3390/environments12070239 - 14 Jul 2025
Viewed by 603
Abstract
The advance of the soil desertification process and water salinisation hinders reforestation actions in the Brazilian semiarid region due to the negative effects on the initial establishment of seedlings. Knowledge of potential species for overcoming the problems of soil and water salinity is [...] Read more.
The advance of the soil desertification process and water salinisation hinders reforestation actions in the Brazilian semiarid region due to the negative effects on the initial establishment of seedlings. Knowledge of potential species for overcoming the problems of soil and water salinity is of broad interest. This study evaluated the growth of seedlings of the species Handroanthus impetiginosus and Handroanthus spongiosus subjected to the combined stresses of salinity and water deficit. The species were subjected to three water depths (WDs): WD1—50%, WD2—75% and WD3—100% of reference evapotranspiration, and four salinity levels (SL): SL1—0.27 dS m−1, SL2—2.52 dS m−1, SL3—6.35 dS m−1 and SL4—7.38 dS m−1. Biometric data, including plant height, number of leaves, collar diameter and biomass, was obtained. The results showed that H. impetiginosus was more tolerant of the conditions analysed. The species showed greater sensitivity to salt stress, which reduced growth and dry biomass accumulation by up to 98%. Increased water deficit reduced height, collar diameter, number of leaves, root biomass and total biomass. We propose that the optimal water depth for both species is 100% of the reference evapotranspiration. Full article
Show Figures

Figure 1

22 pages, 828 KiB  
Review
Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities
by Christian C. Obijianya, Elif Yakamercan, Mahmoud Karimi, Sridevi Veluru, Ivan Simko, Sulaymon Eshkabilov and Halis Simsek
Water 2025, 17(14), 2083; https://doi.org/10.3390/w17142083 - 11 Jul 2025
Viewed by 607
Abstract
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging [...] Read more.
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging groundwater, irrigation of fields, or even manufacturing drinkable water. This strategy meets growing water demand in water-scarce areas while protecting natural ecosystems. Treated wastewater is both a resource and a challenge. Though it may be nutrient-rich and can increase agricultural output while showing resource reuse and environmental conservation, high treatment costs, public acceptance, and contamination hazards limit its use. Proper treatment can reduce these hazards, safeguarding human health and the environment while enhancing its benefits, including a stable water supply, nutrient-rich irrigation, higher crop yields, economic development, and community resilience. On the one hand, inadequate treatment may lead to soil salinization, environmental degradation, and hazardous foods. Examining the dual benefits and risks of using treated wastewater for agricultural irrigation, this paper investigates the complexities of its use as a valuable resource and as a potential hazard. Modern treatment technologies are needed to address these difficulties and to ensure safe and sustainable use. If properly handled, treated wastewater reuse has enormous potential for reducing water scarcity and expanding sustainable agriculture as well as global food security. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Graphical abstract

18 pages, 3104 KiB  
Article
Reduced Glutathione in Modulation of Salt Stress on Sour Passion Fruit Production and Quality
by Weslley Bruno Belo de Souza, Geovani Soares de Lima, Lauriane Almeida dos Anjos Soares, Mirandy dos Santos Dias, Brencarla de Medeiros Lima, Larissa Fernanda Souza Santos, Valeska Karolini Nunes Oliveira, Rafaela Aparecida Frazão Torres, Hans Raj Gheyi, Lucyelly Dâmela Araújo Borborema, André Alisson Rodrigues da Silva, Vitor Manoel Bezerra da Silva and Valéria Fernandes de Oliveira Sousa
Plants 2025, 14(14), 2149; https://doi.org/10.3390/plants14142149 - 11 Jul 2025
Viewed by 419
Abstract
This study evaluated the effects of reduced glutathione (GSH) application on the production and quality of sour passion fruit irrigated with brackish water in the semi-arid region of Paraíba, Brazil. The experiment was conducted in drainage lysimeters under greenhouse conditions at the Center [...] Read more.
This study evaluated the effects of reduced glutathione (GSH) application on the production and quality of sour passion fruit irrigated with brackish water in the semi-arid region of Paraíba, Brazil. The experiment was conducted in drainage lysimeters under greenhouse conditions at the Center of Technology and Natural Resources of the Federal University of Campina Grande (UFCG). Treatments combined five levels of electrical conductivity of brackish irrigation water (Bw: 0.4, 1.2, 2.0, 2.8, and 3.6 dS m−1) and four GSH concentrations (0, 40, 80, and 120 mg L−1), arranged in a randomized block design with three replicates. Salinity levels above 0.4 dS m−1 negatively affected fruit production and post-harvest quality of ‘BRS GA1’ sour passion fruit. Foliar application of 120 mg L−1 GSH increased fruit yield, while 74 mg L−1 GSH mitigated salt stress effects on production and pulp chemical quality. The ‘BRS GA1’ cultivar was highly sensitive to salinity, showing a 26.9% yield reduction per unit increase in Bw electrical conductivity above 0.4 dS m−1. The results suggest that GSH can alleviate salt stress damage, improving crop productivity and fruit quality under semi-arid conditions. Full article
Show Figures

Figure 1

19 pages, 9996 KiB  
Article
Plant Traits in Spring and Winter Canola Genotypes Under Salinity
by Rajan Shrestha, Qingwu Xue, Andrea Leiva Soto, Girisha Ganjegunte, Santosh Subhash Palmate, Vijayasatya N. Chaganti, Saurav Kumar, April L. Ulery and Samuel Zapata
Agronomy 2025, 15(7), 1657; https://doi.org/10.3390/agronomy15071657 - 8 Jul 2025
Viewed by 388
Abstract
Concerning rising salinity and declining freshwater supply in the U.S. Southern Great Plains, alternative crop production choices using marginal saline irrigation water are irresistible. The study investigated plant traits related to salt tolerance in greenhouse canola (Brassica napus L.) in 2022 and [...] Read more.
Concerning rising salinity and declining freshwater supply in the U.S. Southern Great Plains, alternative crop production choices using marginal saline irrigation water are irresistible. The study investigated plant traits related to salt tolerance in greenhouse canola (Brassica napus L.) in 2022 and 2023. Spring and winter canola, including ten genotypes each, were evaluated at six salinity levels (0; control, 2, 4, 6, 8, and 8 dS m−1 EC). Plant height, stem mass, leaf area, and specific leaf area (SLA) showed a negative linear response, while quadratic relationships were observed in biomass and leaf mass with increased salinity levels. Substantial negative salinity impacts on plant traits occurred at ≥6 dS m−1 EC (p ≤ 0.01) except for SLA. Overall, winter canola genotypes: Athena, Ericka, CP320WRR, CP115W, and CP225WRR, and spring genotypes: Empire, Monarch, Profit, and Westar, were relatively more salt-tolerant than others. Spring canola showed greater salinity tolerance than winter canola. Salinity stress resulted in differential responses of greater leaf mass in winter canola but more efficient leaf area production in spring canola. SLA and stem mass were highly correlated with most parameters. Findings indicate SLA and stem mass are potential salt tolerance traits in canola and warrant further investigations and validation. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

18 pages, 3154 KiB  
Article
Water Saving and Environmental Issues in the Hetao Irrigation District, the Yellow River Basin: Development Perspective Analysis
by Zhuangzhuang Feng, Qingfeng Miao, Haibin Shi, José Manuel Gonçalves and Ruiping Li
Agronomy 2025, 15(7), 1654; https://doi.org/10.3390/agronomy15071654 - 8 Jul 2025
Viewed by 332
Abstract
Global changes and society’s development necessitate the improvement of water use and irrigation water saving, which require a set of water management measures to best deal with the necessary changes. This study considers the framework of the change process for water management in [...] Read more.
Global changes and society’s development necessitate the improvement of water use and irrigation water saving, which require a set of water management measures to best deal with the necessary changes. This study considers the framework of the change process for water management in the Hetao Irrigation District (HID) of the Yellow River Basin. This paper presents the main measures that have been applied to ensure the sustainability and modernization of Hetao, mitigating water scarcity while maintaining land productivity and environmental value. Several components of modernization projects that have already been implemented are characterized, such as the off-farm canal distribution system, the on-farm surface irrigation, innovative crop and soil management techniques, drainage, and salinity control, including the management of autumn irrigation and advances of drip irrigation at the sector and farm levels. This characterization includes technologies, farmer training, labor needs, energy consumption, water savings, and economic aspects, based on data observed and reported in official reports. Therefore, this study integrates knowledge and analyzes the most limiting aspects in some case studies, evaluating the effectiveness of the solutions used. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

25 pages, 10132 KiB  
Article
Water and Salt Dynamics in Cultivated, Abandoned, and Lake Systems Under Irrigation Reduction in the Hetao Irrigation District
by Lina Hao, Guoshuai Wang, Vijay P. Singh and Tingxi Liu
Agronomy 2025, 15(7), 1650; https://doi.org/10.3390/agronomy15071650 - 7 Jul 2025
Viewed by 254
Abstract
The shifting irrigation reduction in the Hetao Irrigation District and the inability to effectively discharge salts from the system have led to significant changes in salt migration patterns. Based on the integration of long-term field observations (2017–2023) with soil hydrodynamics and solute transport [...] Read more.
The shifting irrigation reduction in the Hetao Irrigation District and the inability to effectively discharge salts from the system have led to significant changes in salt migration patterns. Based on the integration of long-term field observations (2017–2023) with soil hydrodynamics and solute transport models, this study explored the impact of irrigation reduction on water and salt migration in a cropland–wasteland–lake system. The results indicated that before and after the reduction in irrigation and decline in groundwater levels, the migration rates of groundwater from croplands to wastelands and from wastelands to lakes remained relatively stable, averaging 78% and 40%. During the crop growth period, after irrigation reduction and groundwater level decline, the volume of groundwater recharging lakes from wastelands decreased by 80–120 mm, causing a water deficit in the lakes of 679–789 mm. After irrigation reduction and groundwater level decline, during the crop growth period, 1402 kg/ha of salt remained in the wasteland groundwater, and 597–861 kg/ha of salt accumulated in the cropland groundwater, exceeding previous levels, leading to salinization in the cropland and wasteland groundwater. This study provides insights relevant to managing groundwater and soil salinity in irrigation areas. Full article
Show Figures

Figure 1

23 pages, 6122 KiB  
Article
Decoding Salinization Dynamics in Mediterranean Coastal Aquifers: A Case Study from a Wetland in Southern Italy
by Giuseppe Passarella, Rita Masciale, Matia Menichini, Marco Doveri and Ivan Portoghese
Environments 2025, 12(7), 227; https://doi.org/10.3390/environments12070227 - 2 Jul 2025
Viewed by 562
Abstract
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water [...] Read more.
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water resource sustainability. This work integrates hydrogeological monitoring, geochemical and isotopic analyses, and geophysical surveys to understand salinity dynamics and identify key drivers, such as seawater intrusion, irrigation practices, and climate change. Data collected during monitoring campaigns from 2022 to 2024 reveal significant seasonal and spatial variations in groundwater salinity influenced by natural and human-induced factors. The results indicate that salt recycling from irrigation and marine spray deposition are important local contributors to groundwater salinity, in addition to seawater intrusion. These findings highlight the urgent need for integrated groundwater management approaches considering the combined effects of agricultural practices, irrigation water quality, and climate variability tailored to Mediterranean coastal ecosystems. Full article
Show Figures

Figure 1

Back to TopTop