Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Collection
3.2. Irrigation Suitability Assessment Methods
3.3. Statistical Analyses
4. Results
4.1. Variations in Climate, Vegetation, and Land Use
4.2. Characteristics of Major Dissolved Ions
4.3. Characteristics of Stable Water Isotopes
4.4. Irrigation Water Quality of Groundwater
5. Discussion
5.1. Irrigation Suitability Assessment
5.2. Influence of Agricultural Activities on Groundwater Hydrochemistry
5.3. Interaction Between Groundwater and Surface Water
5.4. Recommendations for Water Resource Management
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mandal, R.; Das, A.; Tripathy, G.R.; Sudheer, A.K.; Kumar, S.; Deshpande, R.D.; Padhya, V. Impact of soil salinity on groundwater chemistry in semi-arid regions in Western India: Insights from major ion and stable isotopic δ2Hh2O, δ18Oh2O, and δ13CDIC characteristics. Groundw. Sustain. Dev. 2023, 21, 100939. [Google Scholar] [CrossRef]
- Yan, Y.; Shi, H.; Miao, Q.; Zhao, Y.; Nie, X.; Li, Z.; Duarte, I.M. Evolution of chemical characteristics and irrigation suitability of groundwater in arid and semi-arid regions. Agric. Water Manag. 2025, 311, 109361. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- Jia, C.; Raza Altaf, A.; Li, F.; Ashraf, I.; Zafar, Z.; Ahmad Nadeem, A. Comprehensive assessment on groundwater quality, pollution characteristics, and ecological health risks under seasonal thaws: Spatial insights with Monte Carlo simulations. Groundw. Sustain. Dev. 2023, 22, 100952. [Google Scholar] [CrossRef]
- Zhang, C.; Oki, T. Water pricing reform for sustainable water resources management in China’s agricultural sector. Agric. Water Manag. 2023, 275, 108045. [Google Scholar] [CrossRef]
- Hao, S.N.; Li, X.Y.; Du, X.Z.; Zhang, W.S. A review on non-point source nutrient pollution of irrigation plain areas. Ecol. Environ. Sci. 2015, 24, 1235–1244. [Google Scholar]
- Hyánková, E.; Kriška Dunajský, M.; Zedník, O.; Chaloupka, O.; Pumprlová Němcová, M. Irrigation with treated wastewater as an alternative nutrient source (for crop): Numerical simulation. Agriculture 2021, 11, 946. [Google Scholar] [CrossRef]
- Mohanavelu, A.; Raghavendra, N.S.; Al-Ansari, N. Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture 2021, 11, 983. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, H.; Ren, W.; Xu, P.; Li, W.; Yang, Q.; Shang, J. Salinization of shallow groundwater in the Jiaokou Irrigation District and associated secondary environmental challenges. Sci. Total Environ. 2024, 908, 168445. [Google Scholar] [CrossRef] [PubMed]
- Sany, S.R.; Deb, S.R.; Ahmed, F.; Al Nayem, M.A.; Ashikuzzaman, A.K.M.; Al Numanbakth, M.A. Evaluation of groundwater quality and potential health risks in the Tengratila Gas Field Blowout Region, Bangladesh: An in-depth analysis utilizing multivariate statistics, heavy metal indices and Monte Carlo simulation. J. Hazard. Mater. 2025, 490, 137744. [Google Scholar] [CrossRef]
- Lu, L.; Li, S.; Gao, Y.; Ge, Y.; Zhang, Y. Analysis of the characteristics and cause analysis of soil salt space based on the basin scale. Appl. Sci. 2022, 12, 9022. [Google Scholar] [CrossRef]
- Hou, X.; Wang, W.; Wang, Z.; Ma, Z.; Guan, C.; Xi, D.; Huang, X. Hydrogeological processes and hydrochemical effects in the Manas river catchment, Northwest China, over the past 60 years. J. Hydrol. 2022, 614, 128338. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Wang, W.; Zhu, C.; Chen, Y.; Liu, X.; Zhang, T. Water quality and interaction between groundwater and surface water impacted by agricultural activities in an oasis-desert region. J. Hydrol. 2023, 617, 128937. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, J.; Nai, W.; Li, L.; Tan, P. Hydrogeochemical processes of groundwater formation in the Kashgar River Basin, Xinjiang. Arid Zone Res. 2020, 37, 541–550. (In Chinese) [Google Scholar]
- Chen, Y.; Zhu, C.; Li, Z.; Fang, G. High-quality development in the northern slope of the Kunlun Mountains: Issues, opportunities and challenges. Arid Land Geogr. 2024, 47, 733–740. (In Chinese) [Google Scholar]
- Wang, W.; Chen, Y.; Wang, W.; Jiang, J.; Cai, M.; Xu, Y. Evolution characteristics of groundwater and its response to climate and land-cover changes in the oasis of dried-up river in Tarim Basin. J. Hydrol. 2021, 594, 125644. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, Y.; Zhang, M.; Che, Y.; Sun, M.; Zhao, R.; Liu, Y. Preliminary report on scientific investigation of water resources on the northern slope of Kunlun Mountains. Arid Land Geogr. 2024, 47, 1097–1105. (In Chinese) [Google Scholar]
- Tang, L.; Yao, R.; Zhang, Y.; Ding, W.; Wang, J.; Kang, J.; Liu, G.; Zhang, W.; Li, X. Hydrochemical analysis and groundwater suitability for drinking and irrigation in an arid agricultural area of Northwest China. J. Contam. Hydrol. 2023, 259, 104256. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Duan, L.; Pan, H.; Liu, T. Geochemical pattern, quality and driving forces of multi-layer groundwater in a high-capacity mining area basin: A comprehensive analysis based on the interweaving of multiple factors. J. Hydrol. 2025, 660, 133376. [Google Scholar] [CrossRef]
- Liu, J.; Luo, K.; Gao, Z.; Wang, Y.; Li, Q.; Tan, M. Comprehending hydrochemical fingerprint, spatial patterns, and driving forces of groundwater in a topical coastal plain of Northern China based on hydrochemical and isotopic evaluations. J. Clean. Prod. 2024, 461, 142640. [Google Scholar] [CrossRef]
- Balamurugan, P.; Kumar, P.S.; Shankar, K.; Kumar, P.J.S. Impact of climate and anthropogenic activities on groundwater quality for domestic and irrigation purposes in Attur region, Tamilnadu, India. Desalin. Water Treat. 2020, 208, 172–195. [Google Scholar] [CrossRef]
- Jamshidzadeh, Z. An integrated approach of hydrogeochemistry, statistical analysis, and drinking water quality index for groundwater assessment. Environ. Process. 2020, 7, 781–804. [Google Scholar] [CrossRef]
- Fan, W.; Zhou, J.; Zheng, J.; Guo, Y.; Hu, L.; Shan, R. Hydrochemical characteristics, control factors and health risk assessment of groundwater in typical arid region Hotan Area, Chinese Xinjiang. Environ. Pollut. 2024, 363, 125301. [Google Scholar] [CrossRef]
- Zhang, F.; Yuan, Y.; Xi, B.; Lu, H.; Jiang, Y.; Hui, K.; Meng, F. Hydrochemistry characteristics and genesis of shallow groundwater in diverse industrial agglomeration areas in typical alluvial plain of the Yellow River. Sci. Total Environ. 2025, 958, 177764. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Xue, L.; Dong, Z.; Li, D. Solute geochemistry and groundwater quality for drinking and irrigation purposes: A case study in Xinle City, North China. Geochemistry 2020, 80, 125609. [Google Scholar] [CrossRef]
- Yin, X.; Feng, Q.; Zheng, X.; Wu, X.; Zhu, M.; Sun, F.; Li, Y. Assessing the impacts of irrigated agriculture on hydrological regimes in an oasis-desert system. J. Hydrol. 2021, 594, 125976. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Wang, W.; Yang, Y.; Hou, Y.; Zhang, S.; Zhu, Z. Assessing the influences of land use change on groundwater hydrochemistry in an oasis-desert region of Central Asia. Water 2022, 14, 651. [Google Scholar] [CrossRef]
- Li, X.; Chang, L.; Yang, B.; Duan, R.; Wang, Q.; Zhang, Q. Characteristic of groundwater flows in Hotan River Basin: Isotope and hydrochemistry-based analysis. J. Arid Land Res. Environ. 2024, 38, 113–123. (In Chinese) [Google Scholar]
- Mu, D.; Li, P.; De Baets, B.; Li, D.; Li, Z.; He, S. A multi-perspective exploration of the salinization mechanisms of groundwater in the Guanzhong Basin, China. Sci. Total Environ. 2024, 957, 177421. [Google Scholar] [CrossRef] [PubMed]
- Craig, H. Isotopic variation in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Yang, X.; Du, J.; Jia, C.; Yang, T.; Shao, S. Unravelling integrated groundwater management in pollution-prone agricultural cities: A synergistic approach combining probabilistic risk, source apportionment and artificial intelligence. J. Hazard. Mater. 2025, 481, 136514. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Wachemo, A.C.; Karuppannan, S.; Duraisamy, K. Spatiotemporal variation of groundwater hydrochemistry and suitability for drinking and irrigation in Arba Minch Town, Ethiopia: An integrated approach using water quality index, multivariate statistics, and GIS. Urban Clim. 2022, 46, 101338. [Google Scholar] [CrossRef]
- Li, P.; Tian, R.; Liu, R. Solute geochemistry and multivariate analysis of water quality in the Guohua phosphorite mine, Guizhou Province, China. Expo. Health 2019, 11, 81–94. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, J.; Qian, H.; Wang, H.; Ren, W.; Qu, W. Hydrogeochemical characteristics and processes of groundwater in an over 2260 year irrigation district: A comparison between irrigated and nonirrigated areas. J. Hydrol. 2022, 606, 127437. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, M.; Wang, J. Insights into groundwater salinization from hydrogeochemical and isotopic evidence in an arid inland basin. Hydrol. Process. 2018, 32, 3108–3127. [Google Scholar] [CrossRef]
- Wang, W.; Wang, R.; Li, W.; Yin, X.; Liu, C. Analysis of stable isotopes and hydrochemistry of rivers in Tarim Basin. Hydrogeol. Eng. Geol. 2013, 40, 29–35. (In Chinese) [Google Scholar]
- Su, Z.M.; Wu, J.H.; He, X.D.; Elumalai, V. Temporal changes of groundwater quality within the groundwater depression cone and prediction of confined groundwater salinity using Grey Markov model in Yinchuan area of Northwest China. Expo. Health 2020, 12, 447–468. [Google Scholar] [CrossRef]
- Taucare, M.; Daniels, L.; Viguier, B.; Vallejos, A.; Arancibia, G. Groundwater resources and recharge processes in the Western Andean Front of Central Chile. Sci. Total Environ. 2020, 722, 137824. [Google Scholar] [CrossRef]
- Zhu, B.Q.; Yang, X.P.; Rioual, P.; Qin, X.G.; Liu, Z.T.; Xiong, H.G.; Yu, J.J. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China. Appl. Geochem. 2011, 26, 1535–1548. [Google Scholar] [CrossRef]
- Fisher, R.; Mullican, W.F., III. Hydrochemical evolution of sodium–sulfate and sodium–chloride groundwater beneath the northern Chihuahuan Desert, Trans–Pecos, Texas, USA. Hydrogeol. J. 1997, 5, 4–16. [Google Scholar] [CrossRef]
- Wu, H.W.; Wu, J.L.; Li, J.; Fu, C.S. Spatial variations of hydrochemistry and stable isotopes in mountainous river water from the Central Asian headwaters of the Tajikistan Pamirs. Catena 2020, 193, 104639. [Google Scholar] [CrossRef]
- Pant, R.R.; Zhang, F.; Rehman, F.U.; Wang, G.; Ye, M.; Zeng, C.; Tang, H. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci. Total Environ. 2018, 622–623, 770–782. [Google Scholar] [CrossRef]
- Biddau, R.; Cidu, R.; Da Pelo, S.; Carletti, A.; Ghiglieri, G.; Pittalis, D. Source and fate of nitrate in contaminated groundwater systems: Assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools. Sci. Total Environ. 2019, 647, 1121–1136. [Google Scholar] [CrossRef]
- Devic, G.; Djordjevic, D.; Sakan, S. Natural and anthropogenic factors affecting the groundwater quality in Serbia. Sci. Total Environ. 2014, 468–469, 933–942. [Google Scholar] [CrossRef]
- Han, D.; Song, X.; Currell, M.J.; Cao, G.; Zhang, Y.; Kang, Y. A survey of groundwater levels and hydrogeochemistry in irrigated fields in the Karamay Agricultural Development Area, northwest China: Implications for soil and groundwater salinity resulting from surface water transfer for irrigation. J. Hydrol. 2011, 405, 217–234. [Google Scholar] [CrossRef]
Alkalinity Hazard (SAR) | Salinity Hazard (EC) | Irrigation Water Suitability |
---|---|---|
Low: <10 | Low: <250 | Excellent quality |
Medium: 10–18 | Medium: 250–750 | Good quality |
High: 18–26 | High: 750–2250 | Acceptable quality |
Very high: >26 | Very high: >2250 | Unacceptable quality |
Parameters | 2002 | 2010 | 2014 | 2020 |
---|---|---|---|---|
Precipitation (mm) | 29.0 | 17.5 | 42.5 | 35.5 |
Air temperature (°C) | 12.6 | 12.7 | 12.6 | 11.9 |
Cropland area (km2) | 2880 | 3433 | 3642 | 3770 |
Bare land area (km2) | 53,399 | 52,825 | 51,937 | 52,678 |
Depth to phreatic water level (m) | / | 15.1 | 17.1 | 18.6 |
Total groundwater extraction (108 m3) | 2.6 | 3.7 | 4.6 | 6.0 |
Water-saving irrigation area (km) | / | 107 | 386 | / |
Irrigation water amount (108 m3) | 25.8 | 44.7 | 44.8 | 38.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, C.; Wang, W.; Wang, W.; Huang, F.; Gao, M.; Liu, Y.; Gong, P.; Yao, Y. Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia. Agriculture 2025, 15, 1704. https://doi.org/10.3390/agriculture15151704
Tu C, Wang W, Wang W, Huang F, Gao M, Liu Y, Gong P, Yao Y. Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia. Agriculture. 2025; 15(15):1704. https://doi.org/10.3390/agriculture15151704
Chicago/Turabian StyleTu, Chenwei, Wanrui Wang, Weihua Wang, Farong Huang, Minmin Gao, Yanchun Liu, Peiyao Gong, and Yuan Yao. 2025. "Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia" Agriculture 15, no. 15: 1704. https://doi.org/10.3390/agriculture15151704
APA StyleTu, C., Wang, W., Wang, W., Huang, F., Gao, M., Liu, Y., Gong, P., & Yao, Y. (2025). Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia. Agriculture, 15(15), 1704. https://doi.org/10.3390/agriculture15151704