Reduced Glutathione in Modulation of Salt Stress on Sour Passion Fruit Production and Quality
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Location of the Experimental Site
4.2. Experimental Design and Treatments
4.3. Experimental Setup and Conduction
4.4. Traits Analyzed
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- dos Santos, V.A.; Ramos, J.D.; Laredo, R.R.; dos Reis Silva, F.O.; Chagas, E.A.; Pasqual, M. Produção e qualidade de frutos de maracujazeiro-amarelo provenientes do cultivo com mudas em diferentes idades. Rev. De Ciências Agroveterinárias 2017, 16, 33–40. [Google Scholar] [CrossRef]
- Bornal, D.R.; Silvestrini, M.M.; Pio, L.A.S.; Costa, A.C.; Peche, P.M.; Ramos, M.C.P. Brazilian position in the international fresh fruit trade network. Rev. Bras. De Frutic. 2021, 43, e021. [Google Scholar] [CrossRef]
- Freire, J.L.d.O.; Nascimento, G.d.S.; Medeiros, A.K.d.A. Teores e acúmulos de nutrientes em mudas de maracujazeiros sob salinidade hídrica e uso de urina de vaca. Nativ. Pesqui. Agrárias E Ambient. 2020, 8, 464–475. [Google Scholar] [CrossRef]
- Sousa, H.C.; Sousa, G.G.; Viana, T.V.A.; Pereira, A.P.A.; Lessa, C.I.N.; Souza, M.V.P.; Guilherme, J.M.S.; Góes, G.F.; Alves, F.G.S.; Gomes, S.P.; et al. Bacillus aryabhattai mitigates the effects of salt and water stress on the agronomic performance of maize under an agroecological system. Agriculture 2023, 13, 1150. [Google Scholar] [CrossRef]
- Sousa, M.G.; Araújo, J.K.S.; Ferreira, T.O.; Andrade, G.R.P.; Araújo Filho, J.C.; Fracetto, F.J.C.; Lima, G.K.; Sousa Júnior, V. Long-term effects of irrigated agriculture on Luvisol pedogenesis in semi-arid region, northeastern Brazil. Catena 2021, 206, 105529. [Google Scholar] [CrossRef]
- Pessoa, L.G.M.; Freire, M.B.G.S.; Green, C.H.M.; Miranda, M.F.A.; Andrade Filho, J.C.; Pessoa, W.R.L.S. Assessment of soil salinity status under different land-use conditions in the semiarid region of Northeastern Brazil. Ecol. Indic. 2022, 141, 109139. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Mashaheet, A.M.; Burkey, K.O. Super absorbent polymers mitigate drought stress in corn (Zea mays L.) grown under rainfed conditions. Agric. Water Manag. 2021, 254, 13. [Google Scholar] [CrossRef]
- Ahmad, S.; Muhammad, I.; Wang, G.Y.; Zeeshan, M.; Yang, L.; Ali, I.; Zhou, X.B. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biol. 2021, 21, 368. [Google Scholar] [CrossRef]
- Pinheiro, F.W.A.; de Lima, G.S.; Gheyi, H.R.; Soares, L.A.d.A.; de Oliveira, S.G.; da Silva, F.A. Gas exchange and yellow passion fruit production under irrigation strategies using brackish water and potassium. Rev. Ciência Agronômica 2022, 53, 1–11. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, H.; Yang, Y.; Feng, X.; Chen, X.; Xiao, F.; Lin, H.; Guo, H. Insights into plant salt stress signaling and tolerance. J. Genet. Genom. 2024, 51, 16–34. [Google Scholar] [CrossRef]
- Barbosa, M.R.; Silva, M.M.d.A.; Willadino, L.; Ulisses, C.; Camara, T.R. Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciência Rural 2014, 44, 453–460. [Google Scholar] [CrossRef]
- Gill, S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Lucho, S.R.; do Amaral, M.N.; Auler, P.A.; Bianchi, V.J.; Ferrer, M.A.; Calderón, A.A.; Braga, E.J.B. Alterações induzidas pelo estresse salino em Stevia rebaudiana Bertoni cultivada in vitro: Efeito no conteúdo de metabólitos, capacidade antioxidante e expressão de genes biossintéticos relacionados a glicosídeos de esteviol. J. Plant Growth Regul. 2019, 38, 1341–1353. [Google Scholar] [CrossRef]
- Noctor, G.; Gomez, L.; Vanacker, H.; Foyer, C.H. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J. Exp. Bot. 2002, 53, 1283–1304. [Google Scholar] [CrossRef]
- Cakmak, I.; Strbac, D.; Marschner, H. Activities of hydrogen peroxide- scavenging enzymes in germination wheat seeds. J. Exp. Bot. 1993, 44, 127–132. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 2021, 10, e277. [Google Scholar] [CrossRef] [PubMed]
- Pereira, Z.C.; Cruz, J.M.A.; Corrêa, R.F.; Sanches, E.A.; Campelo, P.H.; Bezerra, J.A. Passion fruit (Passiflora spp.) pulp: A review on bioactive properties, health benefits and technological potential. Food Res. Int. 2023, 166, 112626. [Google Scholar] [CrossRef]
- Fonseca, A.M.A.; Geraldi, M.V.; Maróstica Junior, M.R.; Silvestre, A.J.D.; Rocha, S.M. Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Res. Int. 2022, 160, 111665. [Google Scholar] [CrossRef]
- de Araújo, H.F.; Costa, R.N.T.; Crisóstomo, J.R.; Saunders, L.C.U.; Moreira, O.d.C.; Macedo, A.B.M. Produtividade e análise de indicadores técnicos do maracujazeiro-amarelo irrigado em diferentes horários. Rev. Bras. De Eng. Agrícola E Ambient. 2012, 16, 159–164. [Google Scholar] [CrossRef]
- Reis, L.C.R.d. Composição Físico-Química e de Compostos Bioativos de Diferentes Espécies de Maracujá, Estabilidade do Suco e Aproveitamento da Farinha da Casca de Maracujá Laranja. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2018. [Google Scholar]
- Faleiro, F.G.; Junqueira, N.T.V.; Junghans, O.N.d.J.; Miranda, D.; Otoni, W.C. Advances in passion fruit (Passiflora spp.) propagation. Rev. Bras. De Frutic. 2019, 41, e155. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance-current assessment. J. Irrig. Drain. Div. ASCE 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Nunes, J.C.; Neto, A.J.d.L.; Cavalcante, L.F.; Pereira, W.E.; Gheyi, H.R.; de Lima, G.S.; de Oliveira, F.F.; Nunes, J.A.d.S. Leaching of salts and production of sour passion fruit irrigated with low- and high-salinity water. Rev. Bras. De Eng. Agrícola E Ambient. 2023, 27, 393–399. [Google Scholar] [CrossRef]
- Ramos, J.G.; de Lima, V.L.A.; de Lima, G.S.; Nunes, K.G.; de Oliveira Pereira, M.; da Silva Paiva, F.J. Produção e qualidade pós-colheita do maracujazeiro-azedo irrigado com águas salinas e aplicação exógena de H2O2. Irriga 2022, 27, 540–556. [Google Scholar] [CrossRef]
- Bezerra, M.A.F.; Cavalcante, L.F.; Bezerra, F.T.C.; Pereira, W.E. Calcium as salinity mitigator on the production components of passion fruit cultivated in protected pits. Rev. Caatinga 2020, 33, 500–508. [Google Scholar] [CrossRef]
- Paiva, F.J.S.; Lima, G.S.; Lima, V.L.A.; Souza, W.B.B.; Soares, L.A.A.; Torres, R.A.F.; Gheyi, H.R.; Pereira, M.O.; Farias, M.S.S.; Silva, A.A.R.; et al. Production and postharvest quality of Passiflora edulis Sims under brackish water and potassium doses. AIMS Agric. Food 2024, 9, 551–567. [Google Scholar] [CrossRef]
- Behdad, A.; Mohsenzadeh, S.; Azizi, M. Growth, leaf gas exchange and physiological parameters of two Glycyrrhiza glabra L. populations subjected to salt stress condition. Rhizosphere 2021, 17, 100319. [Google Scholar] [CrossRef]
- Souto, A.G.d.L.; Cavalcante, L.F.; de Melo, E.N.; Cavalcante, Í.H.L.; da Silva, R.Í.L.; de Lima, G.S.; Gheyi, H.R.; Pereira, W.E.; Neto, V.B.d.P.; de Oliveira, C.J.A.; et al. Salinity and mulching effects on nutrition and production of grafted sour passion fruit. Plants 2023, 12, 1035. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, P.; Krasylenko, Y.; Zeiner, A.; Samaj, J.; Takac, T. Signaling toward ROS scavenging enzymes in plants. Front. Plant Sci. 2020, 11, e2178. [Google Scholar] [CrossRef]
- Junqueira, C.N.; Augusto, S.C. Bigger and sweeter passion fruits: Effect of pollinator enhancement on fruit production and quality. Apidologie 2017, 48, 131–140. [Google Scholar] [CrossRef]
- Freire, J.L.d.O.; Cavalcante, L.F.; Rebequi, A.M.; Dias, T.J.; Nunes, J.C.; Cavalcante, Í.H. Atributos qualitativos do maracujá amarelo produzido com água salina, biofertilizante e cobertura morta no solo. Rev. Bras. De Ciências Agrárias 2010, 5, 102–110. [Google Scholar] [CrossRef]
- Dias, N.d.S.; Blanco, F.F.; de Souza, E.R.; Ferreira, J.F.d.S.; de Sousa Neto, O.N.; de Queiroz, Í.S.R. Efeitos dos sais na planta e tolerância das culturas à salinidade. In Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados; Gheyi, H.R., Dias, N.d.S., de Lacerda, C.F., Gomes Filho, E., Eds.; National Institute of Science and Technology in Salinity: Fortaleza, Brazil, 2016; pp. 151–162. [Google Scholar]
- Silva, L.M.R.; Figueiredo, E.A.T.; Ricardo, N.M.P.S.; Vieira, I.G.P.; Figueiredo, R.W.; Brasil, I.M.; Gomes, C.L. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014, 143, 398–404. [Google Scholar] [CrossRef]
- Nahar, K.; Hasanuzzaman, M.; Alam, M.M.; Fujita, M. Glutathione-induced drought stress tolerance in mung bean: Coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants 2015, 7, e069. [Google Scholar] [CrossRef]
- El Sabagh, A.; Hossain, A.; Barutçular, C.; Iqbal, M.A.; Islam, M.S.; Fahad, S.; Erman, M. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: An outlook of arid and semi-arid regions. Environ. Clim. Plant Veg. Growth 2020, 1, 503–533. [Google Scholar] [CrossRef]
- Brasil. Ministério da Agricultura e do Abastecimento. Regulamento Técnico Geral para Fixação dos Padrões de Identidade e Qualidade para Polpa de Fruta. Instrução normativa n° 37. 2018. Available online: https://www.legisweb.com.br/legislacao/?id=368178 (accessed on 15 June 2025).
- Obi, V.I.; Barriuso, J.J.; Gogorcena, Y. Effects of pH and titratable acidity on the growth and development of Monilinia laxa (Aderh. & Ruhl.) in vitro and in vivo. Eur. J. Plant Pathol. 2018, 151, 781–790. [Google Scholar] [CrossRef]
- Gomes, M.A.C.; Pestana, I.A.; Santa-Catarina, C.; Hauser-Davis, R.A.; SUZUKI, M.S. Salinity effects on photosynthetic pigments, proline, biomass and nitric oxide in Salvinia auriculata Aubl. Acta Limnol. Bras. 2017, 29, e9. [Google Scholar] [CrossRef]
- Koh, Y.S.; Wong, S.K.; Ismail, N.H.; Zengin, G.; Duangjai, A.; Saokaew, S.; Tang, S.Y. Mitigation of environmental stress-impacts in plants: Role of sole and combinatory exogenous application of glutathione. Front. Plant Sci. 2021, 12, e791205. [Google Scholar] [CrossRef]
- Zheng, X.; Gong, M.; Zhang, Q.; Tan, H.; Li, L.; Tang, Y.; Li, Z.; Peng, M.; Deng, W. Metabolism and regulation of ascorbic acid in fruits. Plants 2022, 11, e1602. [Google Scholar] [CrossRef]
- Saddhe, A.A.; Manuka, R.; Penna, S. Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiol. Plant. 2021, 171, 739–755. [Google Scholar] [CrossRef]
- Xu, L.; Zang, E.; Sun, S.; Li, M. Main flavor compounds and molecular regulation mechanisms in fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2022, 3, 11859–11879. [Google Scholar] [CrossRef]
- de Melo, T.A.; Serra, I.M.R.d.S.; Sousa, A.A.; Sousa, T.Y.O.; Pascholati, S.F. Effect of Ascophyllum nodosum seaweed extract on post-harvest ‘Tommy Atkins’ mangoes. Rev. Bras. De Frutic. 2018, 40, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Quek, S.Y. Free and glycosidically bound aroma compounds in fruit: Biosynthesis, transformation, and practical control. Crit. Rev. Food Sci. Nutr. 2023, 63, 9052–9073. [Google Scholar] [CrossRef] [PubMed]
- Ciereszko, I. Regulatory roles of sugars in plant growth and development. Acta Soc. Bot. Pol. 2018, 87, e3583. [Google Scholar] [CrossRef]
- de Lima, G.S.; Dias, A.S.; Gheyi, H.R.; Soares, L.A.d.A.; Andrade, E.M.G. Saline water irrigation and nitrogen fertilization on the cultivation of colored fiber cotton. Rev. Caatinga 2018, 31, 151–160. [Google Scholar] [CrossRef]
- de Lima, G.S.; de Souza, W.B.B.; Paiva, F.J.d.S.; Soares, L.A.d.A.; Torres, R.A.F.; Silva, S.T.d.A.; Gheyi, H.R.; Lopes, K.P. Tolerance of sour passion fruit cultivars to salt stress in a semi-arid region. Rev. Bras. De Eng. Agrícola E Ambient. 2023, 27, 785–794. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes, G.J.L.; Sparovek, G. Koppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Souza, T.M.A.; Mendonça, V.; Sá, F.V.S.; Silva, M.J.; Dourado, C.S.T. Calcium silicate as salt stress attenuator in seedlings of yellow passion fruit cv. BRS GA1. Rev. Caatinga 2020, 33, 509–517. [Google Scholar] [CrossRef]
- Mahmoud, M.; Sadak, M.; Elhamid, E.A. Glutathione induced antioxidant protection against salinity stress in chickpea (Cicer arietinum L.) plant. Egypt. J. Bot. 2017, 57, 293–302. [Google Scholar] [CrossRef]
- Empresa Brasileira De Pesquisa Agropecuária—Embrapa. Híbrido de Maracujazeiro Azedo BRS Gigante Amarelo: Recomendações Básicas de Cultivo, 2nd ed.; Embrapa Cerrado: Brasília, Brazil, 2008; 2p. [Google Scholar]
- Novais, R.F.; Neves, J.C.L.; Barros, N.F. Ensaio em ambiente controlado. In Métodos de Pesquisa em Fertilidade do Solo; Oliveira, A.J., Ed.; Embrapa SEA: Brasília, Brazil, 1991; Chapter 12; pp. 189–253. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília, Brazil, 2017; 573p. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2022; 401p. Available online: https://www.nrcs.usda.gov/resources/guides-and-instructions/keys-to-soil-taxonomy (accessed on 15 June 2025).
- Silva Júnior, L.G.A.; Gheyi, H.R.; Medeiros, J.F. Composição química de água do cristalino do Nordeste Brasileiro. Rev. Bras. De Eng. Agrícola E Ambient. 1999, 3, 11–17. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; Department of Agriculture: Washington, DC, USA, 1954; p. 160. [Google Scholar] [CrossRef]
- da Costa, A.d.F.S.; da Costa, A.N.; Ventura, J.A.; Fanton, C.J.; Lima, I.d.M.; Caetano, L.C.S.; de Santana, E.N. Recomendações Técnicas Para o Cultivo do Maracujazeiro; Incaper: Vitória, Brazil, 2008; 56p. [Google Scholar]
- Instituto Adolfo Lutz—IAL. Normas Analíticas do Instituto Adolfo Lutz. v.1: Métodos Químicos e Físicos Para Análise de Alimentos, 3rd ed.; IMESP: São Paulo, Brazil, 2008; 1020p. [Google Scholar]
- Hodge, J.E.; Hodfreiter, B.R. Determination of reducing sugars and carbohydrates. Methods Carbohydr. Chem. 1962, 1, 390–394. [Google Scholar]
- Bione, M.A.A.; Soares, T.M.; Cova, A.M.W.; Paz, V.P.S.; Gheyi, H.R.; Rafael, M.R.S.; Modesto, F.J.N.; Santana, J.A.; Neves, B.S.L. Hydroponic production of ‘Biquinho’ pepper with brackish water. Agric. Water Manag. 2021, 245, 106607. [Google Scholar] [CrossRef]
- Ferreira, D.F. SISVAR: A computer analysis system to fixed effects split plot type designs. Rev. Bras. De Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef]
Sources of Variation | F-Test | ||||
---|---|---|---|---|---|
TNFs | PROD | AFW | PV | PY | |
Brackish water (Bw) | ** | ** | ** | ** | ** |
Linear regression | ** | ** | ** | ** | ** |
Quadratic regression | ns | ns | ns | ** | ** |
Reduced glutathione (GSH) | * | ns | ns | ** | ns |
Linear regression | ** | ns | ns | ** | ns |
Quadratic regression | ns | ns | ns | ns | ns |
Interaction (Bw × GSH) | ns | * | ns | ** | ** |
Blocks | ns | ns | ns | ns | ns |
CV (%) | 12.19 | 10.95 | 15.89 | 8.85 | 6.76 |
Sources of Variation | F-Test | |||
---|---|---|---|---|
pH | SSs | TA | SSs/TA | |
Brackish water (Bw) | ** | ** | ** | ** |
Linear regression | ** | ns | ** | ** |
Quadratic regression | * | ** | ns | ** |
Reduced glutathione (GSH) | ** | ** | ** | ** |
Linear regression | ** | ** | ** | * |
Quadratic regression | ns | ** | ** | ** |
Interaction (Bw × GSH) | ** | ** | ** | ** |
Blocks | ns | ns | ns | ns |
CV (%) | 4.80 | 6.14 | 3.80 | 7.44 |
Sources of Variation | F-Test | ||||
---|---|---|---|---|---|
AA | RSs | NRSs | TSs | WC | |
Brackish water (Bw) | ** | ** | ** | ** | ** |
Linear regression | ** | ** | ns | * | ** |
Quadratic regression | * | ** | ** | ** | ns |
Reduced glutathione (GSH) | ** | ** | ** | ** | ns |
Linear regression | ** | ** | ns | ns | ns |
Quadratic regression | ns | ns | ** | ** | ns |
Interaction (Bw × GSH) | ** | ** | * | ** | ns |
Blocks | ns | ns | ns | ns | ns |
CV (%) | 5.61 | 8.88 | 25.96 | 11.11 | 5.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, W.B.B.; Lima, G.S.d.; Soares, L.A.d.A.; Dias, M.d.S.; Lima, B.d.M.; Santos, L.F.S.; Oliveira, V.K.N.; Torres, R.A.F.; Gheyi, H.R.; Borborema, L.D.A.; et al. Reduced Glutathione in Modulation of Salt Stress on Sour Passion Fruit Production and Quality. Plants 2025, 14, 2149. https://doi.org/10.3390/plants14142149
de Souza WBB, Lima GSd, Soares LAdA, Dias MdS, Lima BdM, Santos LFS, Oliveira VKN, Torres RAF, Gheyi HR, Borborema LDA, et al. Reduced Glutathione in Modulation of Salt Stress on Sour Passion Fruit Production and Quality. Plants. 2025; 14(14):2149. https://doi.org/10.3390/plants14142149
Chicago/Turabian Stylede Souza, Weslley Bruno Belo, Geovani Soares de Lima, Lauriane Almeida dos Anjos Soares, Mirandy dos Santos Dias, Brencarla de Medeiros Lima, Larissa Fernanda Souza Santos, Valeska Karolini Nunes Oliveira, Rafaela Aparecida Frazão Torres, Hans Raj Gheyi, Lucyelly Dâmela Araújo Borborema, and et al. 2025. "Reduced Glutathione in Modulation of Salt Stress on Sour Passion Fruit Production and Quality" Plants 14, no. 14: 2149. https://doi.org/10.3390/plants14142149
APA Stylede Souza, W. B. B., Lima, G. S. d., Soares, L. A. d. A., Dias, M. d. S., Lima, B. d. M., Santos, L. F. S., Oliveira, V. K. N., Torres, R. A. F., Gheyi, H. R., Borborema, L. D. A., da Silva, A. A. R., Silva, V. M. B. d., & Sousa, V. F. d. O. (2025). Reduced Glutathione in Modulation of Salt Stress on Sour Passion Fruit Production and Quality. Plants, 14(14), 2149. https://doi.org/10.3390/plants14142149