Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities
Abstract
1. Introduction
2. Significance of Treated Wastewater in Irrigation
2.1. Environmental and Societal Drivers of Using Treated Wastewater for Irrigation
2.2. Barriers/Challenges in Using Treated Wastewater in Irrigation
2.2.1. Impact of pH in Wastewater
2.2.2. Impact of Salinity on Wastewater
2.2.3. Microbiological and Chemical Risks
2.3. Country-Wise Reuse Trends and Potential of Treated Wastewater in Agronomic Usages
2.4. Advanced Wastewater Treatment Technologies for Producing Irrigation-Quality Water
2.5. Public Perceptions of Treated Wastewater Irrigation
3. Environmental, Economic, and Social Benefits
3.1. Environmental Benefits
3.2. Economic Benefits
3.3. Social and Health Benefits
4. Recommendations for Future Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brenton, P.; Chemutai, V.; Pangestu, M. Trade and Food Security in a Climate Change-impacted World. Agric. Econ. 2022, 53, 580–591. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C. Perception of and Adaptation to Climate Change by Farmers in the Nile Basin of Ethiopia. J. Agric. Sci. 2011, 149, 23–31. [Google Scholar] [CrossRef]
- Sissoko, K.; Van Keulen, H.; Verhagen, J.; Tekken, V.; Battaglini, A. Agriculture, Livelihoods and Climate Change in the West African Sahel. Reg. Environ. Chang. 2011, 11, 119–125. [Google Scholar] [CrossRef]
- Sultan, B. Global Warming Threatens Agricultural Productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 041001. [Google Scholar] [CrossRef]
- Franke, J.; Drewniak, B.; Renchon, A.; Jin, Z.; Kumar, V.; Guan, K.; Peng, B.; Cacho, J.; Walston, L.; Moyer, E. Land Surface Modeling 2.0 for Agricultural Climate Change Impact Assessments; AI4ESP—1045; Artificial Intelligence for Earth System Predictability (AI4ESP) Collaboration: Lemont, IL, USA, 2021; p. 1769734. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- He, L.; Rosa, L. Solutions to Agricultural Green Water Scarcity under Climate Change. PNAS Nexus 2023, 2, pgad117. [Google Scholar] [CrossRef]
- Kouassi, A.M.; Gnangouin, A.Y.J.; Konan, G.R.; Nassa, R.A.-K. Impacts of Climate Change on Water Stress in West Africa: Case Study of the N’zi (Bandama) Watershed in Côte d’Ivoire. IJECC 2022, 12, 472–483. [Google Scholar] [CrossRef]
- Łabędzki, L. Actions and Measures for Mitigation Drought and Water Scarcity in Agriculture. J. Water Land Dev. 2016, 29, 3–10. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global Agricultural Economic Water Scarcity. Sci. Adv. 2020, 6, eaaz6031. [Google Scholar] [CrossRef]
- Ullah, M.J.; Islam, M.M.; Fatima, K.; Mahmud, M.S.; Islam, M.R. Yield and Yield Attributes of Two Exotic White Maize Hybrids at Different Agroclimatic Regions of Bangladesh under Varying Fertilizer Doses. AAEOA 2019, 2, 65–71. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.Á.; López-Felices, B.; Balacco, G. Adopting Sustainable Water Management Practices in Agriculture Based on Stakeholder Preferences. Agric. Econ.-Czech 2022, 68, 317–326. [Google Scholar] [CrossRef]
- Boularbah, S.; El Khoumsi, W.; Bourziza, R.; Bourioug, M.; Abouabdillah, A. Treated Waste Water Reuse in Agriculture: An Overview. E3S Web Conf. 2024, 492, 05002. [Google Scholar] [CrossRef]
- Neima, H.; Ati, A.; Rahim, B.; Qadir, N.; Fattah, N. Cauliflower Water Productivity, Growth, and Yield in Response to Irrigation Management Using Different Water Sources إنتاجیة المیاه ، نمو وحاصل نبات القرنبیط تحت ادارة نظام الری باستخدام مصادر مختلفة للری. J. Plant Prod. 2020, 11, 501–504. [Google Scholar] [CrossRef]
- Renai, L.; Tozzi, F.; Scordo, C.V.; Giordani, E.; Bruzzoniti, M.C.; Fibbi, D.; Mandi, L.; Ouazzani, N.; Del Bubba, M. Productivity and Nutritional and Nutraceutical Value of Strawberry Fruits (Fragariax ananassa Duch.) Cultivated under Irrigation with Treated Wastewaters. J. Sci. Food Agric. 2021, 101, 1239–1246. [Google Scholar] [CrossRef]
- Khaled Abdella Ahmed, A.; Shalaby, M.; Negim, O.; Abdel-Wahed, T. Comparative Study of the Egyptian Code for Reusing Treated Wastewater for Agriculture. Sohag Eng. J. 2022, 2, 1–14. [Google Scholar] [CrossRef]
- Salem, H.S. Socioeconomic, Environmental, and Health Impacts of Reusing Treated Wastewater in Agriculture in Some Arab Countries, Including Occupied Palestine, in View of Climate Change. NRCR 2023, 6, 2229. [Google Scholar] [CrossRef]
- Bhatt, P.; Huang, J.-Y.; Brown, P.; Shivaram, K.B.; Yakamercan, E.; Simsek, H. Electrochemical Treatment of Aquaculture Wastewater Effluent and Optimization of the Parameters Using Response Surface Methodology. Environ. Pollut. 2023, 331, 121864. [Google Scholar] [CrossRef]
- Chand, J.; Jha, S.; Shrestha, S. Recycled Wastewater Usage: A Comprehensive Review for Sustainability of Water Resources. Recent Prog. Mater. 2022, 04, 1–20. [Google Scholar] [CrossRef]
- Kunz, N.C.; Fischer, M.; Ingold, K.; Hering, J.G. Drivers for and against Municipal Wastewater Recycling: A Review. Water Sci. Technol. 2016, 73, 251–259. [Google Scholar] [CrossRef]
- Jiang, X. Wastewater Treatment and Recycling of Western Sydney Airport. Archit. Eng. Sci. 2022, 3, 255. [Google Scholar] [CrossRef]
- Philipp, M.; Masmoudi Jabri, K.; Wellmann, J.; Akrout, H.; Bousselmi, L.; Geißen, S.-U. Slaughterhouse Wastewater Treatment: A Review on Recycling and Reuse Possibilities. Water 2021, 13, 3175. [Google Scholar] [CrossRef]
- Izadi, A.; Hosseini, M.; Najafpour Darzi, G.; Nabi Bidhendi, G.; Pajoum Shariati, F. Treatment of Paper-Recycling Wastewater by Electrocoagulation Using Aluminum and Iron Electrodes. J. Environ. Health Sci. Eng. 2018, 16, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.T.; Do, A.T.; Pham, T.H.; Nguyen, K.T.; Duong, H.C. Decentralised, Small-Scale Coagulation-Membrane Treatment of Wastewater from Metal Recycling Villages—A Case Study from Vietnam. Water Sci. Technol. 2020, 82, 2125–2133. [Google Scholar] [CrossRef]
- Yakamercan, E.; Bhatt, P.; Aygun, A.; Adesope, A.W.; Simsek, H. Comprehensive Understanding of Electrochemical Treatment Systems Combined with Biological Processes for Wastewater Remediation. Environ. Pollut. 2023, 330, 121680. [Google Scholar] [CrossRef]
- Al Hamedi, F.H.; Kandhan, K.; Liu, Y.; Ren, M.; Jaleel, A.; Alyafei, M.A.M. Wastewater Irrigation: A Promising Way for Future Sustainable Agriculture and Food Security in the United Arab Emirates. Water 2023, 15, 2284. [Google Scholar] [CrossRef]
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of Its Applications and Health Implications. Water Air Soil Pollut. 2021, 232, 208. [Google Scholar] [CrossRef]
- Alzahrani, F.; Elsebaei, M.; Tawfik, R. Public Acceptance of Treated Wastewater Reuse in the Agricultural Sector in Saudi Arabia. Sustainability 2023, 15, 15434. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Hussain, M.I.; Ismail, S.; Khan, Q.M. Evaluating Heavy Metal Accumulation and Potential Health Risks in Vegetables Irrigated with Treated Wastewater. Chemosphere 2016, 163, 54–61. [Google Scholar] [CrossRef]
- Shamsizadeh, Z.; Ehrampoush, M.H.; Nikaeen, M.; Mokhtari, M.; Rahimi, M.; Khanahmad, H.; Mohammadi, F. Tracking Antibiotic Resistance Genes and Class 1 Integrons in Escherichia coli Isolates from Wastewater and Agricultural Fields. Water Sci. Technol. 2021, 84, 1182–1189. [Google Scholar] [CrossRef]
- Ozkay, F.; Tas, I.; Ozkandan, H.; Gunal, A.C. Biological Risks oF Waste Water for Irrigation. CTNS 2022, 11, 54–66. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F.M. Health Risk Assessment of Heavy Metals via Dietary Intake of Foodstuffs from the Wastewater Irrigated Site of a Dry Tropical Area of India. Food Chem. Toxicol. 2010, 48, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Abonyi, M.N.; Obi, C.C.; Nwabanne, J.T.; Aniagor, C.O. Emerging and Ecofriendly Biological Methods for Agricultural Wastewater Treatment. Environ. Syst. Res. 2024, 13, 45. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Hari, D.; Ramamohan Reddy, K. Analysis and Suitability of Treated Wastewater of Various Units at Amberpet STP, Hyderabad. IOP Conf. Ser. Earth Environ. Sci. 2022, 982, 012037. [Google Scholar] [CrossRef]
- Pandey, B.C. Review: Reuse of Treated Wastewater. IJRASET 2022, 10, 1915–1918. [Google Scholar] [CrossRef]
- Mazhar, I.; Saima, N.; Mehdi, G.; Amir, P.; Ashen, G.; Chadndima, G. Treatment of Wastewater for Agricultural Applications in Regions of Water Scarcity. Biointerface Res. Appl. Chem. 2021, 12, 6336–6360. [Google Scholar] [CrossRef]
- Tsiropoulos, Z.; Skoubris, E.; Fountas, S.; Gravalos, I.; Gemtos, T. Development of an Energy Efficient and Fully Autonomous Low-Cost IoT System for Irrigation Scheduling in Water-Scarce Areas Using Different Water Sources. Agriculture 2022, 12, 1044. [Google Scholar] [CrossRef]
- Santos, A.F.; Alvarenga, P.; Gando-Ferreira, L.M.; Quina, M.J. Urban Wastewater as a Source of Reclaimed Water for Irrigation: Barriers and Future Possibilities. Environments 2023, 10, 17. [Google Scholar] [CrossRef]
- Koné, W.M.; Atindehou, K.K.; Terreaux, C.; Hostettmann, K.; Traoré, D.; Dosso, M. Traditional Medicine in North Côte-d’Ivoire: Screening of 50 Medicinal Plants for Antibacterial Activity. J. Ethnopharmacol. 2004, 93, 43–49. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, J.; Lei, Y.; Qin, D.; Cai, W.; Chen, X.; Ma, C.; Zhu, X.; Zhang, S.; Sun, Q. Impacts of Reclaimed Water Irrigation on Soil Salinity, Nutrient Cycling, and Landscape Plant Growth in a Coastal Monsoon Environment. Water 2025, 17, 337. [Google Scholar] [CrossRef]
- Ansari, S.; Alavi, J.; Ghafoori, M. A Technical Model for Reclaimed Water Reuse in Agricultural Irrigation: A Case Study in Kordkuy, Iran. Environ. Earth Sci. 2018, 77, 90. [Google Scholar] [CrossRef]
- Dickin, S.K.; Schuster-Wallace, C.J.; Qadir, M.; Pizzacalla, K. A Review of Health Risks and Pathways for Exposure to Wastewater Use in Agriculture. Environ. Health Perspect. 2016, 124, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Christou, A.; Beretsou, V.G.; Iakovides, I.C.; Karaolia, P.; Michael, C.; Benmarhnia, T.; Chefetz, B.; Donner, E.; Gawlik, B.M.; Lee, Y.; et al. Sustainable Wastewater Reuse for Agriculture. Nat. Rev. Earth Environ. 2024, 5, 504–521. [Google Scholar] [CrossRef]
- Bierkens, M.F.P.; Wada, Y. Non-Renewable Groundwater Use and Groundwater Depletion: A Review. Environ. Res. Lett. 2019, 14, 063002. [Google Scholar] [CrossRef]
- Khan, M.M.; Siddiqi, S.A.; Farooque, A.A.; Iqbal, Q.; Shahid, S.A.; Akram, M.T.; Rahman, S.; Al-Busaidi, W.; Khan, I. Towards Sustainable Application of Wastewater in Agriculture: A Review on Reusability and Risk Assessment. Agronomy 2022, 12, 1397. [Google Scholar] [CrossRef]
- Cao, K.-F.; Chen, Z.; Wu, Y.-H.; Mao, Y.; Shi, Q.; Chen, X.-W.; Bai, Y.; Li, K.; Hu, H.-Y. The Noteworthy Chloride Ions in Reclaimed Water: Harmful Effects, Concentration Levels and Control Strategies. Water Res. 2022, 215, 118271. [Google Scholar] [CrossRef]
- Benelhadj, L.; Nortes-Tortosa, P.A.; Alarcón, J.J.; Ponce-Robles, L. Impact of the Use of Different Types of Quaternary Treated Wastewater Effluents in Carrot Crops Growing: Uptake and Accumulation of Contaminants of Emerging Concern in Soil-Plant System and Human Health Implications. Chemosphere 2024, 368, 143697. [Google Scholar] [CrossRef]
- Aliste, M.; Hernández, V.; El Aatik, A.; Pérez-Lucas, G.; Fenoll, J.; Navarro, S. Coupled Bio-Solar Photocatalytic Treatment for Reclamation of Water Polluted with Pharmaceutical and Pesticide Residues: Impact on Tomato Irrigation. Ecotoxicol. Environ. Saf. 2024, 287, 117291. [Google Scholar] [CrossRef]
- Casale, B.; Libutti, A.; Salerno, C.; Berardi, G.; Vergine, P. Protecting Groundwater in Intensive Agricultural Areas through Irrigation with Treated Wastewater: Focus on Nitrate, Salt, and Escherichia Coli. Clean. Water 2024, 1, 100006. [Google Scholar] [CrossRef]
- Romero-Trigueros, C.; Mirás-Avalos, J.M.; Bayona, J.M.; Nortes, P.A.; Alarcón, J.J.; Nicolás, E. Long-Term Effects of Combining Reclaimed and Freshwater on Mandarin Tree Performance. Agric. Water Manag. 2024, 305, 109113. [Google Scholar] [CrossRef]
- Mansilla, S.; Escolà, M.; Piña, B.; Portugal, J.; Iakovides, I.C.; Beretsou, V.G.; Christou, A.; Fatta-Kassinos, D.; Bayona, J.M.; Matamoros, V. Linking the Use of Reclaimed Water to Indicators of Crop Stress by Metabolomic and Transcriptomic Analyses. A Tool to Compare Water Irrigation Quality. Sci. Total Environ. 2024, 908, 168182. [Google Scholar] [CrossRef] [PubMed]
- García-Valverde, M.; Cortes-Corrales, L.; Gómez-Ramos, M.M.; Martínez-Bueno, M.J.; Fernández-Alba, A.R. Evaluation of Chemical Contamination of Crops Produced in Greenhouse by Irrigation with Reclaimed Water. Sci. Total Environ. 2024, 912, 169454. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, M.; Carbone, V.; Ricci, I.; Pace, B.; Cefola, M.; Minasi, P.; Garofalo, S.P.; Camposeo, S.; Tallou, A.; Vivaldi, G.A. Qualitative and Biochemical Characteristics of Pomegranate Fruit Grown Using Reclaimed Water and Low Input Fertigation Treatments at Harvest and during Storage. Heliyon 2024, 10, e34430. [Google Scholar] [CrossRef]
- Mazahrih, N.T.; Albalawneh, A.; Bani Hani, N.; Khadra, R.; Abo Dalo, A.; Al-Omari, Y.; Alomari, B.; Abu Hammad, M.; Martin, I.; Fahd, K.; et al. Impact of Reclaimed Wastewater on Alfalfa Production under Different Irrigation Methods. Water Pract. Technol. 2024, 19, 2226–2236. [Google Scholar] [CrossRef]
- Souza Filho, E.J.; Barros, K.K.; Bezerra Neto, E.; Gavazza, S.; Florencio, L.; Kato, M.T. Effect of Reclaimed Water and Dehydrated Sludge on the Morpho-Physiology and Yield of Sorghum. Environ. Technol. 2024, 45, 3479–3495. [Google Scholar] [CrossRef]
- Mendoza-Grimón, V.; Amorós, R.; Fernández-Vera, J.R.; Lopes da Veiga, E.; Palacios-Díaz, M.d.P. Utilising Reclaimed Water for Papaya (Carica papaya L.) Cultivation in Cape Verde: A Detailed Case Study. Agronomy 2024, 14, 2726. [Google Scholar] [CrossRef]
- Alcaide Zaragoza, C.; González Perea, R.; Fernández García, I.; Camacho Poyato, E.; Rodríguez Díaz, J.A. Open Source Application for Optimum Irrigation and Fertilization Using Reclaimed Water in Olive Orchards. Comput. Electron. Agric. 2020, 173, 105407. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, M.; Gao, L.; Wu, W.; Xu, D. Uptake, Translocation and Health Risk Assessment of Nonylphenol in Vegetables under Reclaimed Water Irrigation. Irrig. Drain. 2024, 74, 627–640. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, H.; Shen, J.; Yan, Q.; Feng, G. Municipal-Treated Wastewater as a Practical Alternative to Conventional Rice Irrigation: Effects on Antibiotic Resistance Genes, Virulence Factors and Human Bacterial Pathogens in Soil, and Responses of Rice Grain Quality. Chemosphere 2024, 366, 143458. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Wang, J.; Xing, W.; Fan, H.; Li, B. Impacts of Reclaimed Water Irrigation on the Accumulation of Pharmaceutical and Personal Care Products in Soil and Cereals. Irrig. Sci. 2023, 42, 419–430. [Google Scholar] [CrossRef]
- Manasfi, R.; Brienza, M.; Ait-Mouheb, N.; Montemurro, N.; Perez, S.; Chiron, S. Impact of Long-Term Irrigation with Municipal Reclaimed Wastewater on the Uptake and Degradation of Organic Contaminants in Lettuce and Leek. Sci. Total Environ. 2021, 765, 142742. [Google Scholar] [CrossRef] [PubMed]
- Mola, M.; Kougias, P.G.; Statiris, E.; Papadopoulou, P.; Malamis, S.; Monokrousos, N. Short-Term Effect of Reclaimed Water Irrigation on Soil Health, Plant Growth and the Composition of Soil Microbial Communities. Sci. Total Environ. 2024, 949, 175107. [Google Scholar] [CrossRef] [PubMed]
- Lema, M.W. Wastewater Crisis in East African Cities: Challenges and Emerging Opportunities. Discov. Environ. 2025, 3, 18. [Google Scholar] [CrossRef]
- Fito, J.; Van Hulle, S.W.H. Wastewater Reclamation and Reuse Potentials in Agriculture: Towards Environmental Sustainability. Environ. Dev. Sustain. 2021, 23, 2949–2972. [Google Scholar] [CrossRef]
- Partyka, M.L.; Bond, R.F. Wastewater Reuse for Irrigation of Produce: A Review of Research, Regulations, and Risks. Sci. Total Environ. 2022, 828, 154385. [Google Scholar] [CrossRef]
- Yalin, D.; Craddock, H.A.; Assouline, S.; Ben Mordechay, E.; Ben-Gal, A.; Bernstein, N.; Chaudhry, R.M.; Chefetz, B.; Fatta-Kassinos, D.; Gawlik, B.M.; et al. Mitigating Risks and Maximizing Sustainability of Treated Wastewater Reuse for Irrigation. Water Res. X 2023, 21, 100203. [Google Scholar] [CrossRef]
- Leonel, L.P.; Tonetti, A.L. Wastewater Reuse for Crop Irrigation: Crop Yield, Soil and Human Health Implications Based on Giardiasis Epidemiology. Sci. Total Environ. 2021, 775, 145833. [Google Scholar] [CrossRef]
- Pistocchi, A.; Aloe, A.; Dorati, C.; Alcalde Sanz, L.; Bouraoui, F.; Gawlik, B.; Grizzetti, B.; Pastori, M.; Vigiak, O. The Potential of Water Reuse for Agricultural Irrigation in the EU a Hydro-Economic Analysis; Publications Office of the European Union: Luxembourg, 2018; ISBN 9789279772108. [Google Scholar]
- Mishra, S.; Kumar, R.; Kumar, M. Use of Treated Sewage or Wastewater as an Irrigation Water for Agricultural Purposes- Environmental, Health, and Economic Impacts. Total Environ. Res. Themes 2023, 6, 100051. [Google Scholar] [CrossRef]
- Arborea, S.; Giannoccaro, G.; de Gennaro, B.C.; Iacobellis, V.; Piccinni, A.F. Cost-Benefit Analysis of Wastewater Reuse in Puglia, Southern Italy. Water 2017, 9, 175. [Google Scholar] [CrossRef]
- Expósito, A.; Lorenzo Lopez, A.M.; Berbel, J. How Much Does Reclaimed Wastewater Cost? A Comprehensive Analysis for Irrigation Uses in the European Mediterranean Context. Water Reuse 2024, 14, 434–447. [Google Scholar] [CrossRef]
- Qureshi, A.S. Challenges and Prospects of Using Treated Wastewater to Manage Water Scarcity Crises in the Gulf Cooperation Council (GCC) countries. Water 2020, 12, 1971. [Google Scholar] [CrossRef]
- Chand, J.; Hewa, G.; Hassanli, A.; Myers, B. Effects of Water Stress and Quality on Residual Soil Macronutrients and Root-Zone Salinity for Tomato Production in A Protected Cropping Environment. Int. J. Agric. Environ. Bioresearch 2022, 07, 99–115. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shahrivar, A.A.; Hagare, D.; Maheshwari, B. Impact of Recycled Water Irrigation on Soil Salinity and Its Remediation. Soil Syst. 2022, 6, 13. [Google Scholar] [CrossRef]
- Isidoro, D.; Grattan, S.R. Predicting Soil Salinity in Response to Different Irrigation Practices, Soil Types and Rainfall Scenarios. Irrig. Sci. 2011, 29, 197–211. [Google Scholar] [CrossRef]
- Du, Y.; Liu, X.; Zhang, L.; Zhou, W. Drip Irrigation in Agricultural Saline-Alkali Land Controls Soil Salinity and Improves Crop Yield: Evidence from a Global Meta-Analysis. Sci. Total Environ. 2023, 880, 163226. [Google Scholar] [CrossRef]
- Muttamara, S. Wastewater Characteristics. Resources, conservation and recycling. 1996, 16, 145–159. [Google Scholar] [CrossRef]
- Schwabe, K.; Nemati, M.; Amin, R.; Tran, Q.; Jassby, D. Unintended Consequences of Water Conservation on the Use of Treated Municipal Wastewater. Nat. Sustain. 2020, 3, 628–635. [Google Scholar] [CrossRef]
- Ayoub, S.; Al-Shdiefat, S.; Rawashdeh, H.; Bashabsheh, I. Utilization of Reclaimed Wastewater for Olive Irrigation: Effect on Soil Properties, Tree Growth, Yield and Oil Content. Agric. Water Manag. 2016, 176, 163–169. [Google Scholar] [CrossRef]
- Jahany, M.; Rezapour, S. Assessment of the Quality Indices of Soils Irrigated with Treated Wastewater in a Calcareous Semi-Arid Environment. Ecol. Indic. 2020, 109, 105800. [Google Scholar] [CrossRef]
- Lado, M.; Bar-Tal, A.; Azenkot, A.; Assouline, S.; Ravina, I.; Erner, Y.; Fine, P.; Dasberg, S.; Ben-Hur, M. Changes in Chemical Properties of Semiarid Soils under Long-Term Secondary Treated Wastewater Irrigation. Soil Sci. Soc. Am. J. 2012, 76, 1358–1369. [Google Scholar] [CrossRef]
- Kurtzman, D.; Kanner, B.; Levy, Y.; Nitsan, I.; Bar-Tal, A. Maintaining Intensive Agriculture Overlying Aquifers Using the Threshold Nitrate Root-uptake Phenomenon. J. Environ. Qual. 2021, 50, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Mohanavelu, A.; Naganna, S.R.; Al-Ansari, N. Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture 2021, 11, 983. [Google Scholar] [CrossRef]
- Da’as, A.; Walraevens, K. Groundwater Salinity in Jericho Area, West Bank, Palestine. In SWIM 21: 21st Salt Water Intrusion meeting: Proceedings Book; Condesso de Melo, M.T., Lebbe, L., Cruz, J.V., Coutinho, R., Langevin, C., Buxo, A., Eds.; University of Azores: Ponta Delgad, Portugal, 2010; pp. 28–31. [Google Scholar]
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S.; et al. Critical Knowledge Gaps and Research Priorities in Global Soil Salinity. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2021; Volume 169, pp. 1–191. ISBN 9780128245903. [Google Scholar]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity Induced Physiological and Biochemical Changes in Plants: An Omic Approach towards Salt Stress Tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Kronzucker, H.; Coskun, D.; Schulze, L.; Wong, J.; Britto, D. Sodium as Nutrient and Toxicant. Plant Soil 2013, 369, 1–23. [Google Scholar] [CrossRef]
- Singh, A. A Review of Wastewater Irrigation: Environmental Implications. Resour. Conserv. Recycl. 2021, 168, 105454. [Google Scholar] [CrossRef]
- Fatta-Kassinos, D.; Kalavrouziotis, I.K.; Koukoulakis, P.H.; Vasquez, M.I. The Risks Associated with Wastewater Reuse and Xenobiotics in the Agroecological Environment. Sci. Total Environ. 2011, 409, 3555–3563. [Google Scholar] [CrossRef]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The Potential Implications of Reclaimed Wastewater Reuse for Irrigation on the Agricultural Environment: The Knowns and Unknowns of the Fate of Antibiotics and Antibiotic Resistant Bacteria and Resistance Genes—A Review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef]
- Al-Hazmi, H.E.; Mohammadi, A.; Hejna, A.; Majtacz, J.; Esmaeili, A.; Habibzadeh, S.; Saeb, M.R.; Badawi, M.; Lima, E.C.; Mąkinia, J. Wastewater Reuse in Agriculture: Prospects and Challenges. Environ. Res. 2023, 236, 116711. [Google Scholar] [CrossRef]
- Adegoke, A.A.; Amoah, I.D.; Stenström, T.A.; Verbyla, M.E.; Mihelcic, J.R. Epidemiological Evidence and Health Risks Associated with Agricultural Reuse of Partially Treated and Untreated Wastewater: A Review. Front. Public Health 2018, 6, 337. [Google Scholar] [CrossRef]
- Verlicchi, P.; Lacasa, E.; Grillini, V. Quantitative and Qualitative Approaches for CEC Prioritization When Reusing Reclaimed Water for Irrigation Needs—A Critical Review. Sci. Total Environ. 2023, 900, 165735. [Google Scholar] [CrossRef]
- Weidhaas, J.; Olsen, M.; McLean, J.E.; Allen, N.; Ahmadi, L.; Duodu, K.; Dupont, R. Microbial and Chemical Risk from Reclaimed Water Use for Residential Irrigation. J. Water Reuse Desalination 2022, 12, 289–303. [Google Scholar] [CrossRef]
- Hashem, M.S.; Qi, X. Bin Treated Wastewater Irrigation—A Review. Water 2021, 13, 1527. [Google Scholar] [CrossRef]
- Silva, J.A. Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability 2023, 15, 10940. [Google Scholar] [CrossRef]
- Tortajada, C. Contributions of Recycled Wastewater to Clean Water and Sanitation Sustainable Development Goals. NPJ Clean Water 2020, 3, 22. [Google Scholar] [CrossRef]
- Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and Regional Potential of Wastewater as a Water, Nutrient and Energy Source. Nat. Resour. Forum 2020, 44, 40–51. [Google Scholar] [CrossRef]
- Jones, E.R.; Van Vliet, M.T.H.; Qadir, M.; Bierkens, M.F.P. Country-Level and Gridded Estimates of Wastewater Production, Collection, Treatment and Reuse. Earth Syst. Sci. Data 2021, 13, 237–254. [Google Scholar] [CrossRef]
- Helmecke, M.; Fries, E.; Schulte, C. Regulating Water Reuse for Agricultural Irrigation: Risks Related to Organic Micro-Contaminants. Environ. Sci Eur. 2020, 32, 4. [Google Scholar] [CrossRef]
- Ait-Mouheb, N.; Bahri, A.; Thayer, B.B.; Benyahia, B.; Bourrié, G.; Cherki, B.; Condom, N.; Declercq, R.; Gunes, A.; Héran, M.; et al. The Reuse of Reclaimed Water for Irrigation around the Mediterranean Rim: A Step towards a More Virtuous Cycle? Reg. Environ. Chang. 2018, 18, 693–705. [Google Scholar] [CrossRef]
- Angelakis, A.; Snyder, S. Wastewater Treatment and Reuse: Past, Present, and Future. Water 2015, 7, 4887–4895. [Google Scholar] [CrossRef]
- Savchenko, O.M.; Kecinski, M.; Li, T.; Messer, K.D. Reclaimed Water and Food Production: Cautionary Tales from Consumer Research. Environ. Res. 2019, 170, 320–331. [Google Scholar] [CrossRef]
- Kumar, R.; Qureshi, M.; Vishwakarma, D.K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A Review on Emerging Water Contaminants and the Application of Sustainable Removal Technologies. Case Stud. Chem. Environ. Eng. 2022, 6, 100219. [Google Scholar] [CrossRef]
- Rout, P.R.; Shahid, M.K.; Dash, R.R.; Bhunia, P.; Liu, D.; Varjani, S.; Zhang, T.C.; Surampalli, R.Y. Nutrient Removal from Domestic Wastewater: A Comprehensive Review on Conventional and Advanced Technologies. J. Environ. Manag. 2021, 296, 113246. [Google Scholar] [CrossRef] [PubMed]
- Garcia, X.; Pargament, D. Reusing Wastewater to Cope with Water Scarcity: Economic, Social and Environmental Considerations for Decision-Making. Resour. Conserv. Recycl. 2015, 101, 154–166. [Google Scholar] [CrossRef]
- Singh, B.J.; Chakraborty, A.; Sehgal, R. A Systematic Review of Industrial Wastewater Management: Evaluating Challenges and Enablers. J. Environ. Manag. 2023, 348, 119230. [Google Scholar] [CrossRef]
- Adewumi, J.R.; Ilemobade, A.A.; Van Zyl, J.E. Factors Predicting the Intention to Accept Treated Wastewater Reuse for Non-Potable Uses amongst Domestic and Non-Domestic Respondents. J. S. Afr. Inst. Civ. Eng. J. Van Die Suid-Afr. Inst. Van Siviele Ingenieurswese 2014, 56, 11–19. [Google Scholar]
- Akpan, V.E.; Omole, D.O.; Bassey, D.E. Assessing the Public Perceptions of Treated Wastewater Reuse: Opportunities and Implications for Urban Communities in Developing Countries. Heliyon 2020, 6, e05246. [Google Scholar] [CrossRef]
- Wester, J.; Timpano, K.R.; Çek, D.; Lieberman, D.; Fieldstone, S.C.; Broad, K. Psychological and Social Factors Associated with Wastewater Reuse Emotional Discomfort. J. Environ. Psychol. 2015, 42, 16–23. [Google Scholar] [CrossRef]
- Garcia-Cuerva, L.; Berglund, E.Z.; Binder, A.R. Public Perceptions of Water Shortages, Conservation Behaviors, and Support for Water Reuse in the U.S. Resour. Conserv. Recycl. 2016, 113, 106–115. [Google Scholar] [CrossRef]
- Savchenko, O.M.; Kecinski, M.; Li, T.; Messer, K.D.; Xu, H. Fresh Foods Irrigated with Recycled Water: A Framed Field Experiment on Consumer Responses. Food Policy 2018, 80, 103–112. [Google Scholar] [CrossRef]
- Ellis, S.F.; Kecinski, M.; Messer, K.D.; Lipchin, C. Consumer Perceptions after Long-term Use of Alternative Irrigation Water: A Field Experiment in Israel. Appl. Econ. Perspect. Policy 2022, 44, 1003–1020. [Google Scholar] [CrossRef]
- Li, T.; McCluskey, J.J.; Messer, K.D. Ignorance Is Bliss? Experimental Evidence on Wine Produced from Grapes Irrigated with Recycled Water. Ecol. Econ. 2018, 153, 100–110. [Google Scholar] [CrossRef]
- Nkhoma, P.R.; Alsharif, K.; Ananga, E.; Eduful, M.; Acheampong, M. Recycled Water Reuse: What Factors Affect Public Acceptance? Environ. Conserv. 2021, 48, 278–286. [Google Scholar] [CrossRef]
- Villarín, M.C.; Merel, S. Paradigm Shifts and Current Challenges in Wastewater Management. J. Hazard. Mater. 2020, 390, 122139. [Google Scholar] [CrossRef]
- Manisha, M.; Verma, K.; Ramesh, N.; Anirudha, T.P.; Santrupt, R.M.; Chanakya, H.N.; Patil, B.; Kumar, M.S.M.; Rao, L. Cost-Benefit Analysis of Large-Scale Recycling of Treated Wastewater for Indirect Groundwater Recharge in a Semi-Arid Region. Groundw. Sustain. Dev. 2024, 26, 101284. [Google Scholar] [CrossRef]
- Rao, K.; Hanjra, M.A.; Drechsel, P.; Danso, G. Business Models and Economic Approaches Supporting Water Reuse. In Wastewater; Drechsel, P., Qadir, M., Wichelns, D., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 195–216. ISBN 978-94-017-9544-9. [Google Scholar]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water Scarcity in Agriculture: An Overview of Causes, Impacts and Approaches for Reducing the Risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Akhmouch, A.; Clavreul, D. Towards Inclusive Water Governance: OECD Evidence and Key Principles of Stakeholder Engagement in the Water Sector. In Freshwater Governance for the 21st Century; Karar, E., Ed.; Global Issues in Water Policy; Springer International Publishing: Cham, Switzerland, 2017; Volume 6, pp. 29–49. ISBN 978-3-319-43348-6. [Google Scholar]
- Peletz, R.; Kisiangani, J.; Bonham, M.; Ronoh, P.; Delaire, C.; Kumpel, E.; Marks, S.; Khush, R. Why Do Water Quality Monitoring Programs Succeed or Fail? A Qualitative Comparative Analysis of Regulated Testing Systems in Sub-Saharan Africa. Int. J. Hyg. Environ. Health 2018, 221, 907–920. [Google Scholar] [CrossRef]
- Obaideen, K.; Shehata, N.; Sayed, E.T.; Abdelkareem, M.A.; Mahmoud, M.S.; Olabi, A.G. The Role of Wastewater Treatment in Achieving Sustainable Development Goals (SDGs) and Sustainability Guideline. Energy Nexus 2022, 7, 100112. [Google Scholar] [CrossRef]
- Jaramillo, M.; Restrepo, I. Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef]
- Singh, N.K.; Sachan, K.; Ranjitha, G.; Chandana, S.; Manoj, B.P.; Panotra, N.; Katiyar, D. Building Soil Health and Fertility through Organic Amendments and Practices: A Review. AJSSPN 2024, 10, 175–197. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Meena, V.D.; Saha, J.K.; Dotaniya, C.K.; Mahmoud, A.E.D.; Meena, B.L.; Meena, M.D.; Sanwal, R.C.; Meena, R.S.; Doutaniya, R.K.; et al. Reuse of Poor-Quality Water for Sustainable Crop Production in the Changing Scenario of Climate. Environ. Dev. Sustain. 2023, 25, 7345–7376. [Google Scholar] [CrossRef]
- Musazura, W.; Odindo, A.O.; Tesfamariam, E.H.; Hughes, J.C.; Buckley, C.A. Nitrogen and Phosphorus Dynamics in Plants and Soil Fertigated with Decentralised Wastewater Treatment Effluent. Agric. Water Manag. 2019, 215, 55–62. [Google Scholar] [CrossRef]
- Maaß, O.; Grundmann, P. Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany). Sustainability 2018, 10, 1125. [Google Scholar] [CrossRef]
- Fan, Z.; Lin, S.; Zhang, X.; Jiang, Z.; Yang, K.; Jian, D.; Chen, Y.; Li, J.; Chen, Q.; Wang, J. Conventional Flooding Irrigation Causes an Overuse of Nitrogen Fertilizer and Low Nitrogen Use Efficiency in Intensively Used Solar Greenhouse Vegetable Production. Agric. Water Manag. 2014, 144, 11–19. [Google Scholar] [CrossRef]
- Chiou, R.-J. Risk Assessment and Loading Capacity of Reclaimed Wastewater to Be Reused for Agricultural Irrigation. Environ. Monit. Assess. 2008, 142, 255–262. [Google Scholar] [CrossRef]
- Wu, W.; Xu, C.; Liu, H.; Hao, Z.; Ma, F.; Ma, Z. Effect of Reclaimed Water Irrigation on Yield and Quality of Fruity Vegetables. Trans. Chin. Soc. Agric. Eng. 2010, 26, 36–40. [Google Scholar]
- Jang, T.; Jung, M.; Lee, E.; Park, S.; Lee, J.; Jeong, H. Assessing Environmental Impacts of Reclaimed Wastewater Irrigation in Paddy Fields Using Bioindicator. Irrig. Sci. 2013, 31, 1225–1236. [Google Scholar] [CrossRef]
- Emongor, V.E.; Macheng, B.J.; Kefilwe, S. Effects of Secondary Sewage Effluent on the Growth, Development, Fruit Yield and Quality of Tomatoes (Lycopersicon Lycopersicum (L.) Karten). Acta Hortic. 2012, 944, 29–40. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Yu, X. Wastewater Irrigation and Crop Yield: A Meta-Analysis. J. Integr. Agric. 2022, 21, 1215–1224. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A Transition from Conventional Irrigation to Fertigation with Reclaimed Wastewater: Prospects and Challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Andiloro, S.; Zimbone, S.M. Irrigation of Energy Crops with Urban Wastewater: Effects on Biomass Yields, Soils and Heating Values. Agric. Water Manag. 2012, 115, 55–65. [Google Scholar] [CrossRef]
- Urbano, V.R.; Mendonça, T.G.; Bastos, R.G.; Souza, C.F. Effects of Treated Wastewater Irrigation on Soil Properties and Lettuce Yield. Agric. Water Manag. 2017, 181, 108–115. [Google Scholar] [CrossRef]
- Gatta, G.; Libutti, A.; Beneduce, L.; Gagliardi, A.; Disciglio, G.; Lonigro, A.; Tarantino, E. Reuse of Treated Municipal Wastewater for Globe Artichoke Irrigation: Assessment of Effects on Morpho-Quantitative Parameters and Microbial Safety of Yield. Sci. Hortic. 2016, 213, 55–65. [Google Scholar] [CrossRef]
- Singh, P.K.; Deshbhratar, P.B.; Ramteke, D.S. Effects of Sewage Wastewater Irrigation on Soil Properties, Crop Yield and Environment. Agric. Water Manag. 2012, 103, 100–104. [Google Scholar] [CrossRef]
- Shanmugam, K.; Gadhamshetty, V.; Tysklind, M.; Bhattacharyya, D.; Upadhyayula, V.K.K. A Sustainable Performance Assessment Framework for Circular Management of Municipal Wastewater Treatment Plants. J. Clean. Prod. 2022, 339, 130657. [Google Scholar] [CrossRef]
- Jhansi, S.C.; Mishra, S.K. Emerging Technology in Urban Areas of Developing Countries for Sustainable Wastewater Treatment and Reuse. Consilience 2019, 6, 91–99. [Google Scholar] [CrossRef]
- Drechsel, P.; Qadir, M.; Galibourg, D. The WHO Guidelines for Safe Wastewater Use in Agriculture: A Review of Implementation Challenges and Possible Solutions in the Global South. Water 2022, 14, 864. [Google Scholar] [CrossRef]
- Jhansi, S.C.; Mishra, S.K. Wastewater Treatment and Reuse: Sustainability Options. Consilience 2013, 10, 1–15. [Google Scholar]
- Hall, D.; Aguirre Gutierrez, M.; Cornejo, P.K. Social, Environmental, and Economic Wastewater Decision Support Tool for Small Systems. J. Environ. Eng. 2022, 148, 04022074. [Google Scholar] [CrossRef]
- Wade, M.; Peppler, R.; Person, A. Community Education and Perceptions of Water Reuse: A Case Study in Norman, Oklahoma. J. Environ. Stud. Sci. 2021, 11, 266–273. [Google Scholar] [CrossRef]
- Arena, C.; Genco, M.; Mazzola, M.R. Environmental Benefits and Economical Sustainability of Urban Wastewater Reuse for Irrigation—A Cost-Benefit Analysis of an Existing Reuse Project in Puglia, Italy. Water 2020, 12, 2926. [Google Scholar] [CrossRef]
- Saad, D.; Byrne, D.; Drechsel, P. Social Perspectives on the Effective Management of Wastewater. In Physico-Chemical Wastewater Treatment and Resource Recovery; Farooq, R., Ahmad, Z., Eds.; InTech: Rijeka, Croatia, 2017; pp. 253–267. ISBN 978-953-51-3129-8. [Google Scholar]
Irrigated Crop/Plant | Irrigation Source | Findings | Reference |
---|---|---|---|
Carrot | WWTP effluent, ozonized effluent, and accumulated effluent |
| [48] |
Tomato | Biosolar photocatalytic treatment effluent |
| [49] |
Pepper | Treated wastewater |
| [50] |
Mandarin tree | Treated wastewater and fresh water |
| [51] |
Lettuce | Treated wastewater (Conventional activated sludge or membrane bioreactor) |
| [52] |
Melon | Treated wastewater |
| [53] |
Pomegranate | Treated wastewater |
| [54] |
Alfalfa | Treated wastewater |
| [55] |
Sorghum | Treated wastewater |
| [56] |
Papaya | Treated wastewater |
| [57] |
Olive orchard | Treated wastewater |
| [58] |
Eggplant | Treated wastewater |
| [59] |
Rice | Treated wastewater |
| [60] |
Maize | Treated wastewater, Treated wastewater + groundwater (1:1) |
| [61] |
Wheat | |||
Lettuce | Treated wastewater |
| [62] |
Leek | |||
Lavender | Treated wastewater |
| [63] |
Zea Mays |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obijianya, C.C.; Yakamercan, E.; Karimi, M.; Veluru, S.; Simko, I.; Eshkabilov, S.; Simsek, H. Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities. Water 2025, 17, 2083. https://doi.org/10.3390/w17142083
Obijianya CC, Yakamercan E, Karimi M, Veluru S, Simko I, Eshkabilov S, Simsek H. Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities. Water. 2025; 17(14):2083. https://doi.org/10.3390/w17142083
Chicago/Turabian StyleObijianya, Christian C., Elif Yakamercan, Mahmoud Karimi, Sridevi Veluru, Ivan Simko, Sulaymon Eshkabilov, and Halis Simsek. 2025. "Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities" Water 17, no. 14: 2083. https://doi.org/10.3390/w17142083
APA StyleObijianya, C. C., Yakamercan, E., Karimi, M., Veluru, S., Simko, I., Eshkabilov, S., & Simsek, H. (2025). Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities. Water, 17(14), 2083. https://doi.org/10.3390/w17142083