Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = rutile chemical composition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 502 KB  
Proceeding Paper
Advances in TiO2 Nanoparticles for Rhodamine B Degradation
by Md. Golam Sazid, Asraf Ibna Helal, Harunur Rashid and Md. Redwanur Rashid Nafi
Mater. Proc. 2025, 25(1), 14; https://doi.org/10.3390/materproc2025025014 - 9 Dec 2025
Viewed by 435
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have garnered significant attention as photocatalysts for degrading organic pollutants, particularly synthetic dyes such as rhodamine B (RhB), methylene blue, methyl orange, and others. The impact of several synthesis methods, including sol–gel, hydrothermal, and chemical vapor [...] Read more.
Titanium dioxide (TiO2) nanoparticles (NPs) have garnered significant attention as photocatalysts for degrading organic pollutants, particularly synthetic dyes such as rhodamine B (RhB), methylene blue, methyl orange, and others. The impact of several synthesis methods, including sol–gel, hydrothermal, and chemical vapor deposition (CVD) techniques, on the electrical and morphological properties of TiO2 NPs has been studied, emphasizing the distinctive physicochemical properties of TiO2 NPs, including their extensive surface area, significant oxidative capacity, and remarkable chemical stability, which are important in the recent advancements in their use for RhB degradation. A detailed examination of TiO2’s photocatalytic mechanism shows that it is based on the generation of reactive oxygen species (ROS) by photoinduced electron–hole pair formation under ultraviolet (UV) light exposure. In wastewater treatment, TiO2 degrades RhB into less harmful byproducts by the generation of electron–hole pairs that initiate redox reactions under sunlight. This study includes a thorough overview of significant factors influencing photocatalytic efficacy. The parameters include particle size, crystal phase (anatase, rutile, and brookite), surface changes, and the incorporation of metal or non-metal dopants to enhance visible light absorption. Researchers continually seek methods to overcome challenges, including restricted visible-light responsiveness and rapid electron–hole recombination. The investigated approaches include heterojunction generation, composite development, and co-catalyst insertion. This review article aims to address the deficiencies in our understanding of TiO2-based photocatalysis for the degradation of RhB and to propose enhancements for these systems to enable more efficient and sustainable wastewater treatment in the future. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

17 pages, 6717 KB  
Article
Improving the Friction-Wear Properties and Wettability of Titanium Through Microstructural Changes Induced by Laser Surface Treatment
by Agnieszka Twardowska and Łukasz Ślusarczyk
Materials 2025, 18(23), 5410; https://doi.org/10.3390/ma18235410 - 30 Nov 2025
Viewed by 366
Abstract
In this study, a surface treatment of Ti grade 1 was carried out in air with the use of a Yb-fiber laser to increase the friction-wear properties tested in dry contact with α-Al2O3. The laser surface treated specimens clearly [...] Read more.
In this study, a surface treatment of Ti grade 1 was carried out in air with the use of a Yb-fiber laser to increase the friction-wear properties tested in dry contact with α-Al2O3. The laser surface treated specimens clearly differ in their surface roughness and wettability, coefficient of friction and resistance to wear, compared to untreated specimens. The microstructure changes induced by laser treatment were investigated using confocal scanning electron microscopy with chemical composition analysis by energy-dispersive spectroscopy, and phase composition by X-ray spectroscopy. It was found that laser surface treatment caused the formation of titanium oxide layers with TiO2 (rutile, anatase and brookite) as the main constituent, while in the subsurface areas a partial transformation of α-Ti to β-Ti or α′-Ti was thermally induced. Specimens containing β-Ti or α′-Ti in the subsurface area and anatase or brookite in the top layer were characterized by two times lower friction coefficient values and 10 times lower volume wear index Wv in comparison to untreated Ti grade 1. Results clearly confirmed the beneficial effect of laser surface treatment on friction-wear properties of Ti grade 1, but the selection of laser processing parameters was crucial both for resistance to abrasive wear and wettability. Full article
Show Figures

Figure 1

11 pages, 1577 KB  
Article
Ce3+/Ce4+-Modified TiO2 Nanoflowers: Boosting Solar Photocatalytic Efficiency
by Beatrice Polido, Letizia Liccardo, Benedetta Cattaneo, Enrique Rodríguez-Castellón, Alberto Vomiero and Elisa Moretti
Catalysts 2025, 15(11), 1069; https://doi.org/10.3390/catal15111069 - 11 Nov 2025
Viewed by 716
Abstract
Cerium-doped titania nanoflowers are obtained by hydrothermal synthesis, with different amounts of cerium (0.3, 0.5, and 1.0 at%). Both undoped nanoflowers (TNF) and Ce-doped TNF (Cex) are tested as photocatalysts in the degradation of the target pollutant (metronidazole) under simulated solar [...] Read more.
Cerium-doped titania nanoflowers are obtained by hydrothermal synthesis, with different amounts of cerium (0.3, 0.5, and 1.0 at%). Both undoped nanoflowers (TNF) and Ce-doped TNF (Cex) are tested as photocatalysts in the degradation of the target pollutant (metronidazole) under simulated solar light. The samples are rutile polymorphs with high crystallinity and present a nanoflower-like morphology of about 1 µm in diameter and are made up of nanoscale petals (in the range of 100–300 nm). EDX spectroscopy was coupled with SEM and performed on the Ce-doped samples to determine the elemental composition of the catalysts and the Ce distribution in each sample. Optical and electronic spectroscopies reveal that Ce loading narrows the band gap from 3.0 to 2.8 eV, extending light absorption into the visible range of the spectrum and thus enhancing the photocatalytic activity. The best sample, Ce1, achieved 67% degradation of metronidazole after 360 min under solar irradiation at pH 4, compared to bare TNF, which reached 35%. Reusability tests confirm the chemical stability and photocatalytic efficiency of Ce1 over three cycles, and free-radical trapping experiments confirmed ·O2 and ·OH as major active species in metronidazole degradation. This study highlights the synergistic impact of morphology and doping on solar-driven organic pollutant degradation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

23 pages, 6717 KB  
Article
Crystalline Nanoparticles and Their Impact on Electromagnetic Radiation Absorption in Advanced Clay Building Materials
by Jelena Brdarić Kosanović, Berislav Marković, Ivana Miličević, Anamarija Stanković and Dalibor Tatar
Crystals 2025, 15(11), 959; https://doi.org/10.3390/cryst15110959 - 6 Nov 2025
Viewed by 596
Abstract
Given the increasing human exposure to electromagnetic radiation of various frequen-cies, mostly in the microwave range, awareness of potential health problems caused by this radiation has begun to grow. New building materials are being developed and tested to prevent or limit the penetration [...] Read more.
Given the increasing human exposure to electromagnetic radiation of various frequen-cies, mostly in the microwave range, awareness of potential health problems caused by this radiation has begun to grow. New building materials are being developed and tested to prevent or limit the penetration of microwave radiation, especially those frequencies that are used in mobile telephony. In contrast with the majority of the available literature on the investigation of concrete (cement) materials, in this paper, clay composite materials with the addition of nanoparticles of antimony(III)–tin(IV) oxide, zinc ferrite, iron(III) oxide, and two crystal modifications of titanium dioxide (rutile and anatase) were prepared in order to examine their effect on the absorption of electro-magnetic radiation. Nanomaterials are characterized by different physical and chemical methods. Specific surface area (B.E.T.), thermal properties (TGA/DSC), phase composition (PXRD), morphology (SEM), and chemical and mineralogical composition (EDX, and ED–XRF,) were determined. Thermal conductivity of clay composites was tested, and these materials showed a positive effect on the thermal conductivity (λ) of the composite: a reduction of 10–33%. The reflection and transmission coefficients of microwave radiation in the frequency range used in mobile telephony (1.5–4.0 GHz) were determined. From these data, the absolute value of radiation absorption in the materials was calculated. The results showed that the addition of the tested nanomaterials in a mass fraction of 3 to 5 wt.% significantly increases the absorption (reduces the penetration) of microwave radiation. Two nanomaterials, Sb2O3·SnO2 and TiO2 (rutile), have proven to be particularly effective: the reduction in transmission is 30–50%. The results of the test were correlated with the crystal structures of the examined nanomaterials. The inclusion of titanium dioxide and antimony-doped tin oxide into the clay led to a significant enhancement in microwave electromagnetic radiation absorption, which can be attributed to their interaction with the dielectric and conductive phases present in clay-based building materials. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

32 pages, 6854 KB  
Review
A Review of the Synthesis, Structural, and Optical Properties of TiO2 Nanoparticles: Current State of the Art and Potential Applications
by Mohd Al Saleh Alothoum
Crystals 2025, 15(11), 944; https://doi.org/10.3390/cryst15110944 - 31 Oct 2025
Cited by 1 | Viewed by 2740
Abstract
The manufacturing techniques, structural features, and optical attributes of titanium dioxide (TiO2) nanoparticles are highlighted in this study. These nanoparticles are notable for their remarkable photocatalytic activity, cheap cost, chemical stability, and biocompatibility. TiO2 consists of three polymorph structures: anatase, [...] Read more.
The manufacturing techniques, structural features, and optical attributes of titanium dioxide (TiO2) nanoparticles are highlighted in this study. These nanoparticles are notable for their remarkable photocatalytic activity, cheap cost, chemical stability, and biocompatibility. TiO2 consists of three polymorph structures: anatase, rutile, and brookite. Because of its electrical characteristics and large surface area, anatase is the most efficient for photocatalysis when exposed to UV light. The crystallinity, size, and shape of titania nanoparticles (NPs) are influenced by diverse production techniques. Sol-gel, hydrothermal, solvothermal, microwave-assisted, and green synthesis with plant extracts are examples of common methods. Different degrees of control over morphology and surface properties are possible with each approach, and these factors ultimately affect functioning. For example, microwave synthesis provides quick reaction rates, whereas sol-gel enables the creation of homogeneous nanoparticles. XRD and SEM structural investigations validate nanostructures with crystallite sizes between 15 and 70 nm. Particle size, synthesis technique, and annealing temperature all affect optical characteristics such as bandgap (3.0–3.3 eV), fluorescence emission, and UV-visible absorbance. Generally speaking, anatase has a smaller crystallite size and a greater bandgap than rutile. TiO2 nanoparticles are used in gas sensing, food packaging, biomedical coatings, dye-sensitized solar cells (DSSCs), photocatalysis for wastewater treatment, and agriculture. Researchers are actively exploring methods like adding metals or non-metals, making new composite materials, and changing the surface to improve how well they absorb visible light. Full article
Show Figures

Figure 1

15 pages, 14094 KB  
Article
Impact of Mg Doping on Structural, Morphological and Thermoelectric Properties of SnO2 Nanoparticles: A Combined Experimental-Theoretical Investigation
by Muhammad Isram, Matteo Barduzzi, Valeria Demontis, Daniele Goldoni, Pino D’Amico, Luigi Rovati, Alberto Vomiero, Alice Ruini and Francesco Rossella
Molecules 2025, 30(20), 4135; https://doi.org/10.3390/molecules30204135 - 20 Oct 2025
Viewed by 652
Abstract
Recent advances in nanotechnology, including the development of nanoparticles, thin films, and superlattices, have revitalized research in thermoelectricity by enabling independent control of thermal and electrical transport, overcoming longstanding efficiency limitations and expanding opportunities for sustainable energy generation and miniaturized device applications. Tin [...] Read more.
Recent advances in nanotechnology, including the development of nanoparticles, thin films, and superlattices, have revitalized research in thermoelectricity by enabling independent control of thermal and electrical transport, overcoming longstanding efficiency limitations and expanding opportunities for sustainable energy generation and miniaturized device applications. Tin dioxide (SnO2) has recently attracted increasing attention as a thermoelectric material owing to its properties, such as high-temperature chemical and structural stability, non-toxicity, and the abundance of constituent elements. Current research efforts have been directed toward enhancing its thermoelectric performance through strategies such as elemental doping, nanostructuring, strain engineering, and the development of composite systems. In this study, we investigate the effects of Mg substitutional doping on the thermoelectric characteristics of SnO2. We synthesize undoped and Mg-doped SnO2 nanoparticles (0.05%, 0.10%, and 0.15%) using a straightforward hydrothermal technique. The investigation of the undoped and doped materials revealed that SnO2 possesses a tetragonal rutile-type structure, as determined through structural and morphological examination. The crystalline size of all of the samples decreases as the Mg doping concentration is increased. Hall measurement and Seebeck coefficient measurements have been employed for assessing the thermoelectric characteristics. As the Mg content increased, both the Seebeck coefficient and electrical conductivity value increased from −20 μV/K to −91 μV/K and 29.8 S/cm to 112.6 S/cm, confirming the presence of semiconductor behavior. The 0.15% Mg-doped sample demonstrates the highest power factor when evaluated at a temperature of 150 K, yielding a value of 9.4 × 105 WK−2m−1. Full article
Show Figures

Figure 1

32 pages, 12542 KB  
Article
Minor and Trace Elements in Copper Tailings: A Mineralogical and Geometallurgical Approach to Identify and Evaluate New Opportunities
by Zina Habibi, Nigel J. Cook, Kathy Ehrig, Cristiana L. Ciobanu, Yuri T. Campo-Rodriguez and Samuel A. King
Minerals 2025, 15(10), 1018; https://doi.org/10.3390/min15101018 - 26 Sep 2025
Cited by 1 | Viewed by 1165
Abstract
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported [...] Read more.
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported by chemical assays and automated mineralogy (MLA) data on different size fractions, underpins a case study of flotation tailings from the processing plant at the Carrapateena mine, South Australia. The study provides valuable insights into the deportment of minor and critical elements, including rare earth elements (REEs), along with uranium (U). REE-minerals are represented by major phosphates (monazite and florencite) and subordinate REE-fluorocarbonates (bastnäsite and synchysite). More than half the REE-minerals are concentrated in the finest size fraction (−10 μm). REEs in coarser fractions are largely locked in gangue, such that economic recovery is unlikely to be viable. MLA data shows that the main REE-minerals all display specific associations with gangue, which change with particle size. Quartz and hematite are the most common associations, followed by sericite. Synchysite shows a strong affiliation to carbonates. The contents of other critical elements (e.g., tungsten, molybdenum, cobalt) are low and for the most part occur within other common minerals as submicron-sized inclusions or in the lattice, rather than discrete minerals. Nevertheless, analysis of mine tailings from a large mining–processing operation provides an opportunity to observe intergrowth and replacement relationships in a composite sample representing different ore types from across the deposit. U-bearing species are brannerite (associated with rutile and chlorite), coffinite (in quartz), and uraninite (in hematite). Understanding the ore mineralogy of the Carrapateena deposit and how the ore has evolved in response to overprinting events is advanced by observation of ore textures, including between hematite and rutile, rutile and brannerite, zircon and xenotime, and the U-carbonate minerals rutherfordine and wyartite, the latter two replacing pre-existing U-minerals (uraninite, coffinite, and brannerite). The results of this study are fundamental inputs into future studies evaluating the technical and economic viability of potentially recovering value metals at Carrapateena. They can also guide efforts in understanding the distributions of valuable metals in analogous tailings from elsewhere. Lastly, the study demonstrates the utility of geometallurgical data on process materials to assist in geological interpretation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

25 pages, 46515 KB  
Article
Parental Affinities and Environments of Bauxite Genesis in the Salt Range, Northwestern Himalayas, Pakistan
by Muhammad Khubab, Michael Wagreich, Andrea Mindszenty, Shahid Iqbal, Katerina Schöpfer and Matee Ullah
Minerals 2025, 15(9), 993; https://doi.org/10.3390/min15090993 - 19 Sep 2025
Cited by 1 | Viewed by 1133
Abstract
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene [...] Read more.
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene bauxite deposits of the Salt Range, Pakistan, provide an opportunity for deciphering their ore genesis and parental affinities. The deposits occur as lenticular bodies and are typically composed of three consecutive stratigraphic facies from base to top: (1) massive dark-red facies (L-1), (2) composite conglomeratic–pisolitic facies (L-2), and (3) Kaolinite-rich clayey facies (L-3). Results from optical microscopy, X-ray powder diffraction (XRPD), and scanning electron microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDS) reveal that facies L-1 contains kaolinite, hematite, and goethite as major minerals, with minor amounts of muscovite, quartz, anatase, and rutile. In contrast, facies L-2 primarily consists of kaolinite, boehmite, hematite, gibbsite, goethite, alunite/natroalunite, and zaherite, with anatase, rutile, and quartz as minor constituents. L-3 is dominated by kaolinite, quartz, and anatase, while hematite and goethite exist in minor concentrations. Geochemical analysis reveals elevated concentrations of Al2O3, Fe2O3, SiO2, and TiO2. Trace elements, including Th, U, Ga, Y, Zr, Nb, Hf, V, and Cr, exhibit a positive trend across all sections when normalized to Upper Continental Crust (UCC) values. Field observations and analytical data suggest a polygenetic origin of these deposits. L-1 suggests in situ lateritization of some sort of precursor materials, with enrichment in stable and ultra-stable heavy minerals such as zircon, tourmaline, rutile, and monazite. This facies is mineralogically mature with bauxitic components, but lacks the typical bauxitic textures. In contrast, L-2 is texturally and mineralogically mature, characterized by various-sized pisoids and ooids within a microgranular-to-microclastic matrix. The L-3 mineralogy and texture suggest that the conditions were still favorable for bauxite formation. However, the ongoing tectonic activities and wet–dry climate cycles post-depositionally disrupted the bauxitization process. The accumulation of highly stable detrital minerals, such as zircon, rutile, tourmaline, and monazite, indicates prolonged weathering and multiple cycles of sedimentary reworking. These deposits have parental affinity with acidic-to-intermediate/-argillaceous rocks, resulting from the weathering of sediments derived from UCC sources, including cratonic sandstone and shale. Full article
Show Figures

Graphical abstract

25 pages, 15689 KB  
Article
Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region
by Muazzez Çelik Karakaya and Necati Karakaya
Minerals 2025, 15(8), 798; https://doi.org/10.3390/min15080798 - 29 Jul 2025
Cited by 1 | Viewed by 1782
Abstract
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since [...] Read more.
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since the 1970s. In this study, bauxite samples, collected from six different deposits were examined to determine their mineralogical and chemical composition, as well as their REE content, with the aim of identifying which bauxite types are enriched in REEs and assessing their economic potential. The samples included massive, oolitic, and brecciated bauxite types, which were analyzed using optical microscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF) and inductive coupled plasma-mass spectrometry (ICP-MS), field emission scanning electron microscopy (FESEM-EDX), and electron probe micro-analysis (EPMA). Massive bauxites were found to be more homogeneous in both mineralogical and chemical composition, predominantly composed of diaspore, boehmite, and rare gibbsite. Hematite is the most abundant iron oxide mineral in all bauxites, while goethite, rutile, and anatase occur in smaller quantities. Quartz, feldspar, kaolinite, dolomite, and pyrite were specifically determined in brecciated bauxites. Average oxide contents were determined as 52.94% Al2O3, 18.21% Fe2O3, 7.04% TiO2, and 2.69% SiO2. Na2O, K2O, and MgO values are typically below 0.5%, while CaO averages 3.54%. The total REE content of the bauxites ranged from 161 to 4072 ppm, with an average of 723 ppm. Oolitic-massive bauxites exhibit the highest REE enrichment. Cerium (Ce) was the most abundant REE, ranging from 87 to 453 ppm (avg. 218 ppm), followed by lanthanum (La), which reached up to 2561 ppm in some of the massive bauxite samples. LREEs such as La, Ce, Pr, and Nd were notably enriched compared to HREEs. The lack of a positive correlation between REEs and major element oxides, as well as with their occurrences in distinct association with Al- and Fe-oxides-hydroxides based on FESEM-EDS and EPMA analyses, suggests that the REEs are present as discrete mineral phases. Furthermore, these findings indicate that the REEs are not incorporated into the crystal structures of other minerals through isomorphic substitution or adsorption. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

17 pages, 7952 KB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 834
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

22 pages, 4739 KB  
Article
Visible Light Active Natural Rutile Photocatalyst Obtained via Nano Milling
by Kata Saszet, Enikő Eszter Almási, Ádám Rácz, Katalin Bohács, Milica Todea, Klára Hernádi, Zsolt Pap and Lucian Baia
Molecules 2025, 30(7), 1600; https://doi.org/10.3390/molecules30071600 - 3 Apr 2025
Viewed by 1084
Abstract
Natural rutile is a widely available titanium mineral which shows great potential as a photocatalyst for environmental remediation when processed correctly. Industries invest large sums in the transformation of the rutile mineral into pure, synthetic nano titania. Still, the present study proves that [...] Read more.
Natural rutile is a widely available titanium mineral which shows great potential as a photocatalyst for environmental remediation when processed correctly. Industries invest large sums in the transformation of the rutile mineral into pure, synthetic nano titania. Still, the present study proves that bare natural rutile with trace element content can also be applied as a photocatalyst, without harsh chemical interventions, simply by processing via nano grinding. Samples with different mean primary particle size values were obtained by wet stirred media milling, their compositional and structural properties were investigated, and their photocatalytic properties were evaluated under both visible- and UV-light illumination for the degradation of phenol and ibuprofen. By changing the grain size and the particle size distribution, and due to the doping effect of impurities present in the mineral, the band gap values of the samples and their photocatalytic activities changed as well. The nano milled rutile exhibited visible light photocatalytic activity, with a 33% degradation efficiency in the case of both phenol and ibuprofen, after 22 h of irradiation. The present study not only highlights the photocatalytic degradation of a pharmaceutical by natural rutile mineral, but its findings also suggest that ground nano rutile can function as an environmentally friendly photocatalyst, as it not only avoids the use of harmful chemicals typically employed in TiO2 synthesis but also offers a simpler, more cost-effective alternative for producing photocatalytic materials. Full article
Show Figures

Figure 1

14 pages, 5527 KB  
Article
Preparation and Tribology of Textured Ti-6Al-4V with Thermal Oxide Coating
by Xiaoyi Wang, Zhibiao Xu, Haowen Lu, Yue Tan, Xing Xu and Hao Wu
Coatings 2025, 15(3), 258; https://doi.org/10.3390/coatings15030258 - 21 Feb 2025
Cited by 3 | Viewed by 1611
Abstract
This study investigates the tribological properties of Ti-6Al-4V alloy treated with single laser texturing, single thermal oxidation, and laser texturing combined with thermal oxidation in a PAO6 oil environment. The surface morphology, cross-sectional morphology, surface chemical composition, microhardness, wettability, and wear surface morphology [...] Read more.
This study investigates the tribological properties of Ti-6Al-4V alloy treated with single laser texturing, single thermal oxidation, and laser texturing combined with thermal oxidation in a PAO6 oil environment. The surface morphology, cross-sectional morphology, surface chemical composition, microhardness, wettability, and wear surface morphology were analyzed using a three-dimensional profiler, scanning electron microscope, electron spectrometer, X-ray diffractometer, micro-Vickers hardness tester, and optical contact angle measuring instrument. The results indicate that combining laser texturing with thermal oxidation treatment enhances groove edge hardness to approximately 1932 HV0.2, due to the synergistic effects of laser-induced heat-affected zones and the formation of high-hardness rutile phase TiO2. Simultaneously, the treatment effectively enhances the wettability of PAO6 oil on the surface. Furthermore, the composite-treated surface combines the oil reservoir and debris-trapping capabilities of a single laser-textured surface with the excellent load-bearing capacity of a single thermally oxidized surface. This enhancement improves the durability and reliability of the groove-type texture, leading to reduced material loss and a diminished wear rate, and significantly improving the surface wear resistance of Ti-6Al-4V alloy. Full article
(This article belongs to the Special Issue Advances in Surface Coatings for Wear and Corrosion Protection)
Show Figures

Figure 1

15 pages, 14739 KB  
Article
Titanium Oxide Formation in TiCoCrFeMn High-Entropy Alloys
by Dominika Przygucka, Adelajda Polkowska, Wojciech Polkowski, Krzysztof Karczewski and Stanisław Jóźwiak
Materials 2025, 18(2), 412; https://doi.org/10.3390/ma18020412 - 17 Jan 2025
Cited by 1 | Viewed by 1613
Abstract
High-entropy materials, characterized by complex chemical compositions, are difficult to identify and describe structurally. These problems are encountered at the composition design stage when choosing an effective method for predicting the final phase structure of the alloy, which affects its functional properties. In [...] Read more.
High-entropy materials, characterized by complex chemical compositions, are difficult to identify and describe structurally. These problems are encountered at the composition design stage when choosing an effective method for predicting the final phase structure of the alloy, which affects its functional properties. In this work, the effects of introducing oxide precipitates into the matrix of a high-entropy TiCoCrFeMn alloy to strengthen ceramic particles were studied. The particles were introduced by the ex situ method, such as TiO2 in the form of anatase, and by the in situ method, consisting of the reconstruction of CuO into TiO2. In both cases, it was assumed that after the homogenization process, carried out at 1000 °C, ceramic precipitates in the rutile phase, commonly considered a stable allotropic form of TiO2, would be obtained. However, the microscopic observations and XRD analyses, supported by EDS chemical composition microanalysis and EBSD backscattered electron diffraction, clearly revealed that, regardless of the method of introducing oxides, the final strengthening phase obtained was a mixture of TiO2 in the form of anatase with the Magnelli phase of Ti2O3. In this work, phase reconstruction in the Ti-O system was analyzed using changes in the Gibbs free energy of the identified oxide phases. Full article
(This article belongs to the Special Issue Advanced Science and Technology of High Entropy Materials)
Show Figures

Figure 1

10 pages, 2161 KB  
Article
TiO2 Coated with Carbon via Chemical Vapor Deposition as Li-Ion Batteries Anode
by Bin Zhu, Wenjun Li, Wu Tang and Hui Tang
Coatings 2024, 14(11), 1473; https://doi.org/10.3390/coatings14111473 - 20 Nov 2024
Cited by 1 | Viewed by 2011
Abstract
With the increasing demand for renewable energy and sustainable technologies, lithium-ion batteries (LIBs) have become crucial energy storage components. Despite the promising properties of the high capacity and stability of TiO2, its large-scale application as an anode for LIBs is hindered [...] Read more.
With the increasing demand for renewable energy and sustainable technologies, lithium-ion batteries (LIBs) have become crucial energy storage components. Despite the promising properties of the high capacity and stability of TiO2, its large-scale application as an anode for LIBs is hindered by challenges like poor conductivity and volumetric changes during cycling. Here, a rutile TiO2 composite material with a thinned carbon coating (TiO2@TC) was synthesized through chemical vapor deposition (CVD) and a subsequent annealing process, which significantly improved the reversibility, cycling stability, and rate performance of the TiO2 anode materials. The thickness of the carbon layer on TiO2 was precisely controlled and thinned from 4.2 nm to 1.9 nm after secondary annealing treatment, leading to a smaller steric hindrance and an improved conductivity while serving as protective coatings by preventing the electrochemical degradation of the TiO2 surface and hindering volumetric changes during cycling. The resulting TiO2@TC with the thin carbon layer demonstrated a high specific capacity of 167 mAh g−1 at 0.5 C in Li-based half cells, which could stably run for 200 cycles with nearly 100% capacity retention. The thin carbon layer also contributes to an improved rate performance of 90 mAh g−1 at even 20 C. This work provides an innovational strategy for improving the conductivity and volumetric changes during the cycling of TiO2 anodes. Full article
Show Figures

Figure 1

13 pages, 4658 KB  
Article
Novel Anodic TiO2 Synthesis Method with Embedded Graphene Quantum Dots for Improved Photocatalytic Activity
by Ainars Knoks, Liga Grinberga and Janis Kleperis
Coatings 2024, 14(11), 1407; https://doi.org/10.3390/coatings14111407 - 5 Nov 2024
Viewed by 1817
Abstract
Photocatalytic degradation of pollutants have a high potential for sustainable and renewable uses. TiO2 is a widely studied photocatalyst due to its high chemical and photochemical stability and wide range of applications. However, the wide band gap and low capacity of photo-induced [...] Read more.
Photocatalytic degradation of pollutants have a high potential for sustainable and renewable uses. TiO2 is a widely studied photocatalyst due to its high chemical and photochemical stability and wide range of applications. However, the wide band gap and low capacity of photo-induced charge separation provide lower catalytic activity; thus, improvement of these properties must be found. The doping of TiO2 with other elements, such as carbon nanoparticles (CNP) in a quantum dot form, offers a promising pathway to improve the aforementioned properties. In addition, in situ doping methods should be investigated for practical scalability, as they offer the advantage of integrating dopants directly during material synthesis, ensuring a more uniform distribution and better interaction between the dopant and the host material, in turn leading to more consistent photocatalytic properties. Current technologies primarily involve nanoparticle combinations. This work focuses on the development of a novel in situ synthesis methodology by the introduction of three different graphene-based quantum nanodots into anodic TiO2 and the following investigation of structural, morphological, and photocatalytic properties. Results indicate that the introduction of CNP allows for the shift of a set of parameters, such as the optical band gap, increased photo-induced charge carrier density of TiO2/CNP composite, and, most importantly, the change of crystalline phase composition depending on added CNP material. Research indicates that not only a higher concentration of added CNP enhances higher photocatalytic activity as tested by the degradation of methylene blue dye, but also the type of CNP determines final crystalline phase. For the first time brookite and rutile phases were obtained in anodic titania synthesized in inorganic electrolyte by introducing hydrothermally treated exfoliated graphene. Full article
(This article belongs to the Special Issue Advanced Research on Energy Storage Materials and Devices)
Show Figures

Figure 1

Back to TopTop