Minor and Trace Elements in Copper Tailings: A Mineralogical and Geometallurgical Approach to Identify and Evaluate New Opportunities
Abstract
1. Introduction
2. The Carrapateena Deposit: Regional and Local Setting
3. Sampling and Methodology
3.1. Sampling and Sample Assay
3.2. Mineral Liberation Analysis
3.3. Microanalysis
4. Results
4.1. Assay Data
4.2. Tailing Mineralogy
4.2.1. MLA Data
4.2.2. High-Magnification Imaging and EDS Analysis
5. Discussion
5.1. Critical Minerals: Rare Earths and Other Possible Value-Add Components
5.2. Intergrowths and Replacement Reactions
5.2.1. Hematite-Rutile
5.2.2. Brannerite-TiO2 Polymorphs
5.2.3. Zircon-Xenotime
5.2.4. Coffinite-Xenotime
5.2.5. Coffinite and U-Carbonates
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Geological Survey. What Are Critical Minerals? U.S. Department of the Interior: Washington, DC, USA, 2024. Available online: https://www.usgs.gov/science/science-explorer/minerals/critical-minerals (accessed on 21 July 2025).
- European Commission. Critical Raw Materials Resilience: Charting a Path Towards Greater Security and Sustainability. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0474 (accessed on 2 August 2025).
- U.S. Department of Energy. DOE Critical Materials Assessment. 2023. Available online: https://www.energy.gov/eere/ammto/articles/2023-doe-critical-materials-assessment (accessed on 2 August 2025).
- Japan Ministry of Economy, Trade and Industry. Critical Minerals List. 2023. Available online: https://mineralprices.com/critical-minerals/japan/ (accessed on 2 August 2025).
- Australian Government Department of Industry, Science and Resources. Australia’s Critical Minerals List and Strategic Materials List. 2024. Available online: https://www.industry.gov.au/publications/australias-critical-minerals-list-and-strategic-materials-list (accessed on 12 July 2025).
- British Geological Survey. UK 2024 Criticality Assessment. 2024. Available online: https://www.bgs.ac.uk/news/uk-2024-criticality-assessment/ (accessed on 2 August 2025).
- Vidal, O.; Goffé, B.; Arndt, N. Metals for a low-carbon society. Nat. Geosci. 2013, 6, 894–896. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). The Role of Critical Minerals in Clean Energy Transitions. 2021. Available online: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 21 May 2025).
- International Energy Agency. Critical Minerals Market Review: Key Market Trends. 2023. Available online: https://www.iea.org/reports/critical-minerals-market-review-2023/key-market-trends (accessed on 22 May 2025).
- Vitti, C.; Arnold, B.J. The reprocessing and revalorization of critical minerals in mine tailings. Min. Metall. Explor. 2022, 39, 49–54. [Google Scholar] [CrossRef]
- Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hagelüken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G. What do we know about metal recycling rates? J. Ind. Ecol. 2011, 15, 355–366. [Google Scholar] [CrossRef]
- Nassar, N.T.; Graedel, T.E.; Harper, E.M. By-product metals are technologically essential but have problematic supply. Sci. Adv. 2015, 1, e1400180. [Google Scholar] [CrossRef]
- Tunsu, C.; Menard, Y.; Eriksen, D.Ø.; Ekberg, C.; Petranikova, M. Recovery of critical materials from mine tailings: A comparative study of the solvent extraction of rare earths using acidic, solvating and mixed extractant systems. J. Clean. Prod. 2019, 218, 425–437. [Google Scholar] [CrossRef]
- Vaughan, J.; Tungpalan, K.; Parbhakar-Fox, A.; Fu, W.; Gagen, E.J.; Nkrumah, P.N.; Southam, G.; van der Ent, A.; Erskine, P.D.; Gow, P.; et al. Toward Closing a Loophole: Recovering Rare Earth Elements from Uranium Metallurgical Process Tailings. JOM 2021, 73, 39–53. [Google Scholar] [CrossRef]
- Sarker, S.K.; Haque, N.; Bhuiyan, M.; Bruckard, W.; Pramanik, B.K. Recovery of strategically important critical minerals from mine tailings. J. Environ. Chem. Eng. 2022, 10, 107622. [Google Scholar] [CrossRef]
- Whitworth, A.J.; Vaughan, J.; Southam, G.; van der Ent, A.; Nkrumah, P.N.; Ma, X.D.; Parbhakar-Fox, A. Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes. Miner. Eng. 2022, 182, 107537. [Google Scholar] [CrossRef]
- Abbadi, A.; Mucsi, G. A review on complex utilization of mine tailings: Recovery of rare earth elements and residue valorization. J. Environ. Chem. Eng. 2024, 12, 113118. [Google Scholar] [CrossRef]
- Dadzie, R.A.; Zanin, M.; Skinner, W.; Addai-Mensah, J.; Asamoah, R.; Abaka-Wood, G.B. Reprocessing of Sulphide Flotation Tailings for Copper Recovery: Characterisation. Minerals 2025, 15, 649. [Google Scholar] [CrossRef]
- Jackson, L.M.; Parbhakar-Fox, A. Mineralogical and geochemical characterization of the Old Tailings Dam, Australia: Evaluating the effectiveness of a water cover for long-term AMD control. Appl. Geochem. 2016, 68, 64–78. [Google Scholar] [CrossRef]
- Goodall, W.R. Characterisation of mineralogy and gold deportment for complex tailings deposits using QEMSCAN®. Miner. Eng. 2008, 21, 518–523. [Google Scholar] [CrossRef]
- Porter, T.M. The Carrapateena iron oxide copper gold deposit, Gawler craton, South Australia: A review. In Hydrothermal Iron Oxide Copper-Gold and Related Deposits. A Global Perspective; PGC Pub.: Adelaide, Australia, 2010; Volume 3, pp. 191–200. [Google Scholar]
- Cave, B.; Lilly, R.; Hand, M.; Varga, J.; Light, S.; Leslie, D.; North, B.; Park, J.; Klingberg, L. A temporal framework for the Carrapateena Iron Oxide Copper-Gold (IOCG) deposit, Eastern Gawler Craton, South Australia. Ore Geol. Rev. 2024, 169, 106092. [Google Scholar] [CrossRef]
- Gezzaz, H.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Slattery, A.; Wade, B.; Gilbert, S.; Campo Rodriguez, Y.T. Monazite, lanthanide-rich glasses, and other trace elements in copper smelter slags: Constraints on critical metal behaviour in Si-Fe-rich melts. Mineral. Petrol. 2025, 119, 197–221. [Google Scholar] [CrossRef]
- Cook, N.J.; Ehrig, K.; Ciobanu, C.L.; King, S.A.; Liebezeit, V.; Slattery, A.D. Detailed characterisation of precious metals and critical elements in anode slimes from the Olympic Dam copper refinery, South Australia. Miner. Eng. 2024, 206, 108539. [Google Scholar] [CrossRef]
- Cook, N.J.; Ehrig, K.; Ciobanu, C.L.; Gilbert, S.E.; Gezzaz, H. Trace element impurities in anode copper from Olympic Dam, South Australia. Miner. Eng. 2024, 210, 108647. [Google Scholar] [CrossRef]
- King, S.A.; Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Gilbert, S.; Wade, B.; Campo Rodriguez, Y.T. Trace element distributions among Cu-(Fe)-sulfides from the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Miner. Depos. 2025, 60, 1203–1232. [Google Scholar] [CrossRef]
- Reid, A. The Olympic Cu-Au Province, Gawler Craton: A review of the lithospheric architecture, geodynamic setting, alteration systems, cover successions and prospectivity. Minerals 2019, 9, 371. [Google Scholar] [CrossRef]
- Ehrig, K.; McPhie, J.; Kamenetsky, V. Geology and mineralogical zonation of the Olympic Dam iron oxide Cu-U-Au-Ag deposit, South Australia. Soc. Econ. Geol. Spec. Publ. 2012, 16, 237–267. [Google Scholar]
- Ehrig, K.; Kamenetsky, V.; McPhie, J.; Cook, N.J.; Ciobanu, C.L. Olympic Dam iron-oxide Cu-U-Au-Ag deposit. In Australian Ore Deposits; Phillips, G.N., Ed.; AusIMM: Melbourne, Australia, 2017; pp. 601–610. [Google Scholar]
- BHP Annual Report. 2024. Available online: https://www.bhp.com/investors/annual-reporting/annual-report-2024 (accessed on 31 July 2025).
- Reid, A.; Smith, R.N.; Baker, T.; Jagodzinski, E.A.; Selby, D.; Gregory, C.J.; Skirrow, R.G. Re-Os dating of molybdenite within hematite breccias from the Vulcan Cu-Au prospect, Olympic Cu-Au province, South Australia. Econ. Geol. 2013, 108, 883–894. [Google Scholar] [CrossRef]
- ALS Global. Quantitative Mineralogical Services; ALS Limited: Brisbane, Australia, 2022; 8p, Available online: https://www.alsglobal.com/en/ (accessed on 7 September 2025).
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Owen, N.D.; Cook, N.J.; Rollog, M.; Ehrig, K.J.; Schmandt, D.S.; Ram, R.; Brugger, J.; Ciobanu, C.L.; Wade, B.; Guagliardo, P. REE-, Sr-, Ca-aluminum-phosphate-sulfate minerals of the alunite supergroup and their role as hosts for radionuclides. Amer. Mineral. 2019, 104, 1806–1819. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Wade, B.P.; Cook, N.J.; Schmidt Mumm, A.; Giles, D. Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: A geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambr. Res. 2013, 238, 129–147. [Google Scholar] [CrossRef]
- Verdugo-Ihl, M.R.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.J.; Courtney-Davies, L.; Gilbert, S. Textures and U-W-Sn-Mo signatures in hematite from the Olympic Dam Cu-U-Au-Ag deposit, South Australia: Defining the archetype for IOCG deposits. Ore Geol. Rev. 2017, 91, 173–195. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Kontonikas-Charos, A.; Slattery, A.; Cook, N.J.; Wade, B.P.; Ehrig, K. Short-range stacking disorder in mixed-layer compounds: A HAADF STEM study of bastnäsite–parisite intergrowths. Minerals 2017, 7, 227. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Slattery, A.D.; Ehrig, K.; Liu, W.Y. Nanoscale intergrowths in the bastnäsite–synchysite series record transition toward thermodynamic equilibrium. MRS Bull. 2022, 47, 250–257. [Google Scholar] [CrossRef]
- Duff, M.C.; Coughlin, J.U.; Hunter, D.B. Uranium co-precipitation with iron oxide minerals. Geochim. Cosmochim. Acta 2002, 66, 2123–2131. [Google Scholar] [CrossRef]
- Britt, A.F.; Czarnota, K. A review of critical mineral resources in Australia. Aust. J. Earth Sci. 2024, 71, 1016–1049. [Google Scholar] [CrossRef]
- Adrianto, L.R.; Ciacci, L.; Pfister, S.; Hellweg, S. Toward sustainable reprocessing and valorization of sulfidic copper tailings: Scenarios and prospective LCA. Sci. Total Environ. 2023, 871, 162038. [Google Scholar] [CrossRef]
- Thorne, J.; Weng, Z.; Mudd, G.M.; Parbhakar-Fox, A.; Bhowany, K.; Britt, A.; Fraser, G.; Degeling, H. Mapping secondary prospectivity for a sustainable critical minerals industry in Australia. In Proceedings of the Resourcing Tomorrow, Creating Value for Society, World Mining Congress 2023, Brisbane, Australia, 26–29 June 2023; pp. 705–712. [Google Scholar]
- Geoscience Australia. Atlas of Australian Re-Mining Potential. 2024. Available online: https://portal.ga.gov.au/persona/australian-remining-potential (accessed on 10 August 2025).
- Skirrow, R.G.; Huston, D.L.; Mernagh, T.P.; Thorne, J.P.; Dulfer, H.; Senior, A.B. Critical Commodities for a High-Tech World: Australia’s Potential to Supply Global Demand; Geoscience Australia: Canberra, Australia, 2013; 126p.
- Weng, Z.; Jowitt, S.M.; Mudd, G.M.; Haque, N. A Detailed Assessment of Global Rare Earth Resources: Opportunities and Challenges. Econ. Geol. 2015, 110, 1925–1952. [Google Scholar] [CrossRef]
- Mudd, G.M.; Werner, T.T.; Weng, Z.-H.; Yellishetty, M.; Yuan, Y.; McAlpine, S.R.B.; Skirrow, R.; Czarnota, K. Critical Minerals in Australia: A Review of Opportunities and Research Needs; Record 2018/51; Geoscience Australia: Canberra, Australia, 2018. Available online: https://pid.geoscience.gov.au/dataset/ga/122459 (accessed on 6 May 2025).
- Abaka-Wood, G.B.; Zanin, M.; Addai-Mensah, J.; Skinner, W. Recovery of rare earth elements minerals from iron oxide–silicate rich tailings—Part 1: Magnetic separation. Miner. Eng. 2019, 136, 50–61. [Google Scholar] [CrossRef]
- Abaka-Wood, G.B.; Zanin, M.; Addai-Mensah, J.; Skinner, W. Recovery of rare earth elements minerals from iron oxide–silicate rich tailings—Part 2: Froth flotation separation. Miner. Eng. 2019, 142, 105888. [Google Scholar] [CrossRef]
- Schmandt, D.S.; Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Wade, B.P.; Gilbert, S.; Kamenetsky, V.S. Rare earth element fluorocarbonate minerals from the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Minerals 2017, 7, 202. [Google Scholar] [CrossRef]
- Schmandt, D.S.; Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Wade, B.P.; Gilbert, S.; Kamenetsky, V.S. Rare earth element phosphate minerals from the Olympic Dam Cu-U-Au-Ag deposit, South Australia: Recognizing temporal-spatial controls on REE mineralogy in an evolved IOCG system. Can. Mineral. 2019, 57, 3–24. [Google Scholar] [CrossRef]
- Abaka-Wood, G.B.; Addai-Mensah, J.; Skinner, W. The Use of Mining Tailings as Analog of Rare Earth Elements Resources: Part 1—Characterization and Preliminary Separation. Miner. Proc. Extract. Metall. Rev. 2022, 43, 701–715. [Google Scholar] [CrossRef]
- Courtney-Davies, L.; Tapster, S.R.; Ciobanu, C.L.; Cook, N.J.; Verdugo-Ihl, M.R.; Ehrig, K.J.; Kennedy, A.K.; Gilbert, S.E.; Condon, D.J.; Wade, B.P. A multi-technique evaluation of hydrothermal hematite U-Pb isotope systematics: Implications for ore deposit geochronology. Chem. Geol. 2019, 513, 54–72. [Google Scholar] [CrossRef]
- Verdugo-Ihl, M.R.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Slattery, A.; Courtney-Davies, L. Trace-element remobilisation from W–Sn–U–Pb zoned hematite: Nanoscale insights into a mineral geochronometer behaviour during interaction with fluids. Mineral. Depos. 2020, 55, 429–452. [Google Scholar] [CrossRef]
- Courtney-Davies, L.; Ciobanu, C.L.; Verdugo-Ihl, M.R.; Dmitrijeva, M.; Cook, N.J.; Ehrig, K.; Wade, B.P. Hematite geochemistry and geochronology resolve genetic and temporal links among iron-oxide copper gold systems, Olympic Dam district, South Australia. Precambr. Res. 2019, 335, 105480. [Google Scholar] [CrossRef]
- Courtney-Davies, L.; Ciobanu, C.L.; Tapster, S.R.; Cook, N.J.; Ehrig, K.; Crowley, J.L.; Verdugo-Ihl, M.R.; Wade, B.P.; Condon, D.J. Opening the magmatic-hydrothermal window: High-precision U-Pb geochronology of the Mesoproterozoic Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ. Geol. 2020, 115, 1855–1870. [Google Scholar] [CrossRef]
- Krneta, S.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Kontonikas-Charos, A. Apatite at Olympic Dam, South Australia: A petrogenetic tool. Lithos 2016, 262, 470–485. [Google Scholar] [CrossRef]
- Rečnik, A.; Stanković, N.; Daneu, N. Topotaxial reactions during the genesis of oriented rutile/hematite intergrowths from Mwinilunga (Zambia). Contrib. Mineral. Petrol. 2015, 169, 19. [Google Scholar] [CrossRef]
- Verdugo-Ihl, M.R.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Slattery, A.; Courtney-Davies, L.; Dmitrijeva, M. Nanomineralogy of hydrothermal magnetite from Acropolis, South Australia: Genetic implications for iron-oxide copper gold mineralization. Am. Mineral. 2021, 106, 1273–1293. [Google Scholar] [CrossRef]
- Thomas, J.B.; Watson, E.B. Application of the Ti-in-quartz thermobarometer to rutile-free systems. Reply to: A comment on: ‘TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz’. Contrib. Mineral. Petrol. 2012, 164, 369–374. [Google Scholar] [CrossRef]
- Huang, R.; Audétat, A. The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration. Geochim. Cosmochim. Acta 2012, 84, 75–89. [Google Scholar] [CrossRef]
- Li, X.; Rusk, B.; Wang, R.; Morishita, Y.; Watanabe, Y.; Chen, Z. Rutile inclusions in quartz crystals record decreasing temperature and pressure during the exhumation of the Su-Lu UHP metamorphic belt in Donghai, East China. Am. Mineral. 2011, 96, 964–973. [Google Scholar] [CrossRef]
- Kopáčik, R.; Ferenc, Š.; Mikuš, T.; Budzák, Š.; Butek, J.; Hoppanová, E. Stratiform U-Cu mineralization in the Lopejské Čelno valley near Podbrezová (Veporic Unit, Western Carpathians). Miner. Slovaca 2023, 55, 53–70. [Google Scholar] [CrossRef]
- Macmillan, E.; Cook, N.J.; Ehrig, K.; Pring, A. Chemical and textural interpretation of late-stage coffinite and brannerite from the Olympic Dam IOCG-Ag-U deposit. Mineral. Mag. 2017, 81, 1323–1366. [Google Scholar] [CrossRef]
- Lumpkin, G.R.; Leung, S.H.F.; Ferenczy, J. Chemistry, microstructure, and alpha decay damage of natural brannerite. Chem. Geol. 2012, 291, 55–68. [Google Scholar] [CrossRef]
- Rollog, M.; Cook, N.J.; Guagliardo, P.; Ehrig, K.J.; Kilburn, M. Radionuclide-bearing minerals in Olympic Dam copper concentrates. Hydrometallurgy 2019, 190, 105153. [Google Scholar] [CrossRef]
- Courtney-Davies, L.; Ciobanu, C.L.; Verdugo-Ihl, M.R.; Slattery, A.; Cook, N.J.; Dmitrijeva, M.; Keyser, W.; Wade, B.P.; Domnick, U.I.; Ehrig, K.; et al. Zircon at the nanoscale records metasomatic processes leading to large magmatic-hydrothermal ore systems. Minerals 2019, 9, 364. [Google Scholar] [CrossRef]
- Hay, D.C.; Dempster, T.J.; Lee, M.R.; Brown, D.J. Anatomy of a low temperature zircon outgrowth. Contrib. Mineral. Petrol. 2010, 159, 81–92. [Google Scholar] [CrossRef]
- Dröllner, M.; Barham, M.; Kirkland, C.L.; Roberts, M.P. Older than they look: Cryptic recycled xenotime on detrital zircon. Geology 2023, 51, 768–772. [Google Scholar] [CrossRef]
- Finch, R.J.; Hanchar, J.M. Structure and chemistry of zircon and zircon-group minerals. Rev. Mineral. Geochem. 2003, 53, 1–25. [Google Scholar] [CrossRef]
- Förster, H.J. Composition and origin of intermediate solid solutions in the system thorite–xenotime–zircon–coffinite. Lithos 2006, 88, 35–55. [Google Scholar] [CrossRef]
- Gurzhiy, V.V.; Kalashnikova, S.A.; Kuporev, I.V.; Plášil, J. Crystal chemistry and structural complexity of the uranyl carbonate minerals and synthetic compounds. Crystals 2021, 11, 704. [Google Scholar] [CrossRef]
- Rodríguez-Villagra, H.; Brendebach, B.; de la Fuente, J.; Alvarez, M.; Missana, T. A snapshot review on uranyl secondary phases formation in aqueous systems. MRS Adv. 2023, 8, 55–66. [Google Scholar] [CrossRef]
- Macmillan, E.; Cook, N.J.; Ehrig, K.; Ciobanu, C.L.; Pring, A. Uraninite from the Olympic Dam IOCG-U-Ag deposit: Linking textural and compositional variation to temporal evolution. Amer. Mineral. 2016, 101, 1295–1320. [Google Scholar] [CrossRef]
- Ehrig, K.; Kamenetsky, V.S.; McPhie, J.; Macmillan, E.; Thompson, J.; Kamenetsky, M.; Maas, R. Staged formation of the supergiant Olympic Dam uranium deposit, Australia. Geology 2021, 49, 1312–1316. [Google Scholar] [CrossRef]
- Owen, N.D.; Cook, N.J.; Ram, R.; Brugger, J.; Maas, R.; Schmandt, D.S.; Ciobanu, C.L. Pb-bearing Cu-(Fe)-sulfides: Evidence for continuous hydrothermal activity in the northern Olympic Cu-Au Province, South Australia. Precambr. Res. 2023, 398, 107225. [Google Scholar] [CrossRef]
- Owen, N.D.; Ciobanu, C.L.; Cook, N.J.; Slattery, A.; Basak, A. Nanoscale Study of Clausthalite-Bearing Symplectites in Cu-Au-(U) Ores: Implications for Ore Genesis. Minerals 2018, 8, 67. [Google Scholar] [CrossRef]
- Rollog, M.; Cook, N.J.; Guagliardo, P.; Ehrig, K.; Kilburn, M. Radionuclide distributions in Olympic Dam copper concentrates: The significance of minor hosts, incorporation mechanisms, and the role of mineral surfaces. Miner. Eng. 2020, 148, 106176. [Google Scholar] [CrossRef]
- Owen, N.D.; Cook, N.J.; Ram, R.; Etschmann, B.; Ehrig, K.J.; Schmandt, D.S.; Rollog, M.; Guagliardo, P.; Brugger, J. The dynamic uptake of lead and its radionuclides by natural and synthetic aluminium-phosphate-sulfates. Miner. Eng. 2021, 160, 106659. [Google Scholar] [CrossRef]
- Ram, R.; Owen, N.D.; Kalnins, C.; Cook, N.J.; Ehrig, K.; Etschmann, B.; Rollog, M.; Fu, W.; Vaughan, J.; Pring, A.; et al. Understanding the mobility and retention of uranium and its daughter products. J. Hazard. Mater. 2021, 410, 124553. [Google Scholar] [CrossRef]
- Burns, P.C. The crystal chemistry of uranium. In Uranium: Mineralogy, Geochemistry and the Environment; Burns, P.C., Finch, R., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 1999; Volume 38, pp. 23–90. [Google Scholar]
- Ilton, E.S.; Collins, R.N.; Ciobanu, C.L.; Cook, N.J.; Verdugo-Ihl, M.; Slattery, A.D.; Paterson, D.J.; Mergelsberg, S.T.; Bylaska, E.J.; Ehrig, K. Pentavalent uranium incorporated in the structure of Proterozoic hematite. Environ. Sci. Tech. 2022, 56, 11857–11864. [Google Scholar] [CrossRef]
- Ehrig, K. Geometallurgy—What do you really need to know from exploration through to production? In Proceedings of the MetPlant 2013: Plant Design & Operating Strategies—World’s Best Practice, Perth, Australia, 15–17 July 2013; The Australasian Institute of Mining and Metallurgy: Melbourne, Australia, 2013; pp. 28–33. [Google Scholar]
- Escobar, A.G.; Relvas, J.M.; Pinto, Á.M.; Oliveira, M. Physical–chemical characterization of the Neves Corvo extractive mine residues: A perspective towards future mining and reprocessing of sulfidic tailings. J. Sustain. Metall. 2021, 7, 1483–1505. [Google Scholar] [CrossRef]
- Nakhaei, F.; Corchado-Albelo, J.; Alagha, L.; Moats, M.; Munoz-Garcia, N. Progress, challenges, and perspectives of critical elements recovery from sulfide tailings. Sep. Purif. Technol. 2024, 354, 128973. [Google Scholar] [CrossRef]
- Frenzel, M.; Bachmann, K.; Carvalho, J.R.S.; Relvas, J.M.R.S.; Pacheco, N.; Gutzmer, J. The geometallurgical assessment of by-products—Geochemical proxies for the complex mineralogical deportment of indium at Neves-Corvo, Portugal. Miner. Depos. 2019, 54, 959–982. [Google Scholar] [CrossRef]
Fraction | Mass% | Al % | Ca % | Fe % | K % | Mg % | Mn % | Na % | P % | Si % | Ti % | CO2 % | S % | LOI * % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTS+106 | 8.6 | 2.44 | 1.08 | 14.62 | 0.91 | 0.47 | 0.22 | 0.12 | 0.14 | 30.56 | 0.12 | 1.98 | 0.25 | 1.82 | ||||||
CTS+75 | 7.7 | 1.78 | 0.75 | 31.90 | 0.60 | 0.32 | 0.21 | 0.06 | 0.16 | 21.58 | 0.10 | 1.75 | 0.26 | 1.39 | ||||||
CTS+53 | 10.1 | 1.33 | 0.55 | 41.30 | 0.45 | 0.22 | 0.15 | 0.05 | 0.14 | 15.16 | 0.09 | 1.11 | 0.30 | 1.11 | ||||||
CTS+C1 | 13.1 | 0.79 | 0.30 | 56.01 | 0.23 | 0.12 | 0.10 | 0.02 | 0.12 | 6.77 | 0.11 | 0.68 | 0.47 | 0.97 | ||||||
CTS+C3 | 13.8 | 1.39 | 0.69 | 41.57 | 0.46 | 0.26 | 0.18 | 0.06 | 0.15 | 15.46 | 0.10 | 1.38 | 0.44 | 1.27 | ||||||
CTS+C5 | 5.2 | 1.55 | 0.81 | 39.25 | 0.53 | 0.32 | 0.21 | 0.08 | 0.16 | 14.62 | 0.11 | 1.80 | 0.45 | 1.70 | ||||||
CTS-C5 | 33.3 | 4.38 | 0.70 | 38.82 | 1.48 | 0.54 | 0.21 | 0.07 | 0.36 | 12.3 | 0.11 | 1.63 | 0.27 | 3.09 | ||||||
Fraction | Ag | As | Bi | Co | Cu | Mo | Ni | Pb | Sn | Th | U3O8 | W | Zn | |||||||
CTS+106 | 2.1 | 20 | 1.9 | 111 | 2250 | 18 | 25 | 35 | 16 | 18.3 | 160 | 49 | 92 | |||||||
CTS+75 | 1.6 | 23 | 2.1 | 121 | 1864 | 28 | 23 | 38 | 32 | 21.4 | 169 | 142 | 73 | |||||||
CTS+53 | 3.3 | 23 | 1.9 | 110 | 1265 | 31 | 22 | 39 | 45 | 18.4 | 180 | 206 | 53 | |||||||
CTS+C1 | 2.2 | 33 | 1.9 | 115 | 1390 | 39 | 21 | 47 | 64 | 18.4 | 219 | 289 | 43 | |||||||
CTS+C3 | 1.2 | 26 | 1.6 | 136 | 775 | 30 | 24 | 43 | 40 | 20.3 | 200 | 187 | 57 | |||||||
CTS+C5 | 1.2 | 25 | 1.8 | 185 | 860 | 28 | 28 | 48 | 33 | 22.4 | 220 | 155 | 66 | |||||||
CTS-C5 | 1.5 | 36 | 3.5 | 298 | 1084 | 33 | 53 | 82 | 22 | 48.6 | 389 | 103 | 147 | |||||||
Fraction | Y | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||||
CTS+106 | 197 | 1055 | 1757 | 174 | 530 | 68.9 | 14.4 | 45.4 | 6.62 | 37.0 | 7.25 | 21.6 | 2.99 | 20.1 | 2.59 | |||||
CTS+75 | 206 | 1216 | 1994 | 198 | 615 | 79.4 | 16.5 | 53.5 | 7.22 | 38.1 | 7.46 | 22.1 | 2.94 | 19.7 | 2.52 | |||||
CTS+53 | 167 | 970 | 1607 | 159 | 484 | 61.6 | 12.3 | 42.7 | 6.14 | 32.3 | 6.25 | 18.3 | 2.46 | 16.7 | 2.12 | |||||
CTS+C1 | 153 | 854 | 1420 | 144 | 447 | 59.2 | 11.9 | 39.3 | 5.36 | 29.5 | 5.67 | 16.3 | 2.35 | 15.0 | 2.03 | |||||
CTS+C3 | 201 | 1020 | 1712 | 173 | 540 | 70.4 | 14.9 | 48.6 | 7.16 | 38.4 | 7.50 | 22.3 | 3.08 | 20.3 | 2.62 | |||||
CTS+C5 | 251 | 1112 | 1870 | 191 | 588 | 80.5 | 16.8 | 58.5 | 8.59 | 48.9 | 9.19 | 26.7 | 3.66 | 24.5 | 2.99 | |||||
CTS-C5 | 399 | 2627 | 4318 | 435 | 1328 | 162.8 | 32.9 | 105 | 14.7 | 78.5 | 14.84 | 42.2 | 6.02 | 39.2 | 5.32 |
Mineral | Carrapateena Mine Tailing Abundance (wt. %) | Olympic Dam Dataset Abundance (wt. %) | |||||
---|---|---|---|---|---|---|---|
CTS+106 | CTS+75 | CTS+53 | CTS+C1 | CTS+C3 | CTS+C5 | ||
Pyrite | 0.02 | 0.202 | 0.489 | 0.669 | 0.722 | 0.708 | 0.4614 |
Chalcopyrite | 0.394 | 0.225 | 0.127 | 0.084 | 0.07 | 0.065 | 0.9261 |
Bornite | 0.111 | 0.087 | 0.041 | 0.068 | 0.026 | 0.029 | 0.3346 |
Chalcocite | 0.005 | 0.001 | 0.008 | 0.051 | 0.004 | 0.003 | 0.1388 |
Covellite | 0.002 | 0.001 | 0 | 0 | 0 | 0 | 0.0068 |
Carrollite | 0.003 | 0.002 | 0.005 | 0.003 | 0.008 | 0.015 | 0.0004 |
Cobaltite | 0 | 0.003 | 0 | 0 | 0.011 | 0 | 0.0012 |
Molybdenite | 0.001 | 0.009 | 0 | 0 | 0.005 | 0 | 0.0015 |
Sphalerite | 0.007 | 0.001 | 0 | 0 | 0 | 0 | 0.0115 |
Galena | 0.001 | 0 | 0 | 0 | 0 | 0 | 0.0012 |
Uraninite | 0.003 | 0 | 0.001 | 0.005 | 0.002 | 0.021 | 0.0049 |
Coffinite | 0.004 | 0.003 | 0.003 | 0 | 0.010 | 0.007 | 0.0159 |
Brannerite | 0.026 | 0.003 | 0.002 | 0.006 | 0.007 | 0.006 | 0.0119 |
Zircon | 0.013 | 0.024 | 0.004 | 0.012 | 0.013 | 0.015 | 0.0549 |
Thorite | 0.001 | 0 | 0 | 0 | 0 | 0 | 0.0023 |
Crandallite * | 0.427 | 0.485 | 0.441 | 0.446 | 0.451 | 0.506 | 0.1097 |
Monazite | 0.156 | 0.131 | 0.164 | 0.134 | 0.180 | 0.279 | 0.0184 |
Florencite | 0.017 | 0.044 | 0.062 | 0.055 | 0.041 | 0.095 | 0.0660 |
Synchysite | 0.008 | 0.016 | 0.023 | 0.015 | 0.006 | 0.024 | 0.0124 |
Bastnäsite | 0.038 | 0.03 | 0.04 | 0.054 | 0.042 | 0.052 | 0.0833 |
Xenotime | 0.02 | 0.019 | 0.021 | 0.028 | 0.052 | 0.044 | 0.0045 |
Fe oxide | 19.318 | 46.092 | 60.596 | 81.185 | 60.511 | 64.218 | 30.5338 |
Quartz | 58.618 | 39.32 | 28.491 | 11.787 | 27.241 | 22.428 | 30.8395 |
Chlorite group | 3.633 | 2.651 | 1.9 | 1.21 | 1.838 | 1.805 | 1.3240 |
Sericite | 10.856 | 5.836 | 3.823 | 2.103 | 4.301 | 4.625 | 18.1930 |
Orthoclase | 1.309 | 0.734 | 0.525 | 0.15 | 0.592 | 0.465 | 9.8422 |
Albite | 0.549 | 0.357 | 0.389 | 0.097 | 0.449 | 0.66 | 0.6371 |
Schorl | 0.284 | 0.174 | 0.057 | 0.057 | 0.135 | 0.093 | 0.0521 |
Corundum | 0.001 | 0 | 0 | 0 | 0 | 0 | 0.0001 |
Kaolinite | 0 | 0 | 0.002 | 0 | 0 | 0 | 0.0060 |
Siderite | 0.223 | 0.307 | 0.254 | 0.156 | 0.313 | 0.459 | 2.6574 |
Siderite_Mn | 0.471 | 0.806 | 0.554 | 0.397 | 0.548 | 0.799 | 0.2432 |
Ankerite | 0.601 | 0.551 | 0.402 | 0.256 | 0.414 | 0.4 | 0.1849 |
Dolomite | 1.277 | 0.543 | 0.474 | 0.257 | 0.758 | 0.832 | 0.1327 |
Calcite | 1.294 | 1.096 | 0.798 | 0.44 | 0.849 | 0.936 | - |
Fluorite | 0.006 | 0.01 | 0.01 | 0.008 | 0.014 | 0.031 | 1.1795 |
Barite | 0.007 | 0.021 | 0.013 | 0.075 | 0.078 | 0.07 | 1.2252 |
Barite-Sr | 0.001 | 0 | 0 | 0 | 0.002 | 0.005 | - |
Anhydrite | 0.016 | 0.016 | 0.041 | 0.001 | 0.001 | 0.004 | 0.0108 |
Apatite | 0.103 | 0.09 | 0.089 | 0.085 | 0.162 | 0.132 | 0.1029 |
Rutile | 0.077 | 0.033 | 0.08 | 0.052 | 0.078 | 0.097 | 0.2411 |
Ilmenite | 0.01 | 0.007 | 0.022 | 0.035 | 0.02 | 0.007 | 0.0447 |
Plagioclase | 0.085 | 0.069 | 0.045 | 0.011 | 0.035 | 0.042 | - |
Atacamite | 0.001 | 0.001 | 0.001 | 0.006 | 0.009 | 0.011 | - |
Titanite | 0 | 0 | 0 | 0.001 | 0 | 0.001 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibi, Z.; Cook, N.J.; Ehrig, K.; Ciobanu, C.L.; Campo-Rodriguez, Y.T.; King, S.A. Minor and Trace Elements in Copper Tailings: A Mineralogical and Geometallurgical Approach to Identify and Evaluate New Opportunities. Minerals 2025, 15, 1018. https://doi.org/10.3390/min15101018
Habibi Z, Cook NJ, Ehrig K, Ciobanu CL, Campo-Rodriguez YT, King SA. Minor and Trace Elements in Copper Tailings: A Mineralogical and Geometallurgical Approach to Identify and Evaluate New Opportunities. Minerals. 2025; 15(10):1018. https://doi.org/10.3390/min15101018
Chicago/Turabian StyleHabibi, Zina, Nigel J. Cook, Kathy Ehrig, Cristiana L. Ciobanu, Yuri T. Campo-Rodriguez, and Samuel A. King. 2025. "Minor and Trace Elements in Copper Tailings: A Mineralogical and Geometallurgical Approach to Identify and Evaluate New Opportunities" Minerals 15, no. 10: 1018. https://doi.org/10.3390/min15101018
APA StyleHabibi, Z., Cook, N. J., Ehrig, K., Ciobanu, C. L., Campo-Rodriguez, Y. T., & King, S. A. (2025). Minor and Trace Elements in Copper Tailings: A Mineralogical and Geometallurgical Approach to Identify and Evaluate New Opportunities. Minerals, 15(10), 1018. https://doi.org/10.3390/min15101018