Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,288)

Search Parameters:
Keywords = roughness properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2036 KiB  
Article
Scalable Chemical Vapor Deposition of Silicon Carbide Thin Films for Photonic Integrated Circuit Applications
by Souryaya Dutta, Alex Kaloyeros, Animesh Nanaware and Spyros Gallis
Appl. Sci. 2025, 15(15), 8603; https://doi.org/10.3390/app15158603 (registering DOI) - 2 Aug 2025
Abstract
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in [...] Read more.
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in nanofabrication technology, the development of SiC on an insulator (SiCOI)-based photonics faces challenges due to fabrication-induced material optical losses and complex processing steps. An alternative approach to mitigate these fabrication challenges is the direct deposition of amorphous SiC on an insulator (a-SiCOI). However, there is a lack of systematic studies aimed at producing high optical quality a-SiC thin films, and correspondingly, on evaluating and determining their optical properties in the telecom range. To this end, we have studied a single-source precursor, 1,3,5-trisilacyclohexane (TSCH, C3H12Si3), and chemical vapor deposition (CVD) processes for the deposition of SiC thin films in a low-temperature range (650–800 °C) on a multitude of different substrates. We have successfully demonstrated the fabrication of smooth, uniform, and stoichiometric a-SiCOI thin films of 20 nm to 600 nm with a highly controlled growth rate of ~0.5 Å/s and minimal surface roughness of ~5 Å. Spectroscopic ellipsometry and resonant micro-photoluminescence excitation spectroscopy and mapping reveal a high index of refraction (~2.7) and a minimal absorption coefficient (<200 cm−1) in the telecom C-band, demonstrating the high optical quality of the films. These findings establish a strong foundation for scalable production of high-quality a-SiCOI thin films, enabling their application in advanced chip-scale telecom PIC technologies. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

25 pages, 7588 KiB  
Article
Electrophoretic Deposition of Green-Synthesized Hydroxyapatite on Thermally Oxidized Titanium: Enhanced Bioactivity and Antibacterial Performance
by Mariana Relva, Daniela Santo, Ricardo Alexandre, Pedro Faia, Sandra Carvalho, Zohra Benzarti and Susana Devesa
Appl. Sci. 2025, 15(15), 8598; https://doi.org/10.3390/app15158598 (registering DOI) - 2 Aug 2025
Abstract
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer [...] Read more.
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer with a hydroxyapatite (HAp) top layer synthesized via a green route using Hylocereus undatus extract. The HAp was deposited by electrophoretic deposition (EPD), enabling continuous coverage and strong adhesion to the pre-treated Ti-6Al-4V substrate. Structural, morphological, chemical, and electrical characterizations were performed using XRD, SEM, EDS, Raman spectroscopy, and impedance spectroscopy. Bioactivity was assessed through apatite formation in simulated body fluid (SBF), while antibacterial properties were evaluated against Staphylococcus aureus. The results demonstrated successful formation of crystalline TiO2 (rutile phase) and calcium-rich HAp with good surface coverage. The HAp-coated surfaces exhibited significantly enhanced bioactivity and strong antibacterial performance, likely due to the combined effects of surface roughness and the bioactive compounds present in the plant extract. This study highlights the potential of eco-friendly, bio-inspired surface engineering to improve the biological performance of titanium-based implants. Full article
25 pages, 8312 KiB  
Article
Quantitative Assessment of Woven Fabric Surface Changes During Martindale Abrasion Using Contactless Optical Profilometry
by Małgorzata Matusiak and Gabriela Kosiuk
Materials 2025, 18(15), 3636; https://doi.org/10.3390/ma18153636 (registering DOI) - 1 Aug 2025
Abstract
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of [...] Read more.
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of the three methods. The method is based on organoleptic assessment of fabric breakage. The method is time-consuming, and results may be subject to error resulting from the subjective nature of the assessment. The aim of the presented work was to check the possibility of the application of contactless 3D surface geometry measurement using an optical profilometer in an assessment of changes in fabrics’ surface due to the abrasion process. The obtained results confirmed that some parameters of the geometric structure of fabric surfaces, such as the highest height of the roughness profile Rz, the height of the highest pick of the roughness profile Rp, the depth of the lowest valley of the roughness profile Rv, the depth of the total height of the roughness profile Rt, and the kurtosis Rku, can be used to assess the abrasion resistance of fabrics. It is also stated that using the non-contact optical measurement of fabric surface geometry allows for an assessment of the directionality of surface texture. For this purpose, the autocorrelation function and angle distribution function can be applied. Full article
Show Figures

Figure 1

19 pages, 9729 KiB  
Article
Comparing Nanomechanical Properties and Membrane Roughness Along the Aging of Human Erythrocytes
by Giovanni Longo, Simone Dinarelli, Federica Collacchi and Marco Girasole
Methods Protoc. 2025, 8(4), 86; https://doi.org/10.3390/mps8040086 (registering DOI) - 1 Aug 2025
Abstract
Erythrocyte (RBC) aging involves significant structural and nanomechanical alterations crucial to their function. This study aims to bridge the gap between analyses based on statistical morphometric parameters, e.g., membrane roughness, and those based on point-dependent nanomechanical properties, e.g., stiffness or Young’s modulus. Using [...] Read more.
Erythrocyte (RBC) aging involves significant structural and nanomechanical alterations crucial to their function. This study aims to bridge the gap between analyses based on statistical morphometric parameters, e.g., membrane roughness, and those based on point-dependent nanomechanical properties, e.g., stiffness or Young’s modulus. Using Atomic Force Microscopy, we investigated morphology, membrane roughness, and nanomechanical properties on the very same RBCs under dehydrated (air) and hydrated (physiological buffer) conditions. The cells were studied at different stages of in vitro aging: one, seven, and 12 days. Our results quantitatively show that across dehydration, as well as along the aging pathway, RBCs become progressively more rigid while their membrane roughness decreases, a trend observed in both environments. Notably, the differences between the hydrated and dehydrated states were large in young cells but diminished when erythrocytes aged. Despite these parallel trends, high-resolution mapping on the nanoscale revealed that roughness and Young’s modulus do not correlate, indicating that these parameters are linked to different properties. In conclusion, this work provides a comprehensive protocol for a biophysical description of RBC aging and establishes that the simultaneous measurement of membrane roughness and nanomechanical properties offers a complementary approach, yielding a more complete characterization of cellular properties. Full article
(This article belongs to the Special Issue Feature Papers in Methods and Protocols 2025)
Show Figures

Figure 1

21 pages, 4228 KiB  
Article
The Combined Effect of Caseinates, Native or Heat-Treated Whey Proteins, and Cryogel Formation on the Characteristics of Kefiran Films
by Nikoletta Pouliou, Eirini Chrysovalantou Paraskevaidou, Athanasios Goulas, Stylianos Exarhopoulos and Georgia Dimitreli
Molecules 2025, 30(15), 3230; https://doi.org/10.3390/molecules30153230 (registering DOI) - 1 Aug 2025
Abstract
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and [...] Read more.
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and its ability to form standalone cryogels allow it to be utilized for the fabrication of films with improved properties for applications in the food and biomedical–pharmaceutical industries. In the present work, the properties of kefiran films were investigated in the presence of milk proteins (sodium caseinate, native and heat-treated whey proteins, and their mixtures), alongside glycerol (as a plasticizer) and cryo-treatment of the film-forming solution prior to drying. A total of 24 kefiran films were fabricated and studied for their physical (thickness, moisture content, water solubility, color parameters and vapor adsorption), mechanical (tensile strength and elongation at break), and optical properties. Milk proteins increased film thickness, solubility and tensile strength and reduced water vapor adsorption. The hygroscopic effect of glycerol was mitigated in the presence of milk proteins and/or the application of cryo-treatment. Glycerol was the most effective at reducing the films’ opacity. Heat treatment of whey proteins proved to be the most effective in increasing film tensile strength, reducing, at the same time, the elongation at break, while sodium caseinates in combination with cryo-treatment resulted in films with high tensile strength and the highest elongation at break. Cryo-treatment, carried out in the present study through freezing followed by gradual thawing of the film-forming solution, proved to be the most effective factor in decreasing film roughness. Based on our results, proper selection of the film-forming solution composition and its treatment prior to drying can result in kefiran–glycerol films with favorable properties for particular applications. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials)
Show Figures

Figure 1

27 pages, 471 KiB  
Article
Multi-Granulation Covering Rough Intuitionistic Fuzzy Sets Based on Maximal Description
by Xiao-Meng Si and Zhan-Ao Xue
Symmetry 2025, 17(8), 1217; https://doi.org/10.3390/sym17081217 (registering DOI) - 1 Aug 2025
Abstract
Rough sets and fuzzy sets are two complementary approaches for modeling uncertainty and imprecision. Their integration enables a more comprehensive representation of complex, uncertain systems. However, existing rough fuzzy sets models lack the expressive power to fully capture the interactions among structural uncertainty, [...] Read more.
Rough sets and fuzzy sets are two complementary approaches for modeling uncertainty and imprecision. Their integration enables a more comprehensive representation of complex, uncertain systems. However, existing rough fuzzy sets models lack the expressive power to fully capture the interactions among structural uncertainty, cognitive hesitation, and multi-level granular information. To address these limitations, we achieve the following: (1) We propose intuitionistic fuzzy covering rough membership and non-membership degrees based on maximal description and construct a new single-granulation model that more effectively captures both the structural relationships among elements and the semantics of fuzzy information. (2) We further extend the model to a multi-granulation framework by defining optimistic and pessimistic approximation operators and analyzing their properties. Additionally, we propose a neutral multi-granulation covering rough intuitionistic fuzzy sets based on aggregated membership and non-membership degrees. Compared with single-granulation models, the multi-granulation models integrate multiple levels of information, allowing for more fine-grained and robust representations of uncertainty. Finally, a case study on real estate investment was conducted to validate the effectiveness of the proposed models. The results show that our models can more precisely represent uncertainty and granularity in complex data, providing a flexible tool for knowledge representation in decision-making scenarios. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

25 pages, 659 KiB  
Systematic Review
Mechanical and Physical Properties of Durable Prosthetic Restorations Printed Using 3D Technology in Comparison with Hybrid Ceramics and Milled Restorations—A Systematic Review
by Bettanapalya. V. Swapna, B. Shivamurthy, Vinu Thomas George, Kavishma Sulaya and Vaishnavi M Nayak
Prosthesis 2025, 7(4), 90; https://doi.org/10.3390/prosthesis7040090 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins [...] Read more.
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins in comparison to milled resins and hybrid ceramics for the fabrication of indirect dental restorations. Methods: Three electronic databases—Scopus, Web of Science, and PubMed—were searched for English-language articles. Two independent researchers conducted study selection, data extraction, quality assessment, and the evaluation of the certainty of evidence. In vitro studies assessing the mechanical and physical properties of the permanent resins were included in this review. Results: A total of 1779 articles were identified through electronic databases. Following full-text screening and eligibility assessment, 13 studies published between 2023 and 2024 were included in this qualitative review. The investigated outcomes included physical properties (surface roughness, color changes, water sorption/solubility) and mechanical properties (flexural strength, elastic modulus, microhardness). Conclusions: Three-dimensionally printed permanent resins show promising potential for fabricating indirect dental restorations. However, the current evidence regarding their mechanical and physical properties remain limited and inconsistent, mainly due to variability in study methodologies. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

15 pages, 1257 KiB  
Article
Waterborne Polymer Coating Material Modified with Nano-SiO2 and Siloxane for Fabricating Environmentally Friendly Coated Urea
by Songling Chen, Fuxin Liu, Wenying Zhao, Jianrong Zhao, Xinlin Li and Jianfei Wang
Sustainability 2025, 17(15), 6987; https://doi.org/10.3390/su17156987 (registering DOI) - 1 Aug 2025
Abstract
Environmentally friendly coated urea prepared using a waterborne polymer coating material is essential for promoting green and sustainable practices in modern agriculture. However, significant efforts are still urgently needed to address the undesirable properties of waterborne polymer coatings, i.e., poor hydrophobic properties and [...] Read more.
Environmentally friendly coated urea prepared using a waterborne polymer coating material is essential for promoting green and sustainable practices in modern agriculture. However, significant efforts are still urgently needed to address the undesirable properties of waterborne polymer coatings, i.e., poor hydrophobic properties and numerous micropores. Herein, dual nano-SiO2 and siloxane-modified waterborne-polymer-coated urea was successfully developed. The characteristics of waterborne-polymer-coated urea before and after modification were compared. The results demonstrate that nano-SiO2 and siloxane modification improved the hydrophobicity (water absorption decreased from 119.86% to 46.35%) and mechanical strength (tensile strength increased from 21.09 to 31.29 MPa, and the elongation at break exhibited an increase of 22.42%) of the waterborne polymer coatings. Furthermore, the –OH number of the modified coatings was decreased, while the coating surface formed a nano-scale rough structure, prolonging the nitrogen (N)-controlled release period from 7 to 28 days. Overall, the proposed novel dual-modification technique utilizing waterborne polymer coatings highlights the significant potential of eco-friendly coated urea with renewable coatings in modern agriculture. Full article
Show Figures

Figure 1

15 pages, 2272 KiB  
Article
Improving the Detection Accuracy of Subsurface Damage in Optical Materials by Exploiting the Fluorescence Polarization Properties of Quantum Dots
by Yana Cui, Xuelian Liu, Bo Xiao, Yajie Wu and Chunyang Wang
Nanomaterials 2025, 15(15), 1182; https://doi.org/10.3390/nano15151182 - 31 Jul 2025
Abstract
Optical materials are widely used in large optical systems such as lithography machines and astronomical telescopes. However, optical materials inevitably produce subsurface damage (SSD) during lapping and polishing processes, degrading the laser damage threshold and impacting the service life of the optical system. [...] Read more.
Optical materials are widely used in large optical systems such as lithography machines and astronomical telescopes. However, optical materials inevitably produce subsurface damage (SSD) during lapping and polishing processes, degrading the laser damage threshold and impacting the service life of the optical system. The large surface roughness of the lapped optical materials further increases the difficulty of the nondestructive detection of SSD. Quantum dots (QDs) show great development potential in the nondestructive detection of SSD in lapped materials. However, existing QD-based SSD detection methods ignore the polarization sensitivity of QDs to excitation light, which affects the detection accuracy of SSD. To address this problem, this paper explores the fluorescence polarization properties of QDs in the SSD of optical materials. First, the detection principle of SSD based on the fluorescence polarization of QDs is investigated. Subsequently, a fluorescence polarization detection system is developed to analyze the fluorescence polarization properties of QDs in SSD. Finally, the SSD is detected based on the studied polarization properties. The results show that the proposed method effectively improves the detection rate of SSD by 10.8% and thus provides guidance for evaluating the quality of optical material and optimizing optical material processing technologies. The research paradigm is equally applicable to biomedicine, energy, optoelectronics, and the environment, where QDs have a wide range of applications. Full article
Show Figures

Figure 1

21 pages, 3008 KiB  
Article
Dry Machining of AISI 316 Steel Using Textured Ceramic Tool Inserts: Investigation of Surface Roughness and Chip Morphology
by Shailendra Pawanr and Kapil Gupta
Ceramics 2025, 8(3), 97; https://doi.org/10.3390/ceramics8030097 (registering DOI) - 31 Jul 2025
Abstract
Stainless steel is recognized for its excellent durability and anti-corrosion properties, which are essential qualities across various industrial applications. The machining of stainless steel, particularly under a dry environment to attain sustainability, poses several challenges. The poor heat conductivity and high ductility of [...] Read more.
Stainless steel is recognized for its excellent durability and anti-corrosion properties, which are essential qualities across various industrial applications. The machining of stainless steel, particularly under a dry environment to attain sustainability, poses several challenges. The poor heat conductivity and high ductility of stainless steel results in poor heat distribution, accelerating tool wear and problematic chip formation. To mitigate these challenges, the implementation of surface texturing has been identified as a beneficial strategy. This study investigates the impact of wave-type texturing patterns, developed on the flank surface of tungsten carbide ceramic tool inserts, on the machinability of AISI 316 stainless steel under dry cutting conditions. In this investigation, chip morphology and surface roughness were used as key indicators of machinability. Analysis of Variance (ANOVA) was conducted for chip thickness, chip thickness ratio, and surface roughness, while Taguchi mono-objective optimization was applied to chip thickness. The ANOVA results showed that linear models accounted for 71.92%, 83.13%, and 82.86% of the variability in chip thickness, chip thickness ratio, and surface roughness, respectively, indicating a strong fit to the experimental data. Microscopic analysis confirmed a substantial reduction in chip thickness, with a minimum observed value of 457.64 µm. The corresponding average surface roughness Ra value 1.645 µm represented the best finish across all experimental runs, highlighting the relationship between thinner chips and enhanced surface quality. In conclusion, wave textures on the cutting tool’s flank face have the potential to facilitate the dry machining of AISI 316 stainless steel to obtain favorable machinability. Full article
Show Figures

Graphical abstract

29 pages, 2309 KiB  
Systematic Review
The Influence of Printing Orientation on the Properties of 3D-Printed Polymeric Provisional Dental Restorations: A Systematic Review and Meta-Analysis
by Firas K. Alqarawi
J. Funct. Biomater. 2025, 16(8), 278; https://doi.org/10.3390/jfb16080278 (registering DOI) - 31 Jul 2025
Viewed by 89
Abstract
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to [...] Read more.
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to analyze the articles evaluating the influence of printing orientation on the physical and mechanical properties of 3D-printed polymeric provisional dental restorations. Recommendations provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to structure and compose the review. The PICO (Participant, Intervention, Comparison, Outcome) question ordered was: ‘Do 3D-printed provisional dental restorations (P) printed at various orientations (except 0°) (I) exhibit similar physical and mechanical properties (O) when compared to those printed at a 0° orientation (C)?’. An electronic search was conducted on 28 and 29 April 2025, by two independent researchers across four databases (MEDLINE/PubMed, Scopus, Cochrane Library, and Web of Science) to systematically collect relevant articles published up to March 2025. After removing duplicate articles and applying predefined inclusion and exclusion criteria, twenty-one articles were incorporated into this review. Self-designed Performa’s were used to tabulate all relevant information. For the quality analysis, the modified CONSORT scale was utilized. The quantitative analysis was performed on only fifteen out of twenty-one articles. It can be concluded that the printing orientation affects some of the tested properties, which include fracture strength (significantly higher for specimens printed at 0° when compared to 90°), wear resistance (significantly higher for specimens printed at 90° when compared to 0°), microhardness (significantly higher for specimens printed at 90°and 45° when compared to 0°), color stability (high at 0°), and surface roughness (significantly higher for specimens printed at 45° and 90° when compared to 0°). There were varied outcomes in terms of flexural strength and elastic modulus. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

22 pages, 15066 KiB  
Article
Influence of Shot Peening on Selected Properties of the Surface and Subsurface Regions of Additively Manufactured 316L and AlSi10Mg
by Ali Al-Zuhairi, Patrick Lehner, Bastian Blinn, Marek Smaga, Jonas Flatter, Tilmann Beck and Roman Teutsch
Metals 2025, 15(8), 856; https://doi.org/10.3390/met15080856 - 30 Jul 2025
Viewed by 100
Abstract
Due to the high potential of shot peening to improve the surface quality of additively manufactured components, in this work, the influence on surface morphology and, thus, the surface topography and selected properties of the surface and subsurface regions of additively manufactured parts [...] Read more.
Due to the high potential of shot peening to improve the surface quality of additively manufactured components, in this work, the influence on surface morphology and, thus, the surface topography and selected properties of the surface and subsurface regions of additively manufactured parts is analysed. For this, cubic specimens made of stainless steel 316L and AlSi10Mg were manufactured via powder bed fusion laser beam metal (PBF-LB/M), and subsequently, their “as-built” surfaces were shot peened. Shot peening was conducted with stainless steel or ceramic beads using pressures of 3 and 5 bar. The resulting morphologies were analysed regarding topography, microstructure and mechanical properties (hardness and cyclic deformation behaviour) in the subsurface region and the residual stresses. The results demonstrate a strong plastic deformation due to shot peening, resulting in a decreased surface roughness as well as an increased hardness and compressive residual stresses near the surface. These effects were generally more pronounced after using higher peening pressure and/or ceramic beads. Note that two sets of PBF-LB/M parameters were used to produce the AlSi10Mg specimens. The investigation of these specimens reveals an interrelation between the parameters used in shot peening and PBF-LB/M on the resulting surface morphology. Full article
Show Figures

Graphical abstract

20 pages, 2093 KiB  
Review
A Practical Guide Paper on Bulk and PLD Thin-Film Metals Commonly Used as Photocathodes in RF and SRF Guns
by Alessio Perrone, Muhammad Rizwan Aziz, Francisco Gontad, Nikolaos A. Vainos and Anna Paola Caricato
Chemistry 2025, 7(4), 123; https://doi.org/10.3390/chemistry7040123 - 30 Jul 2025
Viewed by 224
Abstract
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many [...] Read more.
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many applications. The investigation includes the photoemission, optical, chemical, mechanical, and physical properties of metallic materials used in photocathodes, with a particular focus on key performance parameters such as quantum efficiency, operational lifetime, chemical inertness, thermal emittance, response time, dark current, and work function. In addition to these primary attributes, this study examines essential parameters such as surface roughness, morphology, injector compatibility, manufacturing techniques, and the impact of chemical environmental factors on overall performance. The aim is to provide researchers with detailed insights to make well-informed decisions on materials and device selection. The holistic approach of this work associates, in tabular format, all photo-emissive, optical, mechanical, physical, and chemical properties of bulk and thin-film metallic photocathodes with experimental data, aspiring to provide unique tools for maximizing the effectiveness of laser cleaning treatment. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

21 pages, 2189 KiB  
Article
Surface Modification, Characterization, and Cytotoxicity of Ti-6Al-4V Alloy Enriched by EDM Process
by Bárbara A. B. dos Santos, Elaine C. S. Corrêa, Wellington Lopes, Liszt Y. C. Madruga, Ketul C. Popat, Roberta M. Sabino and Hermes de Souza Costa
Appl. Sci. 2025, 15(15), 8443; https://doi.org/10.3390/app15158443 - 30 Jul 2025
Viewed by 232
Abstract
This study investigates the surface modification of Ti-6Al-4V alloy through the electrical discharge machining (EDM) process to improve its suitability for orthopedic and dental implant applications. The analysis focused on evaluating the morphological, wettability, roughness, hardness, and biocompatibility properties of the modified surfaces. [...] Read more.
This study investigates the surface modification of Ti-6Al-4V alloy through the electrical discharge machining (EDM) process to improve its suitability for orthopedic and dental implant applications. The analysis focused on evaluating the morphological, wettability, roughness, hardness, and biocompatibility properties of the modified surfaces. Samples were subjected to different dielectric fluids and polarities during EDM. Subsequently, optical microscopy, roughness measurements, Vickers microhardness, contact angle tests, and in vitro cytotoxicity assays were performed. The results demonstrated that EDM processing led to the formation of distinct layers on the sample surfaces, with surface roughness increasing under negative polarity by up to ~304% in Ra and 305% in Rz. Additionally, wettability measurements indicated that the modified surfaces presented a lower water contact angle, which suggests enhanced hydrophilicity. Moreover, the modified samples showed a significant increase in Vickers microhardness, with the highest value reaching 1520 HV in the recast layer, indicating improvements in the mechanical properties. According to ISO 10993-5, all treated samples were classified as non-cytotoxic, presenting RGR values above 75%, similar to the untreated Ti-6Al-4V alloy. Therefore, it is concluded that surface modification through the EDM process has the potential to enhance the properties and safety of biomedical implants made with this alloy. Full article
(This article belongs to the Special Issue Titanium and Its Compounds: Properties and Innovative Applications)
Show Figures

Figure 1

17 pages, 574 KiB  
Systematic Review
Hydrogen Peroxide-Free Color Correctors for Tooth Whitening in Adolescents and Young Adults: A Systematic Review of In Vitro and Clinical Evidence
by Madalina Boruga, Gianina Tapalaga, Magda Mihaela Luca and Bogdan Andrei Bumbu
Dent. J. 2025, 13(8), 346; https://doi.org/10.3390/dj13080346 - 28 Jul 2025
Viewed by 370
Abstract
Background: The rising demand for aesthetic dental treatments has spurred interest in peroxide-free color correctors as alternatives to traditional hydrogen peroxide formulations, which are associated with tooth sensitivity and potential enamel demineralization. This systematic review evaluates the whitening efficacy and safety profile of [...] Read more.
Background: The rising demand for aesthetic dental treatments has spurred interest in peroxide-free color correctors as alternatives to traditional hydrogen peroxide formulations, which are associated with tooth sensitivity and potential enamel demineralization. This systematic review evaluates the whitening efficacy and safety profile of hydrogen peroxide-free color corrector (HPFCC) products, focusing on color change metrics, enamel and dentin integrity, and adverse effects. Methods: Following PRISMA guidelines, we searched PubMed, Scopus, and Web of Science throughout January 2025 for randomized controlled trials, observational studies, and in vitro experiments comparing HPFCC to placebo or peroxide-based agents. The data extraction covered study design, sample characteristics, intervention details, shade improvement (ΔE00 or CIE Lab), enamel/dentin mechanical properties (microhardness, roughness, elastic modulus), and incidence of sensitivity or tissue irritation. Risk of bias was assessed using the Cochrane tool for clinical studies and the QUIN tool for in vitro research. Results: Six studies (n = 20–80 samples or subjects) met the inclusion criteria. In vitro, HPFCC achieved mean ΔE00 values of 3.5 (bovine incisors; n = 80) and 2.8 (human molars; n = 20), versus up to 8.9 for carbamide peroxide (p < 0.01). Across studies, HPFCC achieved a mean ΔE00 of 2.8–3.5 surpassing the perceptibility threshold of 2.7 and approaching the clinical acceptability benchmark of 3.3. Surface microhardness increased by 12.9 ± 11.7 VHN with HPFCC (p < 0.001), and ultramicrohardness rose by 110 VHN over 56 days in prolonged use studies. No significant enamel erosion or dentin roughness changes were observed, and the sensitivity incidence remained below 3%. Conclusions: These findings derive from one clinical trial (n = 60) and five in vitro studies (n = 20–80), encompassing violet-pigment serums and gels with differing concentrations. Due to heterogeneity in designs, formulations, and outcome measures, we conducted a narrative synthesis rather than a meta-analysis. Although HPFCC ΔE00 values were lower than those of carbamide peroxide, they consistently exceeded perceptibility thresholds while maintaining enamel integrity and causing sensitivity in fewer than 3% of subjects, supporting HPFCCs as moderate but safe alternatives for young patients. Full article
Show Figures

Figure 1

Back to TopTop