Influence of Shot Peening on Selected Properties of the Surface and Subsurface Regions of Additively Manufactured 316L and AlSi10Mg
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials: AlSi10Mg and 316L
2.2. Shot Peening Surface Treatment
2.3. Surface Topography Analysis
2.4. Light Optical Microscope
2.5. Cyclic Indentation Tests Including Microhardness Measurements
2.6. Residual Stress Analysis
3. Results
3.1. Analysis of the Surface Topography of 316L and AlSi10Mg Specimens
3.2. Microstructural Analysis of the Subsurface Region of Untreated and Shot-Peened Specimens
3.3. Change in Microhardness Due to Shot Peening
3.4. Change in Cyclic Deformation Behaviour Caused by Shot Peening
3.5. Analysis of Residual Stresses in the Subsurface Region
4. Discussion
4.1. Effect of Shot Peening on the Surface Morphology of 316L
4.2. Effect of Shot Peening on the Surface Morphology of AlSi10Mg
5. Conclusions
- For both materials, a significant reduction in surface roughness was achieved by shot peening. The resulting surface roughness depended on the peening beads applied and the pressure used.
- The shot peening led to plastic deformation of the subsurface region, which extended up to 200 µm beneath the surface, while the depth of this area depended on the material treated and the shot peening parameters used. This plastically deformed subsurface region exhibited increased hardness and compressive residual stresses, being differently pronounced depending on the materials and shot peening parameters. Note that for 316L specimens, this zone also revealed a reduced cyclic hardening potential, while the AlSi10Mg specimens showed nearly no changes in cyclic hardening potential within this zone.
- While for AlSi10Mg, an increase in peening pressure led to a more pronounced plastically deformed subsurface region, for 316L, this occurred only for peening with ceramic beads. Using the stainless steel beads, an increase in pressure led to nearly no effect.
- For the AlSi10Mg specimens, an interrelation of the process parameters used in PBF-LB/M and the effects of the shot peening applied was observed.
- For 316L, a strong correlation between plastic deformation obtained in cyclic indentation tests and the compressive residual stresses induced by shot peening was observed. However, for AlSi10Mg, this correlation was only partially given, which might be caused by the differently pronounced effects of work hardening and residual stresses between the materials investigated. The evaluation of these differences is the objective of future work.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | additive manufacturing |
PBF-LB/M | powder bed fusion laser beam metal |
CIT | cyclic indentation test |
CHT | cyclic hardening test |
References
- F42 Committee. Terminology for Additive Manufacturing-General Principles-Terminology; ASTM International: West Conshohocken, PA, USA, 2022. [Google Scholar]
- Newton, R.; van Rensburg, J.; Scott, C.; Wohlers, T.; Campbell, R.I.; Diegel, O.; Huff, R.; Kowen, J. Wohlers Report 2023: 3D Printing and Additive Manufacturing: Global State of the Industry; ASTM International: West Conshohocken, PA, USA, 2023; ISBN 9781622049660. [Google Scholar]
- Majumdar, T.; Eisenstein, N.; Frith, J.E.; Cox, S.C.; Birbilis, N. Additive Manufacturing of Titanium Alloys for Orthopedic Applications: A Materials Science Viewpoint. Adv. Eng. Mater. 2018, 20, 1800172. [Google Scholar] [CrossRef]
- Jiménez, A.; Bidare, P.; Hassanin, H.; Tarlochan, F.; Dimov, S.; Essa, K. Powder-based laser hybrid additive manufacturing of metals: A review. Int. J. Adv. Manuf. Technol. 2021, 114, 63–96. [Google Scholar] [CrossRef]
- Kladovasilakis, N.; Charalampous, P.; Tsongas, K.; Kostavelis, I.; Tzovaras, D.; Tzetzis, D. Influence of Selective Laser Melting Additive Manufacturing Parameters in Inconel 718 Superalloy. Materials 2022, 15, 1362. [Google Scholar] [CrossRef]
- Yang, T.; Liu, T.; Liao, W.; Wei, H.; Zhang, C.; Chen, X.; Zhang, K. Effect of processing parameters on overhanging surface roughness during laser powder bed fusion of AlSi10Mg. J. Manuf. Process. 2021, 61, 440–453. [Google Scholar] [CrossRef]
- AlMangour, B.; Yang, J.-M. Improving the surface quality and mechanical properties by shot peening of 17-4 stainless steel fabricated by additive manufacturing. Mater. Des. 2016, 110, 914–924. [Google Scholar] [CrossRef]
- Bagherifard, S.; Beretta, N.; Monti, S.; Riccio, M.; Bandini, M.; Guagliano, M. On the fatigue strength enhancement of additive manufactured AlSi10Mg parts by mechanical and thermal post-processing. Mater. Des. 2018, 145, 28–41. [Google Scholar] [CrossRef]
- Damon, J.; Dietrich, S.; Vollert, F.; Gibmeier, J.; Schulze, V. Process dependent porosity and the influence of shot peening on porosity morphology regarding selective laser melted AlSi10Mg parts. Addit. Manuf. 2018, 20, 77–89. [Google Scholar] [CrossRef]
- Gundgire, T.; Jokiaho, T.; Santa-aho, S.; Rautio, T.; Järvenpää, A.; Vippola, M. Comparative study of additively manufactured and reference 316 L stainless steel samples–Effect of severe shot peening on microstructure and residual stresses. Mater. Charact. 2022, 191, 112162. [Google Scholar] [CrossRef]
- Maleki, E.; Bagherifard, S.; Bandini, M.; Guagliano, M. Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities. Addit. Manuf. 2021, 37, 101619. [Google Scholar] [CrossRef]
- Maleki, E.; Bagherifard, S.; Unal, O.; Sabouri, F.; Bandini, M.; Guagliano, M. Effects of different mechanical and chemical surface post-treatments on mechanical and surface properties of as-built laser powder bed fusion AlSi10Mg. Surf. Coat. Technol. 2022, 439, 128391. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Elbestawi, M.A.; Veldhuis, S.C. Influence of Shot Peening on AlSi10Mg Parts Fabricated by Additive Manufacturing. JMMP 2018, 2, 40. [Google Scholar] [CrossRef]
- Uzan, N.E.; Ramati, S.; Shneck, R.; Frage, N.; Yeheskel, O. On the effect of shot peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM). Addit. Manuf. 2018, 21, 458–464. [Google Scholar] [CrossRef]
- Xie, B.; Xue, J.; Ren, X.; Wu, W.; Lin, Z. A Comparative Study of the CMT+P Process on 316L Stainless Steel Additive Manufacturing. Appl. Sci. 2020, 10, 3284. [Google Scholar] [CrossRef]
- Beretta, S.; Romano, S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. Int. J. Fatigue 2017, 94, 178–191. [Google Scholar] [CrossRef]
- Yadollahi, A.; Shamsaei, N.; Thompson, S.M.; Elwany, A.; Bian, L. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. Int. J. Fatigue 2017, 94, 218–235. [Google Scholar] [CrossRef]
- Kan, W.H.; Nadot, Y.; Foley, M.; Ridosz, L.; Proust, G.; Cairney, J.M. Factors that affect the properties of additively-manufactured AlSi10Mg: Porosity versus microstructure. Addit. Manuf. 2019, 29, 100805. [Google Scholar] [CrossRef]
- Casati, R.; Lemke, J.; Vedani, M. Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting. J. Mater. Sci. Technol. 2016, 32, 738–744. [Google Scholar] [CrossRef]
- Bartlett, J.L.; Li, X. An overview of residual stresses in metal powder bed fusion. Addit. Manuf. 2019, 27, 131–149. [Google Scholar] [CrossRef]
- Riemer, A.; Leuders, S.; Thöne, M.; Richard, H.A.; Tröster, T.; Niendorf, T. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng. Fract. Mech. 2014, 120, 15–25. [Google Scholar] [CrossRef]
- Leon Nope, G.V.d.; Perez-Andrade, L.I.; Corona-Castuera, J.; Espinosa-Arbelaez, D.G.; Muñoz-Saldaña, J.; Alvarado-Orozco, J.M. Study of volumetric energy density limitations on the IN718 mesostructure and microstructure in laser powder bed fusion process. J. Manuf. Process. 2021, 64, 1261–1272. [Google Scholar] [CrossRef]
- Gockel, J.; Sheridan, L.; Koerper, B.; Whip, B. The influence of additive manufacturing processing parameters on surface roughness and fatigue life. Int. J. Fatigue 2019, 124, 380–388. [Google Scholar] [CrossRef]
- Brenne, F.; Niendorf, T. Damage tolerant design by microstructural gradation–Influence of processing parameters and build orientation on crack growth within additively processed 316L. Mater. Sci. Eng. A 2019, 764, 138186. [Google Scholar] [CrossRef]
- Yu, W.; Sing, S.L.; Chua, C.K.; Tian, X. Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting. J. Alloys Compd. 2019, 792, 574–581. [Google Scholar] [CrossRef]
- Boschetto, A.; Bottini, L.; Pilone, D. Effect of laser remelting on surface roughness and microstructure of AlSi10Mg selective laser melting manufactured parts. Int. J. Adv. Manuf. Technol. 2021, 113, 2739–2759. [Google Scholar] [CrossRef]
- Al-Zuhairi, A.; Ley, M.; Teutsch, R.; Schäfer, M.; Blinn, B.; Beck, T. Modifikation Von Oberflächenrauigkeit und Randschichthärte Additiv Gefertigter Strukturen Durch Nachbearbeitungsverfahren; Deutscher Verband für Materialforschung und -Prüfung e.V: Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Vinoth Jebaraj, A.; Sugavaneswaran, M. Influence of Shot Peening on Residual Stress Distribution and Corrosion Resistance of Additive Manufactured Stainless Steel AISI 316L. Trans. Indian Inst. Met. 2019, 72, 1651–1653. [Google Scholar] [CrossRef]
- Maleki, E.; Bagherifard, S.; Heydari Astaraee, A.; Sgarbazzini, S.; Bandini, M.; Guagliano, M. Application of gradient severe shot peening as a novel mechanical surface treatment on fatigue behavior of additively manufactured AlSi10Mg. Mater. Sci. Eng. A 2023, 881, 145397. [Google Scholar] [CrossRef]
- Hietala, M.; Rautio, T.; Jaskari, M.; Gundgire, T.; Järvenpää, A. The Effect of Laser Heat Treatment and Severe Shot Peening on Laser Powder Bed Fusion Manufactured AISI 316L Stainless Steel. MSF 2023, 1097, 17–23. [Google Scholar] [CrossRef]
- Badreddine, J.; Rouhaud, E.; Micoulaut, M.; Retraint, D.; Remy, S.; François, M.; Viot, P.; Doubre-Baboeuf, G.; Le Saunier, D.; Desfontaine, V. Simulation and experimental approach for shot velocity evaluation in ultrasonic shot peening. Mécanique Ind. 2011, 12, 223–229. [Google Scholar] [CrossRef]
- Qin, Z.; Li, B.; Zhang, H.; Youani Andre Wilfried, T.; Gao, T.; Xue, H. Effects of shot peening with different coverage on surface integrity and fatigue crack growth properties of 7B50-T7751 aluminum alloy. Eng. Fail. Anal. 2022, 133, 106010. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, S.; Li, C.; Li, B.; Qian, G. Laser powder bed fused 304L steel shot peened with various ceramic shot sizes: Surface/subsurface characteristics, tensile behavior, and fatigue behavior. Int. J. Plast. 2023, 171, 103784. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components–Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Murakami, Y.; Masuo, H.; Tanaka, Y.; Nakatani, M. Defect Analysis for Additively Manufactured Materials in Fatigue from the Viewpoint of Quality Control and Statistics of Extremes. Procedia Struct. Integr. 2019, 19, 113–122. [Google Scholar] [CrossRef]
- Romano, S.; Brückner-Foit, A.; Brandão, A.; Gumpinger, J.; Ghidini, T.; Beretta, S. Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength. Eng. Fract. Mech. 2018, 187, 165–189. [Google Scholar] [CrossRef]
- Blinn, B.; Krebs, F.; Ley, M.; Teutsch, R.; Beck, T. Determination of the influence of a stress-relief heat treatment and additively manufactured surface on the fatigue behavior of selectively laser melted AISI 316L by using efficient short-time procedures. Int. J. Fatigue 2020, 131, 105301. [Google Scholar] [CrossRef]
- Lehner, P.; Blinn, B.; Beck, T. Improving the Defect Tolerance and Fatigue Strength of AM AlSi10Mg. Adv. Eng. Mater. 2023, 25, 2201855. [Google Scholar] [CrossRef]
- Blinn, B.; Görzen, D.; Klein, M.; Eifler, D.; Beck, T. PhyBaLCHT–Influence of indentation force on the results of cyclic hardness tests and investigations of comparability to uniaxial fatigue loading. Int. J. Fatigue 2019, 119, 78–88. [Google Scholar] [CrossRef]
- Görzen, D.; Schwich, H.; Blinn, B.; Bleck, W.; Beck, T. Influence of different precipitation states of Cu on the quasi-static and cyclic deformation behavior of Cu alloyed steels with different carbon contents. Int. J. Fatigue 2020, 136, 105587. [Google Scholar] [CrossRef]
- Blinn, B.; Klein, M.; Gläßner, C.; Smaga, M.; Aurich, J.; Beck, T. An Investigation of the Microstructure and Fatigue Behavior of Additively Manufactured AISI 316L Stainless Steel with Regard to the Influence of Heat Treatment. Metals 2018, 8, 220. [Google Scholar] [CrossRef]
- DIN EN ISO 14577-1:2015-11; Metallische Werkstoffe_-Instrumentierte Eindringprüfung zur Bestimmung der Härte und anderer Werkstoffparameter_-Teil_1: Prüfverfahren (ISO_14577-1:2015). Deutsche Fassung EN_ISO_14577-1:2015; DIN Media GmbH: Berlin, Germany, 2015.
- Ostermayer, P.; Ankener, W.; Blinn, B.; Smaga, M.; Eifler, D.; Beck, T. Analysis of the Subsurface Volume of Differently Finished AISI 52100 by Cyclic Indentation and X-Ray Diffraction. Steel Res. Int. 2021, 92, 2100253. [Google Scholar] [CrossRef]
PBF-LB/M Parameters | Shot Peening Parameters | ||||||
---|---|---|---|---|---|---|---|
Specimen | Material (-) | Layer Thickness T (µm) | Scan Velocity v (mm/s) | Laser Power P (W) | Pressure (bar) | Time t (s) | Peening Material (-) |
316L-nsp | 316L | 20 | 1500 | 90 | - | - | - |
316L-3b-ss | 316L | 20 | 1500 | 90 | 3 | 15 | stainless steel |
316L-5b-ss | 316L | 20 | 1500 | 90 | 5 | 15 | stainless steel |
316L-3b-c | 316L | 20 | 1500 | 90 | 3 | 15 | ceramics |
316L-5b-c | 316L | 20 | 1500 | 90 | 5 | 15 | ceramics |
Al-B1-nsp | AlSi10Mg | 60 | 1330 | 309 | - | - | - |
Al-B2-nsp | AlSi10Mg | 60 | 1200 | 272 | - | - | - |
Al-B1-3b | AlSi10Mg | 60 | 1330 | 309 | 3 | 15 | stainless steel |
Al-B2-3b | AlSi10Mg | 60 | 1200 | 272 | 3 | 15 | stainless steel |
Al-B1-5b | AlSi10Mg | 60 | 1330 | 309 | 5 | 15 | stainless steel |
Al-B2-5b | AlSi10Mg | 60 | 1200 | 272 | 5 | 15 | stainless steel |
Sa (µm) | Sz (µm) | Sa (% of nsp) | Sz (% of nsp) | |
---|---|---|---|---|
316L-nsp | 6.40 | 93.14 | - | - |
316L-3b-ss | 2.13 | 51.00 | 33.28 | 54.76 |
316L-5b-ss | 3.02 | 37.49 | 47.19 | 40.25 |
316L-3b-c | 3.07 | 44.78 | 47.97 | 48.08 |
316L-5b-c | 2.64 | 36.56 | 41.25 | 39.25 |
Sa (µm) | Sz (µm) | Sa (% of nsp) | Sz (% of nsp) | |
---|---|---|---|---|
Al-B1-nsp | 13.76 | 140.70 | - | - |
Al-B2-nsp | 13.17 | 190.50 | - | - |
Al-B1-3b | 6.44 | 83.43 | 46.80 | 59.30 |
Al-B2-3b | 7.22 | 60.27 | 54.82 | 31.64 |
Al-B1-5b | 4.44 | 59.85 | 31.97 | 42.53 |
Al-B2-5b | 4.84 | 58.69 | 36.75 | 30.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Zuhairi, A.; Lehner, P.; Blinn, B.; Smaga, M.; Flatter, J.; Beck, T.; Teutsch, R. Influence of Shot Peening on Selected Properties of the Surface and Subsurface Regions of Additively Manufactured 316L and AlSi10Mg. Metals 2025, 15, 856. https://doi.org/10.3390/met15080856
Al-Zuhairi A, Lehner P, Blinn B, Smaga M, Flatter J, Beck T, Teutsch R. Influence of Shot Peening on Selected Properties of the Surface and Subsurface Regions of Additively Manufactured 316L and AlSi10Mg. Metals. 2025; 15(8):856. https://doi.org/10.3390/met15080856
Chicago/Turabian StyleAl-Zuhairi, Ali, Patrick Lehner, Bastian Blinn, Marek Smaga, Jonas Flatter, Tilmann Beck, and Roman Teutsch. 2025. "Influence of Shot Peening on Selected Properties of the Surface and Subsurface Regions of Additively Manufactured 316L and AlSi10Mg" Metals 15, no. 8: 856. https://doi.org/10.3390/met15080856
APA StyleAl-Zuhairi, A., Lehner, P., Blinn, B., Smaga, M., Flatter, J., Beck, T., & Teutsch, R. (2025). Influence of Shot Peening on Selected Properties of the Surface and Subsurface Regions of Additively Manufactured 316L and AlSi10Mg. Metals, 15(8), 856. https://doi.org/10.3390/met15080856