Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (510)

Search Parameters:
Keywords = rotor blade design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3380 KiB  
Article
The Effect of Airfoil Geometry Variation on the Efficiency of a Small Wind Turbine
by José Rafael Dorrego Portela, Orlando Lastres Danguillecurt, Víctor Iván Moreno Oliva, Eduardo Torres Moreno, Cristofer Aguilar Jimenez, Liliana Hechavarría Difur, Quetzalcoatl Hernandez-Escobedo and Jesus Alejandro Franco
Technologies 2025, 13(8), 328; https://doi.org/10.3390/technologies13080328 (registering DOI) - 1 Aug 2025
Abstract
This study analyzes the impact of geometric variations induced by the manufacturing process on the aerodynamic efficiency of an airfoil used in the design of a 3 kW wind turbine blade. For this purpose, a computational fluid dynamics (CFD) analysis was implemented, and [...] Read more.
This study analyzes the impact of geometric variations induced by the manufacturing process on the aerodynamic efficiency of an airfoil used in the design of a 3 kW wind turbine blade. For this purpose, a computational fluid dynamics (CFD) analysis was implemented, and the results were compared with those obtained using QBlade software. After blade fabrication, experimental evaluation was performed using the laser triangulation technique, enabling the reconstruction of the deformed airfoils and their comparison with the original geometry. Additional CFD simulations were carried out on the manufactured airfoil to quantify the loss of aerodynamic efficiency due to geometrical deformations. The results show that the geometric deviations significantly affect the aerodynamic coefficients, generating a decrease in the lift coefficient and an increase in the drag coefficient, which negatively impacts the airfoil aerodynamic efficiency. A 14.9% reduction in the rotor power coefficient was observed with the deformed airfoils compared to the original design. This study emphasizes the importance of quality control in wind turbine blade manufacturing processes and its impact on turbine power performance. In addition, the findings can contribute to the development of design compensation strategies to mitigate the adverse effects of geometric imperfections on the aerodynamic performance of wind turbines. Full article
Show Figures

Figure 1

12 pages, 1018 KiB  
Article
Manufacturing Considerations in the Aerodynamic Design Process of Turbomachinery Components
by Christian Effen, Benedikt Riegel, Nicklas Gerhard, Stefan Henninger, Pascal Behrens genannt Wäcken, Peter Jeschke, Viktor Rudel and Thomas Bergs
Processes 2025, 13(8), 2363; https://doi.org/10.3390/pr13082363 - 24 Jul 2025
Viewed by 400
Abstract
This paper presents a CFD-based method for the aerodynamic design of a high-pressure compressor rotor blisk, taking into account manufacturing constraints. Focus is placed on the influence of geometric deviations caused by the dynamic constraints of the milling machine. Special attention is given [...] Read more.
This paper presents a CFD-based method for the aerodynamic design of a high-pressure compressor rotor blisk, taking into account manufacturing constraints. Focus is placed on the influence of geometric deviations caused by the dynamic constraints of the milling machine. Special attention is given to the leading edge region of the blade, where high curvature results in increased sensitivity in both aerodynamic behavior and manufacturability. The generic blisk geometry on which this study is based is characterized by an elliptical leading edge. For the optimization, the leading edge is described by Bézier curves that transition smoothly to the suction and pressure sides with continuous curvature and a non-dimensional length ratio. In steady-state RANS parameter studies, the length ratio is systematically varied while the chord length is kept constant. For the aerodynamic evaluation of the design’s key performance parameters such as blade pressure distribution, total pressure loss and compressor efficiency are considered. To evaluate the machine dynamics for a given design, compliance with the nominal feed rate and the deviation between the planned and actual tool tip positions were used as evaluation parameters. Compared to the reference geometry with an elliptical leading edge, the purely aerodynamic optimization achieved an isentropic efficiency improvement of +0.24 percentage points in the aerodynamic design point and a profile deviation improvement of 3 µm in the 99th quantile. The interdisciplinary optimization achieved an improvement of +0.20 percentage points and 30 µm, respectively. This comparative study illustrates the potential of multidisciplinary design approaches that balance aerodynamic performance goals with manufacturability via a novel approach for Design-to-Manufacture-to-Design. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 7942 KiB  
Article
Research on the Influence of Impeller Oblique Cutting Angles on the Performance of Double-Suction Pumps
by Zhongsheng Wang, Xinxin Li, Jun Liu, Ji Pei, Wenjie Wang, Kuilin Wang and Hongyu Wang
Energies 2025, 18(15), 3907; https://doi.org/10.3390/en18153907 - 22 Jul 2025
Viewed by 154
Abstract
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming [...] Read more.
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming ratio and constant average post-trim diameter. Numerical simulations and tests reveal that under low-flow (0.7Qd) and design-flow conditions, the flat-cut (0°) minimizes reflux ratio and maximizes efficiency by aligning blade outlet flow with the mainstream. Increasing oblique cutting angles disrupts this alignment, elevating reflux and reducing efficiency. Conversely, at high flow (1.3Qd), the 12° bevel optimizes outlet flow, achieving peak efficiency. Pressure pulsation at the volute tongue (P11) peaks at the blade-passing frequency, with amplitudes significantly higher for 9°/12° bevels than for 0°/6°. The flat-cut suppresses wake vortices and static–rotor interaction, but oblique cutting angle choice critically influences shaft-frequency pulsation. Entropy analysis identifies the volute as the primary loss source. Larger oblique cutting angles intensify wall effects, increasing total entropy; pump chamber losses rise most sharply due to worsened outlet velocity non-uniformity and turbulent dissipation. The flat-cut yields minimal entropy at Qd. These findings provide a basis for tailoring impeller trimming to specific operational requirements. Furthermore, the systematic analysis provides critical guidance for impeller trimming strategies in other double-suction pumps and pumps as turbines in micro hydropower plants. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

18 pages, 4564 KiB  
Article
Multi-Fidelity Modeling of Isolated Hovering Rotors
by Jason Cornelius, Nicholas Peters, Tove Ågren and Hugo Hjelm
Aerospace 2025, 12(8), 650; https://doi.org/10.3390/aerospace12080650 - 22 Jul 2025
Viewed by 201
Abstract
Surrogate modeling has been rapidly evolving in the field of aerospace engineering, further reducing the cost of computational analyses. These models often require large amounts of information to learn the underlying process, which is at odds with obtaining and using the highest-fidelity data. [...] Read more.
Surrogate modeling has been rapidly evolving in the field of aerospace engineering, further reducing the cost of computational analyses. These models often require large amounts of information to learn the underlying process, which is at odds with obtaining and using the highest-fidelity data. This study assesses the efficacy of multi-fidelity modeling (MFM) to improve simulation accuracy while reducing computational cost. A database of hovering rotor simulations with perturbations of the rotor design and operating conditions was first generated using two different fidelity levels of the OVERFLOW 2.4D Computational Fluid Dynamics software. MFM was then used to quantify the effectiveness of this approach for the development of accurate surrogate models. Multi-fidelity models based on Gaussian Process Regression (GPR) were derived for hovering rotor performance prediction given the geometric rotor blade inputs that currently include twist, planform, airfoil, and the collective pitch angle. The MFM approach was consistently more accurate at predicting the hold-out test data than the surrogate model with high-fidelity data alone. An MFM using just 20% of the available high-fidelity training data was as accurate as a solely high-fidelity model trained on 80% of the available data, representing an approximate fourfold reduction in computational cost. Full article
(This article belongs to the Special Issue Recent Advances in Applied Aerodynamics (2nd Edition))
Show Figures

Figure 1

22 pages, 10008 KiB  
Article
Design and Testing of a Device to Investigate Dynamic Performance of Aero-Engine Rotor–Stator Rubbing Dynamics
by Qinqin Mu, Qun Yan, Peng Sun, Yonghui Chen, Jiaqi Chang and Shiyu Huo
Eng 2025, 6(7), 162; https://doi.org/10.3390/eng6070162 - 17 Jul 2025
Viewed by 193
Abstract
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was [...] Read more.
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was evaluated in terms of its critical speed, vibration characteristics, component strength under operational conditions, and response characteristics in abnormal extreme scenarios. A ball screw-type feeding system is employed to achieve precise rotor–stator rubbing during rotation by controlling the coating feed. Additionally, a quartz lamp heating system is used to apply thermal loads to coating specimens, and the appropriate heat insulation and cooling measures are implemented. Furthermore, a high-frequency rubbing force test platform is developed to capture the key characteristics caused by rubbing. The test rig can conduct response tests of the system with rotor–stator rubbing and abrasion tests with tip speeds reaching 425 m/s, feed rates ranging from 2 to 2000 μm/s, and heating temperatures up to 1200 °C. Test debugging has confirmed these specifications and successfully executed rubbing tests, which demonstrate stability throughout the process and provide reliable rubbing force test results. This designed test rig and analysis methodology offers valuable insights for developing high-speed rotating machinery. Full article
Show Figures

Figure 1

21 pages, 447 KiB  
Article
Aerodynamic Design of Wind Turbine Blades Using Multi-Fidelity Analysis and Surrogate Models
by Rosalba Cardamone, Riccardo Broglia, Francesco Papi, Franco Rispoli, Alessandro Corsini, Alessandro Bianchini and Alessio Castorrini
Int. J. Turbomach. Propuls. Power 2025, 10(3), 16; https://doi.org/10.3390/ijtpp10030016 - 16 Jul 2025
Viewed by 278
Abstract
A standard approach to design begins with scaling up state-of-the-art machines to new target dimensions, moving towards larger rotors with lower specific energy to maximize revenue and enable power production in lower wind speed areas. This trend is particularly crucial in floating offshore [...] Read more.
A standard approach to design begins with scaling up state-of-the-art machines to new target dimensions, moving towards larger rotors with lower specific energy to maximize revenue and enable power production in lower wind speed areas. This trend is particularly crucial in floating offshore wind in the Mediterranean Sea, where the high levelized cost of energy poses significant risks to the sustainability of investments in new projects. In this context, the conventional approach of scaling up machines designed for fixed foundations and strong offshore winds may not be optimal. Additionally, modern large-scale wind turbines for offshore applications face challenges in achieving high aerodynamic performance in thick root regions. This study proposes a holistic optimization framework that combines multi-fidelity analyses and tools to address the new challenges in wind turbine rotor design, accounting for the novel demands of this application. The method is based on a modular optimization framework for the aerodynamic design of a new wind turbine rotor, where the cost function block is defined with the aid of a model reduction strategy. The link between the full-order model required to evaluate the target rotor’s performance, the physical aspects of blade aerodynamics, and the optimization algorithm that needs several evaluations of the cost function is provided by the definition of a surrogate model (SM). An intelligent SM definition strategy is adopted to minimize the computational effort required to build a reliable model of the cost function. The strategy is based on the construction of a self-adaptive, automatic refinement of the training space, while the particular SM is defined by the use of stochastic radial basis functions. The goal of this paper is to describe the new aerodynamic design strategy, its performance, and results, presenting a case study of a 15 MW wind turbine blades optimized for specific deepwater sites in the Mediterranean Sea. Full article
Show Figures

Figure 1

22 pages, 5935 KiB  
Article
Aeroelastic Study of Downwind and Upwind Configurations Under Different Power Levels of Wind Turbines
by Zixuan Sun, Zhenye Sun, Yusheng Xia, Wenzhong Shen, Weijun Zhu and Esteban Ferrer
Machines 2025, 13(7), 599; https://doi.org/10.3390/machines13070599 - 11 Jul 2025
Viewed by 186
Abstract
Downwind wind turbines offer potential for reduced blade loads and lighter designs, yet systematic aeroelastic comparisons against upwind configurations remain limited, especially for multi-megawatt scales. This study conducts comprehensive OpenFAST simulations of the IEA 15 MW reference turbine in both configurations, contextualized against [...] Read more.
Downwind wind turbines offer potential for reduced blade loads and lighter designs, yet systematic aeroelastic comparisons against upwind configurations remain limited, especially for multi-megawatt scales. This study conducts comprehensive OpenFAST simulations of the IEA 15 MW reference turbine in both configurations, contextualized against smaller turbines (2.1, 5, and 10 MW). Scaling trends reveal that, with the increase in turbine size, the disadvantage of the downwind turbine (higher flapwise and edgewise fatigue load) is gradually disappearing and even becomes an advantage. However, downwind configurations amplify tower base loads significantly. These results highlight scalable benefits for blade loads but underscore critical trade-offs requiring tower reinforcement. Optimizing rotor-nacelle mass distribution emerges as a key pathway to mitigate tower penalties while leveraging blade-load alleviation for larger downwind turbines. Full article
Show Figures

Figure 1

18 pages, 2645 KiB  
Review
Pre-Treatment Equipment for Processing Grape Marc into Valorised By-Products: A Review
by Stepan Akterian, Kostadin Fikiin, Georgi Georgiev and Angel Terziev
Sustainability 2025, 17(13), 6188; https://doi.org/10.3390/su17136188 - 5 Jul 2025
Viewed by 464
Abstract
While traditional disposal of solid waste from the global wine industry causes significant environmental burden and hazards, a range of value-added by-products can be produced from the grape marc. This review focuses therefore on crucial sustainability-enhancing technologies for pomace dewatering and separation, which [...] Read more.
While traditional disposal of solid waste from the global wine industry causes significant environmental burden and hazards, a range of value-added by-products can be produced from the grape marc. This review focuses therefore on crucial sustainability-enhancing technologies for pomace dewatering and separation, which constitute a mandatory stage in obtaining storage-stable by-products and final value-added commodities. A number of dryers and separators were considered for pre-treatment of wet grape marc and analysed in terms of their design characteristics, functionality, feasibility, throughput and efficiency. A multi-criteria decision analysis was carried out to compare, rank and select the equipment which is most suitable for the purpose. It was found out that the rotary drum dryer and the drum screen separator with internal blade rotor are the best candidates to fulfil the technology requirements, while the flowsheet that includes an initial separation followed by drying of the resulting fractions is a rather attractive option. Valorising grape waste worldwide contributes substantially to achieving the United Nations Sustainable Development Goals for responsible consumption and production, mitigating climate change, caring for health and well-being, preserving land life and combating hunger. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

16 pages, 3316 KiB  
Article
Enhancing Wind Turbine Sustainability Through LiDAR Configuration Analysis and Evaluation of Two Reference LiDAR-Assisted Control Strategies
by Cedric D. Steinmann Perez, Alan W. H. Lio and Fanzhong Meng
Sustainability 2025, 17(13), 6083; https://doi.org/10.3390/su17136083 - 2 Jul 2025
Viewed by 291
Abstract
LiDAR-assisted wind turbine control holds strong potential for reducing structural loads and improving rotor speed regulation, thereby contributing to more sustainable wind energy generation. However, key research gaps remain: (i) the practical limitations of commercially available fixed beam LiDARs for large turbines, and [...] Read more.
LiDAR-assisted wind turbine control holds strong potential for reducing structural loads and improving rotor speed regulation, thereby contributing to more sustainable wind energy generation. However, key research gaps remain: (i) the practical limitations of commercially available fixed beam LiDARs for large turbines, and (ii) the performance assessment of commonly used LiDAR assisted feedforward control methods. This study addresses these gaps by (i) analysing how the coherence of LiDAR estimated rotor effective wind speed is influenced by the number of beams, measurement locations, and turbulence box resolution, and (ii) comparing two established control strategies. Numerical simulations show that applying a low cut-off frequency in the low-pass filter can impair preview time compensation. This is particularly critical for large turbines, where reduced coherence due to fewer beams undermines the effectiveness of LiDAR assisted control compared to the smaller turbines. The subsequent evaluation of control strategies shows that the Schlipf method offers greater robustness and consistent load reduction, regardless of the feedback control design. In contrast, the Bossanyi method, which uses the current blade pitch measurements, performs well when paired with carefully tuned baseline controllers. However, using the actual pitch angle in the feedforward pitch rate calculation can lead to increased excitation at certain frequencies, particularly if the feedback controller is not well tuned to avoid dynamics in those ranges. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

31 pages, 17228 KiB  
Article
The Hydrodynamic Performance of a Vertical-Axis Hydro Turbine with an Airfoil Designed Based on the Outline of a Sailfish
by Aiping Wu, Shiming Wang and Chenglin Ding
J. Mar. Sci. Eng. 2025, 13(7), 1266; https://doi.org/10.3390/jmse13071266 - 29 Jun 2025
Viewed by 340
Abstract
This study investigates an aerodynamic optimization framework inspired by marine biological morphology, utilizing the sailfish profile as a basis for airfoil configuration. Through Latin hypercube experimental design combined with optimization algorithms, four key geometric variables governing the airfoil’s hydrodynamic characteristics were systematically analyzed. [...] Read more.
This study investigates an aerodynamic optimization framework inspired by marine biological morphology, utilizing the sailfish profile as a basis for airfoil configuration. Through Latin hypercube experimental design combined with optimization algorithms, four key geometric variables governing the airfoil’s hydrodynamic characteristics were systematically analyzed. Parametric studies revealed that pivotal factors including installation angle significantly influenced the fluid dynamic performance metrics of lift generation and pressure drag. Response surface methodology was employed to establish predictive models for these critical performance indicators, effectively reducing computational resource consumption and experimental validation costs. The refined bio-inspired configuration demonstrated multi-objective performance improvements compared to the baseline configuration, validating the computational framework’s effectiveness for hydrodynamic profile optimization studies. Furthermore, a coaxial dual-rotor vertical axis turbine configuration was developed, integrating centrifugal and axial-flow energy conversion mechanisms through a shared drivetrain system. The centrifugal rotor component harnessed tidal current kinetic energy while the axial-flow rotor module captured wave-induced potential energy. Transient numerical simulations employing dynamic mesh techniques and user-defined functions within the Fluent environment were conducted to analyze rotor interactions. Results indicated the centrifugal subsystem demonstrated peak hydrodynamic efficiency at a 25° installation angle, whereas the axial-flow module achieves optimal performance at 35° blade orientation. Parametric optimization revealed maximum energy extraction efficiency for the centrifugal rotor occurs at λ = 1.25 tip-speed ratio under Re = 1.3 × 105 flow conditions, while the axial-flow counterpart attained optimal performance at λ = 1.5 with Re = 5.5 × 104. This synergistic configuration demonstrated complementary operational characteristics under marine energy conversion scenarios. Full article
Show Figures

Figure 1

26 pages, 17582 KiB  
Article
Effect Analysis of the V-Angle and Straight Edge Length on the Performance of V-Shaped Blades for a Savonius Hydrokinetic Turbine
by Bohan Wang, Xu Bai, Guoqiang Lei, Wen Zhang and Renwei Ji
J. Mar. Sci. Eng. 2025, 13(7), 1240; https://doi.org/10.3390/jmse13071240 - 27 Jun 2025
Viewed by 310
Abstract
This study investigated the performance of Savonius hydrokinetic turbine blades through three-dimensional computational fluid dynamics simulations conducted at a fixed tip speed ratio of 0.87. A multi-factor experimental design was employed to construct 45 V-shaped rotor blade models, systematically examining the effects of [...] Read more.
This study investigated the performance of Savonius hydrokinetic turbine blades through three-dimensional computational fluid dynamics simulations conducted at a fixed tip speed ratio of 0.87. A multi-factor experimental design was employed to construct 45 V-shaped rotor blade models, systematically examining the effects of a V-angle (30–140°) and straight-edge length (0.24 L–0.62 L) on hydrodynamic performance, where L = 25.46 mm (the baseline length of the straight edge). The results indicate that, as the V-angle and the straight-edge length vary independently, the performance of each blade first increases and then decreases. At TSR = 0.87, the maximum power coefficient (CP) of 0.2345 is achieved by the blade with a 70° V-Angle and a straight edge length of 0.335 L. Pressure and velocity field analyses reveal that appropriate geometric adjustments can optimize the high-pressure zone on the advancing blade and suppress negative torque on the returning blade, thereby increasing net output. The influence mechanisms of the V-angle and straight-edge length variations on blade performance were further explored and summarized through a comparative analysis of the vorticity characteristics. This study established a detailed performance dataset, providing theoretical and empirical support for V-shaped rotor blade design studies and offering engineering guidance for the effective use of low-flow hydropower. Full article
(This article belongs to the Special Issue Advances in Marine Engineering Hydrodynamics)
Show Figures

Figure 1

25 pages, 8320 KiB  
Article
Transient Flow Pattern and Vortex Evolution During the Startup Process of Novel Tulip-Type Hydraulic Turbines
by Shanshan Wei, Meng Wang and Chuang Ren
J. Mar. Sci. Eng. 2025, 13(7), 1221; https://doi.org/10.3390/jmse13071221 - 25 Jun 2025
Viewed by 261
Abstract
The Computational Fluid Dynamics (CFD) method is used to analyze the transient flow patterns and vortex evolution during the startup process of a novel tulip-type hydraulic turbine rotor. The model is validated with experimental results for the rotor’s torque and power coefficients. The [...] Read more.
The Computational Fluid Dynamics (CFD) method is used to analyze the transient flow patterns and vortex evolution during the startup process of a novel tulip-type hydraulic turbine rotor. The model is validated with experimental results for the rotor’s torque and power coefficients. The results show that the tulip-type rotor exhibits unique flow patterns compared to the traditional rotor. Vortices at different locations around the rotor influence the startup moment, either enhancing or suppressing it. Vortices downstream of the rotor form on the convex side of the blades, creating negative pressure that enhances startup and rotational performance. The expanded top design of the tulip-type rotor substantially improves startup performance through four distinct aspects: smoothly guiding incoming flow, dissipating gap vortices, clearing vortices to prevent blockage, and enhancing fluid-blade interaction to increase energy conversion efficiency. These characteristics of transient flow patterns and vortex evolution reveal the startup mechanism of the tulip-type rotor, providing a foundation for understanding the fluid dynamics of novel rotor designs and supporting the optimization of hydraulic turbine performance. Full article
Show Figures

Figure 1

30 pages, 1563 KiB  
Review
Review of Experimental Investigations on Wells Turbines for Wave Energy Conversion
by Fabio Licheri, Tiziano Ghisu, Francesco Cambuli, Pierpaolo Puddu and Mario Carta
Energies 2025, 18(12), 3035; https://doi.org/10.3390/en18123035 - 8 Jun 2025
Viewed by 467
Abstract
Wells turbines are one of the most attractive types of rotating machines installed in Oscillating Water Column (OWC) devices, owing to their simplicity of construction and reliability. Their unconventional design, with symmetrical blades staggered orthogonally with respect to the axis of rotation, simultaneously [...] Read more.
Wells turbines are one of the most attractive types of rotating machines installed in Oscillating Water Column (OWC) devices, owing to their simplicity of construction and reliability. Their unconventional design, with symmetrical blades staggered orthogonally with respect to the axis of rotation, simultaneously represents one of the main strengths and weaknesses of the turbine, and makes their aerodynamic behavior complex and significantly different from that of other types of machines. The importance of numerical analyses in explaining the physics behind the Wells rotor operation has significantly grown in recent years as proved by the vast available literature. Nevertheless, experimental analyses still hold an important role in modern turbomachinery design, both for the validation of Computational Fluid Dynamics (CFD) models and for verifying the improvements suggested by optimized design in a realistic environment. This review aims to collect and classify published experimental studies on Wells turbines, distinguishing among the types of experimental setups, methodologies adopted, and measurements performed, to identify the current research gaps and guide future experimental research. Full article
Show Figures

Figure 1

19 pages, 2822 KiB  
Article
Aero-Structural Design Optimization of a Transonic Fan Rotor Using an Adaptive POD-Based Hybrid Surrogate Model
by Jiaqi Luo, Zhen Fu and Jiaxing Li
Aerospace 2025, 12(6), 504; https://doi.org/10.3390/aerospace12060504 - 2 Jun 2025
Viewed by 383
Abstract
In this study, an optimization framework for turbomachinery blades using a hybrid surrogate model assisted by proper orthogonal decomposition (POD) is introduced and then applied to the aero-structural multidisciplinary design optimization of a transonic fan rotor, NASA Rotor 67. The rotor blade is [...] Read more.
In this study, an optimization framework for turbomachinery blades using a hybrid surrogate model assisted by proper orthogonal decomposition (POD) is introduced and then applied to the aero-structural multidisciplinary design optimization of a transonic fan rotor, NASA Rotor 67. The rotor blade is optimized through blade sweeping controlled by Gaussian radial basis functions. Calculations of aerodynamic and structural performance are achieved through computational fluid dynamics and computational structural mechanics. With a number of performance snapshots, singular value decomposition is employed to extract the basis modes, which are then used as the kernel functions in training the POD-based hybrid model. The inverse multi-quadratic radial basis function is adopted to construct the response surfaces for the coefficients of kernel functions. Aerodynamic design optimization is first investigated to preliminarily explore the impact of blade sweeping. In the aero-structural optimization, the aerodynamic performance, and von Mises stress are considered equally important and incorporated into one single objective function with different weight coefficients. The results are given and compared in detail, demonstrating that the average stress is dependent on the aerodynamic loading, and the configuration with forward sweeping on inner spans and backward sweeping on outer spans is the most effective for increasing the adiabatic efficiency while decreasing the average stress when the total pressure ratio is constrained. Through this study, the optimization framework is validated and a practical configuration for reducing the stress in a transonic fan rotor is provided. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

28 pages, 9190 KiB  
Article
Development and Optimization of a Novel Semi-Submersible Floater for Floating Wind Turbines in the South China Sea
by Yiming Zhong, Wenze Liu, Wei Shi, Xin Li, Shuaishuai Wang and Constantine Michailides
J. Mar. Sci. Eng. 2025, 13(6), 1073; https://doi.org/10.3390/jmse13061073 - 28 May 2025
Viewed by 611
Abstract
To mitigate the issue of high-pitch natural frequency in V-shaped floating offshore wind turbines (FOWTs), a novel semi-submersible floater design, termed NewSemi, is proposed in this study. The structural performance of the NewSemi floater is compared with that of two existing 5 MW [...] Read more.
To mitigate the issue of high-pitch natural frequency in V-shaped floating offshore wind turbines (FOWTs), a novel semi-submersible floater design, termed NewSemi, is proposed in this study. The structural performance of the NewSemi floater is compared with that of two existing 5 MW FOWTs, namely, the V-shaped and Braceless. Frequency domain analysis demonstrates that the NewSemi floater exhibits the most favorable response amplitude operator (RAO) in the pitch direction, along with superior damping characteristics. The result reveals a 16.44% reduction in pitch natural frequency compared to the V-shaped floater. Time-domain analysis under extreme conditions reveals 14.6% and 65.2% reductions in mean surge and pitch motions compared to Braceless FOWT, demonstrating enhanced stability. In addition, compared with the V-shaped FOWT, it exhibits smaller standards and deviations in surge and pitch motion, with reductions of 11.3% and 31.9%, respectively. To accommodate the trend toward larger FOWTs, an optimization procedure for scaling up floater designs is developed in this study. Using a differential evolution algorithm, the optimization process adjusts column diameter and spacing while considering motion response and steel usage constraints. The NewSemi floater is successfully scaled from 5 MW to 10 MW, and the effects of this scaling on motion and structural dynamics are examined. Numerical analysis indicates that as turbine size increases, the motion response under extreme sea conditions decreases, while structural dynamic responses, including blade root torque, rotor thrust, tower-base-bending moment and axial force, significantly increase. The maximum values of blade root torque and tower-base-bending moment increase by 10.4 times and 3.95 times in different load cases, respectively, while the mooring forces remain stable. This study offers practical engineering guidance for the design and optimization of next-generation floating wind turbines, enhancing their performance and scalability in offshore wind energy applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop