Development and Optimization of a Novel Semi-Submersible Floater for Floating Wind Turbines in the South China Sea
Abstract
:1. Introduction
2. Theory Background
2.1. Coupled Motion Equation of the FOWT in the Time Domain
2.2. Hydrodynamic Load
2.3. Aerodynamic Load
2.4. Short-Term Response Prediction
3. Development of the NewSemi and Upscaled Concepts
3.1. Description of the NewSemi Floater for a 5 MW FOWT
3.2. Upscaling of the NewSemi Floater
3.3. Specifications of the 5 MW and 10 MW Wind Turbines
3.4. Comparison of the Motion Natural Periods of the Four FOWT Concepts
4. Comparative Analysis of the Dynamic Characteristics of the 5 MW FOWTs
4.1. Environmental Conditions
4.2. Comparative Analysis of the Response Amplitude Operator (RAO) for the 5 MW FOWTs
4.3. Comparative Analysis of the Radiation Damping for the 5 MW FOWTs
4.4. Comparative Analysis of the Motion Responses for the 5 MW FOWTs
5. Comparisons of the Dynamic Characteristics Between the Upscaled NewSemi 10 MW and 5 MW FOWTs
5.1. Comparisons of the RAOs for the 10 MW and 5 MW FOWTs
5.2. Comparisons of the Radiation Damping for the 10 MW and 5 MW FOWTs
5.3. Comparisons of the Motion Response for the 10 MW and 5 MW FOWTs
5.4. Comparison of the Structural Dynamics for the 10 MW and 5 MW FOWTs
6. Concluding Remarks
- The NewSemi FOWT exhibits a significantly lower-pitch natural frequency than the V-shaped design, avoiding resonance with the dominant wave frequency. It also has the smallest peak RAO response in the pitch direction and more balanced surge and heave responses compared to the V-shaped and Braceless FOWTs;
- Due to the additional floater, among the three FOWTs, the NewSemi platform offers the highest radiation damping in heave and pitch directions, with well-distributed damping coefficients. In the pitch direction, the maximum dimensionless damping of the improved NewSemi exceeds twice that of V-shaped, and achieves a 20% increase in the heave direction.
- Under extreme sea conditions, the NewSemi FOWT achieves substantial motion response reductions, lowering the mean surge and pitch motions by 14.6% and 65.2%, respectively, compared to the Braceless FOWT. Additionally, it exhibits smaller standard deviations in the surge and pitch motions, decreasing by 11.3% and 31.9%, respectively, compared to the V-shaped FOWT. In terms of nacelle acceleration, the NewSemi results in a surge direction under LC5 conditions decreased by 16% compared to V-shaped results, and the results under LC7 conditions decreased by 45.94%;
- The optimized scaling procedure successfully accommodates the DTU 10 MW turbine while maintaining favorable RAO characteristics in the pitch direction. The increased floater size reduces peak frequencies in the surge direction; the natural period of the pitch direction of NewSemi significantly deviates from the wave period of 3–20s, further reducing the possibility of resonance;
- As the FOWT size increases, structural load effects—such as blade root torque, rotor thrust, tower-base-bending moment, and axial force—grow significantly. However, mooring line tensions remain stable, with minimal fluctuations in most cases.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FOWT | Floating Offshore Wind Turbine |
RAO | Response Amplitude Operator |
TLP | Tension Leg Platform |
WADAM | Wave Analysis by Diffraction and Morison Theory |
RSM | Response Surface Model |
NREL | National Renewable Energy Laboratory |
DTU | Danmarks Tekniske Universitet |
SIMA | Simulation Workbench for Marine Applications |
LC | Load Case |
IEC | International Electrotechnical Commission |
NTM | Normal Turbulence Model |
JONSWAP | Joint North Sea Wave Project |
STD | Standard Deviation |
DNV | Det Norske Veritas |
ML | Mooring Line |
OWC | Oscillating Water Columns |
TMD | Tuned Mass Damper |
Appendix A
Parameters | Definition |
---|---|
OC4 | Offshore Code Comparison Collaboration 4 |
WindFloat | A semi-submersible platform designed by Principle Power |
Added mass matrix at infinite frequency | |
Wind force | |
Linear wave excitation force | |
Second-order excitation force | |
Force from the mooring line | |
Velocity potential | |
Generalized velocity in the plane motion | |
Generalized normal vector | |
Frequency of the incident wave | |
Wet area of the object’s surface in still water | |
Lift coefficient of each air foil | |
Drag coefficient of each air foil | |
Significant wave height | |
Spectral peak period | |
GeniE | A pre-processing software for modeling in the marine engineering industry developed by Det Norske Veritas |
HydroD | A hydrodynamic calculation software developed by Det Norske Veritas for the marine engineering industry |
References
- Liu, J.; Thomas, E.; Manuel, L. Integrated system design for a large wind turbine supported on a moored semi-submersible platform. J. Mar. Sci. Eng. 2018, 6, 9. [Google Scholar] [CrossRef]
- Beiter, P.; Rand, J.T.; Seel, J. Expert perspectives on the wind plant of the future. Wind Energy 2022, 25, 1363–1378. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, Y.; Hu, J. Dynamic response in frequency and time domains of a floating foundation for offshore wind turbines. Ocean Eng. 2013, 60, 115–123. [Google Scholar] [CrossRef]
- Abid, A.; Shi, W.; Wang, S. Dynamic analysis of TetraSpar floating offshore wind turbine with different tendons failure scenario. Ocean Eng. 2025, 323, 120607. [Google Scholar] [CrossRef]
- Wang, J.; Ren, Y.; Shi, W. Multi-objective optimization design for a 15 MW semisubmersible floating offshore wind turbine using evolutionary algorithm. Appl. Energy. 2025, 377, 124533. [Google Scholar] [CrossRef]
- Seebai, T.; Sundaravadivelu, R. Response analysis of spar platform with wind turbine. Ships Offshore Struct. 2013, 8, 94–101. [Google Scholar] [CrossRef]
- Chen, M.; Huang, W.; Liu, H. A novel SPM wind-wave-aquaculture system: Concept design and fully coupled dynamic analysis. Ocean Eng. 2025, 315, 119798. [Google Scholar] [CrossRef]
- Wang, S.; Xing, Y.; Balakrishna, R. Design, local structural stress, and global dynamic response analysis of a steel semi-submersible hull for a 10-MW floating wind turbine. Eng. Struct. 2023, 291, 116474. [Google Scholar] [CrossRef]
- Robertson, A.; Jonkman, J.; Masciola, M. Definition of the Semisubmersible Floating System for Phase II of OC4; 2014 Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2014. [Google Scholar]
- Roddier, D.; Cermelli, C.; Aubault, A. WindFloat: A floating foundation for offshore wind turbines. J. Renew. Sustain. Ener. 2010, 2, 033104. [Google Scholar] [CrossRef]
- Rinaldi, G.; Thies, P.R.; Johanning, L. Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review. Energies 2021, 14, 2484. [Google Scholar] [CrossRef]
- Luan, C.; Gao, Z.; Moan, T. Design and analysis of a braceless steel 5-mw semi-submersible wind turbine. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Busan, Republic of Korea, 19–24 June 2016. [Google Scholar]
- Li, W.; Wang, S.; Moan, T. Global design methodology for semi-submersible hulls of floating wind turbines. Renew. Energy 2024, 225, 120291. [Google Scholar] [CrossRef]
- Shi, W.; Li, J.; Michailides, C. Dynamic Load Effects and Power Performance of an Integrated Wind–Wave Energy System Utilizing an Optimum Torus Wave Energy Converter. J. Mar. Sci. Eng. 2022, 10, 1985. [Google Scholar] [CrossRef]
- Li, J.; Shi, W.; Zhang, L. Wind–Wave Coupling Effect on the Dynamic Response of a Combined Wind–Wave Energy Converter. J. Mar. Sci. Eng. 2021, 9, 1101. [Google Scholar] [CrossRef]
- Karimirad, M.; Michailides, C. V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology. Renew. Energy 2015, 83, 126–143. [Google Scholar] [CrossRef]
- Cao, Q.; Xiao, L.; Cheng, Z. Operational and extreme responses of a new concept of 10 MW semi-submersible wind turbine in intermediate water depth: An experimental study. Ocean Eng. 2020, 217, 108003. [Google Scholar] [CrossRef]
- Karimirad, M. Offshore Energy Structures: For Wind Power, Wave Energy and Hybrid Marine Platforms; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Bossler, A. Floating Offshore Wind Foundations Industry Consortia and Projects in the United States, European and Japan; Main International Consulting LLC: Singapore, 2013; Volume 1, pp. 1–45. [Google Scholar]
- Zhang, J.; Wang, H. Development of offshore wind power and foundation technology for offshore wind turbines in China. Ocean Eng. 2022, 266, 113256. [Google Scholar] [CrossRef]
- Gonçalves, R.T.; Malta, E.B.; Simos, A.N. Influence of Heave Plate on the Flow-Induced Motions of a Floating Offshore Wind Turbine. J. Offshore Mech. Arct. Eng. 2022, 145, 4056345. [Google Scholar] [CrossRef]
- Nagumo, T.; Suzuki, H.; Houtani, H. Experimental and numerical studies on regular wave responses of a very-light FOWT with a guy-wired-supported tower: Effects of wave height, wave direction, and mooring line configuration. Ocean Eng. 2024, 295, 116844. [Google Scholar] [CrossRef]
- Leimeister, M.; Bachynski, E.E.; Muskulus, M. Rational upscaling of a semi-submersible floating platform supporting a wind turbine. Energy Proc. 2016, 94, 434–442. [Google Scholar] [CrossRef]
- Damgaard, M.; Andersen, J.K.F. Natural frequency and damping estimation of an offshore wind turbine structure. In Proceedings of the Twenty-Second International Offshore and Polar Engineering Conference, Rhodes, Greece, 17–22 June 2012. [Google Scholar]
- Wen, B.; Dong, X.; Tian, X. The power performance of an offshore floating wind turbine in platform pitching motion. Energy 2018, 154, 508–521. [Google Scholar] [CrossRef]
- Aboutalebi, P.; Garrido, A.J. Hydrostatic stability and hydrodynamics of a floating wind turbine platform integrated with oscillating water columns: A design study. Renew. Energy 2024, 221, 119824. [Google Scholar] [CrossRef]
- Wang, L.; Bergua, R.; Robertson, A. Experimental investigation of advanced turbine control strategies and load-mitigation measures with a model-scale floating offshore wind turbine system. Appl. Energy 2024, 355, 122343. [Google Scholar] [CrossRef]
- Cheng, Z.; Madsen, H.; Gao, Z. A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines. Renew. Energy 2017, 107, 604–619. [Google Scholar] [CrossRef]
- Jonkman, J.M. Dynamics Modeling and Loads Analysis of an Offshore Floating wind Turbine. Master’s Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2007. [Google Scholar]
- Zheng, S.; Antonini, A.; Zhang, Y. Hydrodynamic performance of a multi-oscillating water column (OWC) platform. Appl. Ocean Res. 2020, 99, 102168. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X. Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems; Elsevier and Shanghai Jiao Tong University Press Aerospace Series; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Duan, W.; Chen, J.; Zhao, B. Second-order Taylor expansion boundary element method for the second-order wave radiation problem. Appl. Ocean Res. 2015, 52, 12–26. [Google Scholar] [CrossRef]
- Frère, A.; Sørensen, N.N.; Hillewaert, K. Discontinuous Galerkin methodology for Large-Eddy Simulations of wind turbine airfoils. J. Physics Conf. Ser. 2016, 753, 022037. [Google Scholar] [CrossRef]
- Lei, S.; Zhang, W.; Lin, J. Frequency domain response of a parametrically excited riser under random wave forces. J. Sound. Vib. 2014, 333, 485–498. [Google Scholar] [CrossRef]
- Moriarty, P.J.; Hansen, A.C. AeroDyn Theory Manual: National Renewable Energy Laboratory Golden; 2005 Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2005. [Google Scholar] [CrossRef]
- Aggarwal, N.; Manikandan, R.; Saha, N. Nonlinear short term extreme response of spar type floating offshore wind turbines. Ocean Eng. 2017, 130, 199–209. [Google Scholar] [CrossRef]
- Jiang, J.; Lian, J.; Dong, X. Research on the along-wind aerodynamic damping and its effect on vibration control of offshore wind turbine. Ocean Eng. 2023, 274, 113993. [Google Scholar] [CrossRef]
- Cheng, Y.; Yan, Z.; Pang, L. Probability analysis on the typhoon induced sea states of the South China Sea. In Proceedings of the 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018. [Google Scholar]
- Li, G.; Yang, J.; Wu, Z. A sequential optimal Latin hypercube design method using an efficient recursive permutation evolution algorithm. Eng. Optimiz. 2022, 56, 179–198. [Google Scholar] [CrossRef]
- Cao, A.; Shi, X.; Sang, S. Research on Static Analysis of Box Foundation for Wind Turbine on SESAM Software. Wirel. Pers. Commun. 2018, 103, 535–546. [Google Scholar] [CrossRef]
- Clement, C.; Kosleck, S.; Lie, T. Investigation of viscous damping effect on the coupled dynamic response of a hybrid floating platform concept for offshore wind turbines. Ocean Eng. 2021, 225, 108836. [Google Scholar] [CrossRef]
- Bak, C.; Zahle, F.; Bitsche, R. The DTU 10-MW reference wind turbine. In Proceedings of the Danish Wind Power Research 2013, Copenhagen, Denmark, 28 May 2013. [Google Scholar]
- Daabo, A.M.; Alkhabbaz, A.; Ibrahim, S.S. Thirteen vital factors for micro-scale radial turbine vane’s design of geo-solar-powered Brayton cycle applications. Energy Convers. Manag. 2024, 315, 118774. [Google Scholar] [CrossRef]
- Yang, H.-S.; Alkhabbaz, A.; Lee, Y.-H. Integrated CFD and hydrodynamic correction approach for load response analysis of floating offshore wind turbine. Ocean Eng. 2025, 328, 121007. [Google Scholar] [CrossRef]
- Alkhabbaz, A.; Hamza, H.; Daabo, A.M. The aero-hydrodynamic interference impact on the NREL 5-MW floating wind turbine experiencing surge motion. Ocean Eng. 2024, 295, 116970. [Google Scholar] [CrossRef]
Parameters | V-Shaped | Braceless | NewSemi | NewSemi |
---|---|---|---|---|
Installed capacity (MW) | 5 | 5 | 5 | 10 |
Platform type | Semi-submersible | Semi-submersible | Semi-submersible | Semi-submersible |
Freeboard (m) | 10 | 10 | 10 | 10 |
Draft (m) | 28 | 30 | 28 | 30 |
Total mass (t) | 9.503 × 103 | 1.056 × 104 | 1.191 × 104 | 2.460 × 104 |
Hull displacement (m3) | 10,014 | 10,555 | 12,417 | 25,272 |
Center of gravity (m) | (−30.600, 0, −16.000) | (0, 0, −24.530) | (−36.360, 0, −22.760) | (−46.445, 0, −24.406) |
Center of buoyancy (m) | (−30.600, 0, −19.400) | (0, 0, −22.420) | (−34.640, 0, −20.550) | (−44.138, 0, −22.073) |
Angle between columns (deg) | 60 | 120 | 60 | 60 |
Column diameter (m) | 9 | 6.5 | 9 | 12 |
Column spacing (m) | 60 | 71 | 60 | 76.5 |
Pontoon dimensions (m)(Width × Height) | 9 × 5 | 9 × 6 | 9 × 5 | 9 × 5 |
Parameters | V-Shaped | Braceless | NewSemi 5 MW | NewSemi 10 MW |
---|---|---|---|---|
Chain length (m) | 451 | 451 | 451 | 657 |
Dry line linear density (kg/m) | 117 | 117 | 117 | 115.02 |
Extensional stiffness (N) | 3.0 × 109 | 3.0 × 109 | 3.0 × 109 | 3.08 × 109 |
Nominal chain diameter (m) | 0.138 | 0.138 | 0.138 | 0.137 |
Normal drag coefficients | 1.2 | 1.2 | 1.2 | 12 |
Mass of ballast block (kg) | 3.7 × 104 | 3.7 × 104 | 3.7 × 104 | / |
Volume of ballast block (m3) | 4.4 | 4.4 | 4.4 | / |
Distance of mass block to the fairlead (m) | 82 | 82 | 82 | / |
ML1 fairlead position (m) | (4.5, 0, −18) | (44.3, 0, −18) | (4.5, 0, −18) | (6, 0, −18) |
ML1 anchor position (m) | (441, 0, −95) | (480.8, 0, −95) | (441, 0, −95) | (655, 0, −95) |
ML2 fairlead position (m) | (−54.21, 33.89, −18) | (−22.15, 38.36−18) | (−54.21, 33.89, −18) | (−69.25, 43.446, −18) |
ML2 anchor position (m) | (−272.46, 411.92, −95) | (−240.4, 416.38, −95) | (−272.46, 411.92, −95) | (−392.45, 604.74, −95) |
ML3 fairlead position (m) | (−54.21, −33.89, −18) | (−22.15, −38.36, −18) | (−54.21, −33.89, −18) | (−69.25, −43.446, −18) |
ML3 anchor position (m) | (−272.46, −411.92, −95) | (−240.4, −416.38, −95) | (−272.46, −411.92, −95) | (−392.45, −604.74, −95) |
Turbine Type | NREL 5 MW | DTU 10 MW |
---|---|---|
Wind regime | IEA Class 1B | IEC Class 1A |
Rotor orientation, configuration | Clockwise, upwind, three blades | Clockwise, upwind, three blades |
Control | Variable speed, collective pitch | Variable speed, collective pitch |
Cut-in, rated, cut-out wind speed (m/s) | 4.0, 11.4, 25 | 4.0, 11.4, 25 |
Rated thrust (KN) | 750 | 1500 |
Rotor, hub diameter (m) | 126, 3 | 178.3, 5.6 |
Hub height (m) | 90 | 119 |
Drive train | High speed, multiple-stage gearbox | Medium speed, multiple-stage gearbox |
Rated generator speed (rpm) | 1173.7 | 480.0 |
Gearbox ratio | 97:1 | 50:1 |
Rated tip speed (m/s) | 80 | 90 |
Hub overhang (m), shaft tilt (°), precone (°) | 5.0, 5, −2.5 | 7.07, 5, −2.5 |
Blade prebend (m) | 0.000 | 3.332 |
Rotor mass, nacelle mass (t) | 110.0, 240.0 | 229.0, 446.0 |
Turbine Type | NREL 5 MW | DTU 10 MW |
---|---|---|
Height above ground (m) | 87.6 | 119 |
Tower bottom elevation (m) | 10 | 10 |
Overall tower mass (t) | 347.46 | 527.36 |
Base diameter (m) | 6 | 8 |
Base thickness (m) | 0.027 | 0.036 |
Top diameter (m) | 3.87 | 5.5 |
Top thickness (m) | 0.019 | 0.02 |
Young’s Modulus (GPa) | 210 | 210 |
Shear Modulus (GPa) | 80.8 | 50:1 |
Density of steel material (kg/m3) | 785 × 103 | 785 × 103 |
FOWT Concepts | Surge (s) | Heave (s) | Pitch (s) |
---|---|---|---|
V-shaped 5 MW | 70.62 | 26.18 | 20.94 |
Braceless 5 MW | 81.96 | 25.64 | 31.25 |
NewSemi 5 MW | 80.00 | 25.83 | 25.06 |
NewSemi 10 MW | 69.93 | 27.47 | 28.33 |
FOWT Concepts | Surge (N·s/m) | Heave (N·s/m) | Pitch (N·s·m) |
---|---|---|---|
Radiation damping at natural period value | |||
V-shaped 5 MW | 1.92 × 102 | 8.89 × 103 | 1.01 × 107 |
Braceless 5 MW | 1.60 × 102 | 1.05 × 103 | 1.27 × 106 |
NewSemi 5 MW | 3.15 × 102 | 2.48 × 103 | 5.61 × 106 |
NewSemi 10 MW | 1.84 × 103 | 5.85 × 103 | 2.26 × 107 |
Viscous damping | |||
V-shaped 5 MW | 8.36 × 104 | 2.78 × 105 | 1.17 × 108 |
Braceless 5 MW | 9.59 × 104 | 2.24 × 105 | 1.07 × 108 |
NewSemi 5 MW | 9.69 × 104 | 3.42 × 105 | 1.94 × 108 |
NewSemi 10 MW | 4.22 × 105 | 6.64 × 105 | 1.40 × 109 |
Hs (m) | Tp (s) | Wind Speed (m/s) | Turbulence Intensity (%) | |
---|---|---|---|---|
LC1 | 0 | 0 | 11.4 | 0 |
LC2 | 2.5 | 10.2 | 0 | 0 |
LC3 | 2.5 | 10.2 | 11.4 | 0 |
LC4 | 2.5 | 10.2 | 11.4 | 15 |
LC5 | 4.1 | 10.5 | 18 | 15 |
LC6 | 4.5 | 11.0 | 25 | 20 |
LC7 | 5.5 | 13.5 | 32 | 20 |
Motion | Statistic | LC1 | LC2 | LC3 | LC4 | LC5 | LC6 | LC7 |
---|---|---|---|---|---|---|---|---|
Surge (m) | Maximum | 1.254 | 1.270 | 5.752 | 9.446 | 4.844 | 1.700 | 2.221 |
Minimum | 0.078 | 0.273 | 3.684 | 0.557 | 0.896 | −0.203 | −0.676 | |
Mean | 0.694 | 0.751 | 4.710 | 4.597 | 2.739 | 0.804 | 0.833 | |
STD | 0.383 | 0.147 | 0.421 | 1.760 | 0.559 | 0.290 | 0.435 | |
Heave (m) | Maximum | 1.821 | 1.234 | 0.110 | 2.657 | 0.918 | 1.941 | 2.860 |
Minimum | −0.831 | −0.252 | −4.662 | −5.718 | −3.132 | −0.807 | −1.464 | |
Mean | 0.487 | 0.436 | −2.329 | −2.305 | −1.029 | 0.449 | 0.466 | |
STD | 0.737 | 0.209 | 1.225 | 1.227 | 0.594 | 0.390 | 0.557 | |
Pitch (m) | Maximum | 0.012 | −0.225 | 5.266 | 6.976 | 3.102 | 0.132 | 0.593 |
Minimum | −1.621 | −1.352 | 0.105 | −3.812 | −0.722 | −1.878 | −2.340 | |
Mean | −0.796 | −0.748 | 2.745 | 2.709 | 1.123 | −0.733 | −0.731 | |
STD | 0.565 | 0.135 | 1.529 | 1.526 | 0.573 | 0.258 | 0.372 |
Issue | Statistic | LC5 | LC6 | LC7 | |||
---|---|---|---|---|---|---|---|
5 MW | 10 MW | 5 MW | 10 MW | 5 MW | 10 MW | ||
Root Torque (kN·m) | Maximum | 323.11 | 763.82 | 12.44 | 129.56 | 19.76 | 180.59 |
Minimum | −526.96 | −699.24 | −67.57 | −252.42 | −101.31 | −427.90 | |
Mean | −30.97 | −86.46 | −20.04 | −78.28 | −33.50 | −119.71 | |
STD | 53.86 | 274.08 | 9.70 | 47.64 | 15.75 | 73.41 | |
Thrust (kN) | Maximum | 713.01 | 1343.90 | 45.12 | 66.89 | 73.94 | 117.24 |
Minimum | −182.83 | −19.52 | −13.77 | −25.27 | −18.57 | −34.79 | |
Mean | 352.18 | 603.18 | 13.74 | 20.06 | 22.85 | 33.06 | |
STD | 80.01 | 152.70 | 7.78 | 12.37 | 12.99 | 20.24 | |
TwrbsMyt (kN·m) | Maximum | 89,094.00 | 280,810.00 | 35,902.00 | 141,710.00 | 38,124.00 | 169,190.00 |
Minimum | −4875.70 | −90,681.00 | −31,082.00 | −155,680.00 | −28,542.00 | −211,640.00 | |
Mean | 39,549.32 | 84,175.97 | 905.99 | −14,747.29 | 2127.78 | −12,008.55 | |
STD | 13,625.12 | 47,178.00 | 9651.66 | 40,880.38 | 9162.73 | 51,159.23 | |
TwrbsAxf (kN) | Maximum | −5389.40 | −11,304.00 | −5379.10 | −11,274.00 | −5214.70 | −10,937.00 |
Minimum | −6068.80 | −12,642.00 | −5988.60 | −12,464.00 | −5963.90 | −12,646.00 | |
Mean | −5729.11 | −11,993.50 | −5660.36 | −11,869.47 | −5626.37 | −11,812.75 | |
STD | 77.48 | 151.44 | 77.34 | 151.62 | 93.15 | 216.44 | |
ML1 tension (kN) | Maximum | 1708.50 | 1400.40 | 2454.90 | 1876.10 | 2608.60 | 2167.00 |
Minimum | 330.94 | 452.45 | 97.49 | 645.26 | 207.13 | 513.89 | |
Mean | 1048.48 | 907.30 | 1229.19 | 1227.66 | 1224.19 | 1225.39 | |
STD | 145.02 | 102.73 | 164.46 | 105.49 | 162.96 | 153.82 | |
ML2 tension (kN) | Maximum | 1852.30 | 1961.80 | 3528.70 | 1817.10 | 3230.60 | 1845.20 |
Minimum | 946.13 | 1161.80 | 121.36 | 841.14 | 178.37 | 559.89 | |
Mean | 1393.32 | 1509.15 | 1255.10 | 1246.94 | 1260.13 | 1259.87 | |
STD | 76.11 | 102.99 | 160.73 | 94.70 | 147.20 | 132.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Liu, W.; Shi, W.; Li, X.; Wang, S.; Michailides, C. Development and Optimization of a Novel Semi-Submersible Floater for Floating Wind Turbines in the South China Sea. J. Mar. Sci. Eng. 2025, 13, 1073. https://doi.org/10.3390/jmse13061073
Zhong Y, Liu W, Shi W, Li X, Wang S, Michailides C. Development and Optimization of a Novel Semi-Submersible Floater for Floating Wind Turbines in the South China Sea. Journal of Marine Science and Engineering. 2025; 13(6):1073. https://doi.org/10.3390/jmse13061073
Chicago/Turabian StyleZhong, Yiming, Wenze Liu, Wei Shi, Xin Li, Shuaishuai Wang, and Constantine Michailides. 2025. "Development and Optimization of a Novel Semi-Submersible Floater for Floating Wind Turbines in the South China Sea" Journal of Marine Science and Engineering 13, no. 6: 1073. https://doi.org/10.3390/jmse13061073
APA StyleZhong, Y., Liu, W., Shi, W., Li, X., Wang, S., & Michailides, C. (2025). Development and Optimization of a Novel Semi-Submersible Floater for Floating Wind Turbines in the South China Sea. Journal of Marine Science and Engineering, 13(6), 1073. https://doi.org/10.3390/jmse13061073