Review of Experimental Investigations on Wells Turbines for Wave Energy Conversion
Abstract
1. Introduction
Project Name, Site of Installation | Year | Turbine Configuration | Power Output (No. of Turbines × Power) |
---|---|---|---|
Sakata Port, Japan [20] | 1989 | Monoplane with guide vanes | 60 kW ( kW) |
Islay, Scotland, UK [21] | 1991 | Biplane | 70 kW ( kW) |
Vizhinjam OWC [22] Trivandrum, India | 1991 | Monoplane | 150 kW ( kW) |
OSPREY [23] Dounreay, Scotland, UK | 1995 | Contra-rotating | 2000 kW ( kW) |
Mighty Whale [24,25] Gokasho Bay Nansei, Japan | 1998 | Monoplane with guide vanes | ≈110 kW (≈3 kW) |
Pico power plant [26] Azores, Portugal | 1999 | Monoplane with guide vanes | 400 kW ( kW) |
LIMPET [4] Islay, Scotland, UK | 1999 | Contra-rotating | 500 kW ( kW) |
Mutriku Wave Power plant [27] Mutriku, Basque Country, Spain | 2011 | Biplane Contra-rotating | 296 kW ( kW) |
REWEC3 [28] Port of Civitavecchia, Italy | 2016 | Monoplane | 2.2–2.5 MW |
2. Experimental Rigs
2.1. Unidirectional (Stationary) Flow Rigs
Experimental Setup | Flow Type/Conditions | Tested Types of Tested Wells Turbines | Diameter of the Test Section [mm] |
---|---|---|---|
Queen’s University, Belfast (UK) | Unidirectional/Stationary | Monoplane [40,41], biplane [50] | 200 |
Bidirectional/Non-stationary | Monoplane [37] | 200 | |
University of Limerick, Limerick (IE) | Bidirectional/Stationary, non-stationary | Monoplane [51] | 600 |
University of Tokyo, Tokyo (JP) | Unidirectional/Stationary | Monoplane [46] | 304 |
Istituto Superior écnico, Lisbon (PT) | Unidirectional/Stationary | Monoplane [43], biplane [52], contra-rotating [53], with guide vanes [54] | 593 |
Saga University, Saga (JP) | Bidirectional/Stationary, non-stationary | Monoplane [55], with guide vanes [55] | 300 |
University of Cagliari, Cagliari (IT) | Bidirectional/Quasi-stationary, non-stationary | Monoplane [56] | 252 |
Politecnico di Bari University, Bari (IT) | Unidirectional/Stationary, non-stationary | Monoplane [47] | 310 |
Helwan University, Cairo (EG) | Unidirectional/Stationary | Monoplane [48] | 500 |
University of Siegen, Siegen (DE) | Unidirectional/Stationary | Monoplane [57] | 400 |
Bidirectional/Stationary | Monoplane [58] | ||
Indian Institue of Technology, Madras (IN) | Unidirectional/Stationary | Monoplane with guide vanes [49] | 265 |
Indian Institue of Technology, Madras (IN) | Bidirectional/Non-stationary | Monoplane with guide vanes [59], biplane [60] | 196 |
2.2. Bidirectional (Non-Stationary) Flow Rigs
3. Experimental Investigations: Global and Local Performance Analyses
3.1. Global Performance Analyses
- The flow coefficient
- The torque coefficient (or the power coefficient)
- The pressure drop coefficient (or, in general, the head coefficient)
- The efficiency
3.2. Local Performance Analyses
4. The Effects of Geometric Parameters and Control Methods
- The hub-to-tip ratio
- The rotor solidity, which is a measure of the flow obstruction on the annulus area of the rotor, due to the presence of the blades
- The non-dimensional tip gap, with respect to the chord or the blade height
- The blade aspect ratio
- The sweep ratio, or blade offset,
- The blade shape.
4.1. The Rotor Solidity
4.2. The Blade Profile
4.3. The Hub-to-Tip Ratio
4.4. The Tip Clearance Size
4.5. The Blade Aspect Ratio
4.6. The Blade Sweep
4.7. Other Wells Rotors Configurations
4.8. Control Methods for Wells Turbine Operation
5. Discussion
5.1. Current Limitations of Available Studies
5.2. Further Investigations Needed
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Acronyms | |
CFD | Computational Fluid Dynamics |
HWA | Hot-Wire Anemometer |
IGV | Inlet Guide Vanes |
LDA | Laser Doppler Anemometry |
OWC | Oscillating Water Column |
PIV | Particle Image Velocimetry |
PTO | Power Take-Off |
UPM | Uncertainty Propagation Method |
WEC | Wave Energy Converter |
Latin symbols | |
A | area |
aspect ratio | |
c | blade chord |
C | absolute velocity |
D | drag force |
F | aerodynamic force |
g | stagger position |
G | axial distance between planes |
h | blade height |
i | incidence angle |
K | damping coefficient |
L | lift force |
p | static pressure |
Q | flow rate |
R | resultant force |
r | radius |
T | torque |
t | tip gap size |
U | blade speed |
V | velocity |
W | relative velocity |
Greek symbols | |
absolute flow angle | |
relative flow angle | |
pitch angle | |
difference | |
sweep angle | |
efficiency | |
hub-to-tip ratio | |
density | |
solidity | |
flow coefficient | |
angular rotational speed |
Subscripts and superscripts | |
* | non-dimensional quantity, new value |
averaged quantity | |
1 | inlet |
2 | outlet |
blade root | |
s | stall, stalled |
blade tip | |
t | tangential |
z | axial |
References
- World Energy Transitions Outlook 2024: 1.5 °C Pathway; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2024.
- Ocean Energy Stats & Trends 2023; Ocean Energy Europe: Brussels, Belgium, 2024.
- Heath, T.V. A review of oscillating water columns. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2012, 370, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Heath, T. Chapter 334—The Development and Installation of the Limpet Wave Energy Converter. In World Renewable Energy Congress VI; Sayigh, A., Ed.; Pergamon: Oxford, UK, 2000; pp. 1619–1622. [Google Scholar] [CrossRef]
- Monteiro, W.M.L.; Sarmento, A.; Monteiro, C.P.; Monteiro, J.A.L. Wave energy production by a maritime Natural Cave: Performance characterization and the power take-off design. J. Ocean Eng. Mar. Energy 2021, 7, 327–337. [Google Scholar] [CrossRef]
- Setoguchi, T.; Santhakumar, S.; Maeda, H.; Takao, M.; Kaneko, K. A review of impulse turbines for wave energy conversion. Renew. Energy 2001, 23, 261–292. [Google Scholar] [CrossRef]
- Wells, A. Fluid Driven Rotary Transducer. BR. Patent 1595700, 13 November 1976. [Google Scholar]
- Raghunathan, S. The Wells air turbine for wave energy conversion. Prog. Aerosp. Sci. 1995, 31, 335–386. [Google Scholar] [CrossRef]
- de O. Falcão, A.F.; Gato, L.M.C. 8.05—Air Turbines. In Comprehensive Renewable Energy; Elsevier: Oxford, UK, 2012; pp. 111–149. [Google Scholar] [CrossRef]
- Camporeale, S.M.; Torresi, M.; Pascazio, G.; Fortunato, B. A 3D Unsteady Analysis of a Wells Turbine in a Sea-Wave Energy Conversion Device. In Proceedings of the ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference, Atlanta, GA, USA, 16–19 June 2003; International Gas Turbine Institute: Houston, TX, USA, 2003; Volume 6: Turbo Expo 2003, Parts A and B, pp. 989–998. [Google Scholar] [CrossRef]
- Dhanasekaran, T.; Govardhan, M. Computational analysis of performance and flow investigation on Wells turbine for wave energy conversion. Renew. Energy 2005, 30, 2129–2147. [Google Scholar] [CrossRef]
- Torresi, M.; Camporeale, S.; Strippoli, P.; Pascazio, G. Accurate numerical simulation of a high solidity Wells turbine. Renew. Energy 2008, 33, 735–747. [Google Scholar] [CrossRef]
- Torresi, M.; Camporeale, S.; Pascazio, G. Detailed CFD analysis of the steady flow in a Wells turbine under incipient and deep stall conditions. J. Fluids Eng. Trans. ASME 2009, 131, 0711031–07110317. [Google Scholar] [CrossRef]
- Ghisu, T.; Puddu, P.; Cambuli, F. A detailed analysis of the unsteady flow within a Wells turbine. Proc. Inst. Mech. Eng. Part A J. Power Energy 2017, 231, 197–214. [Google Scholar] [CrossRef]
- Licheri, F.; Cambuli, F.; Puddu, P.; Ghisu, T. A comparison of different approaches to estimate the efficiency of Wells turbines. J. Fluids Eng. 2021, 143, 051205. [Google Scholar] [CrossRef]
- Mohamed, M.H.; Janiga, G.; Pap, E.; Thévenin, D. Multi-objective optimization of the airfoil shape of Wells turbine used for wave energy conversion. Energy 2011, 36, 438–446. [Google Scholar] [CrossRef]
- Shaaban, S. Wells turbine blade profile optimization for better wave energy capture. Int. J. Energy Res. 2017, 41, 1767–1780. [Google Scholar] [CrossRef]
- Gratton, T.; Ghisu, T.; Parks, G.; Cambuli, F.; Puddu, P. Optimization of blade profiles for the Wells turbine. Ocean Eng. 2018, 169, 202–214. [Google Scholar] [CrossRef]
- Das, T.K.; Kerikous, E.; Venkatesan, N.; Janiga, G.; Thévenin, D.; Samad, A. Performance improvement of a Wells turbine through an automated optimization technique. Energy Convers. Manag. X 2022, 16, 100285. [Google Scholar] [CrossRef]
- de O. Falcão, A.F. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Whittaker, T.; McIlwaine, S. Shoreline Wave Power Experience With the Islay Prototype. In Proceedings of the International Offshore and Polar Engineering Conference, Edinburgh, UK, 11–16 August 1991; p. ISOPE–I–91–053. [Google Scholar]
- Ravindran, M.; Koola, P.M. Energy from sea waves—The Indian wave energy programme. Curr. Sci. 1991, 60, 676–680. [Google Scholar]
- Mustapa, M.; Yaakob, O.; Ahmed, Y.M.; Rheem, C.K.; Koh, K.; Adnan, F.A. Wave energy device and breakwater integration: A review. Renew. Sustain. Energy Rev. 2017, 77, 43–58. [Google Scholar] [CrossRef]
- Washio, Y.; Osawa, H.; Ogata, T. The open sea tests of the offshore floating type wave power device "Mighty Whale"—Characteristics of wave energy absorption and power generation. In Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), Honolulu, HI, USA, 5–8 November 2001; Volume 1, pp. 579–585. [Google Scholar] [CrossRef]
- Ogata, T.; Washio, Y.; Osawa, H.; Tsuritani, Y.; Yamashita, S.; Nagata, Y. The Open Sea Tests of the Offshore Floating Type Wave Power Device “Mighty Whale”: Performance of the Prototype. In Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, 23–28 June 2002; Volume 4, pp. 517–524. [Google Scholar] [CrossRef]
- de, O. Falcão, A.F.; Sarmento, A.; Gato, L.M.C.; Brito-Melo, A. The Pico OWC wave power plant: Its lifetime from conception to closure 1986-2018. Appl. Ocean Res. 2020, 98, 102104. [Google Scholar] [CrossRef]
- Torre-Enciso, Y.; Ortubia, I.; Aguileta, L.; Marqués, J. Mutriku Wave Power Plant: From the Thinking out to the Reality. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009; pp. 319–329. [Google Scholar]
- Arena, F.; Romolo, A.; Malara, G.; Ascanelli, A. On Design and Building of a U-OWC Wave Energy Converter in the Mediterranean Sea: A Case Study. In Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 9–14June 2013; Volume 8: Ocean Renewable Energy, p. V008T09A102. [Google Scholar] [CrossRef]
- Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998(2002)); American Institute of Aeronautics and Astronautics: Reston, CA, USA, 2002. [CrossRef]
- Oberkampf, W.L.; Trucano, T.G. Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 2002, 38, 209–272. [Google Scholar] [CrossRef]
- Shehata, A.; Xiao, Q.; Saqr, K.; Alexander, D. Wells turbine for wave energy conversion: A review. Int. J. Energy Res. 2017, 41, 6–38. [Google Scholar] [CrossRef]
- Hirsch, C. Advisory Group for Aerospace Research and Development; NATO Science & Technology Organization. In Advanced Methods for Cascade Testing; AGARD-AG-328; AGARD: Paris, France, 1998. [Google Scholar]
- Abbott, I.H.; von Doenhoff, A.E. Theory of Wing Sections: Including a Summary of Airfoil Data; Dover Publications, Inc.: New York, NY, USA, 1959. [Google Scholar]
- Glassman, A.J. Dynamic Stall Experiments on the NACA 0012 Airfoil; NASA Special Publication, National Aeronautics and Space Administration, Scientific and Technical Information Office: Washington, DC, USA, 1978. [Google Scholar]
- Ericsson, L.; Reding, J. Fluid mechanics of dynamic stall part I. Unsteady flow concepts. J. Fluids Struct. 1988, 2, 1–33. [Google Scholar] [CrossRef]
- Carta, M.; Putzu, R.; Ghisu, T. A comparison of plunging- and pitching-induced deep dynamic stall on an SD7003 airfoil using URANS and LES simulations. Aerosp. Sci. Technol. 2022, 121, 107307. [Google Scholar] [CrossRef]
- Raghunathan, S.; Tan, C.P.; Ombaka, O.O. Performance of the Wells self-rectifying air turbine. Aeronaut. J. 1985, 89, 369–379. [Google Scholar] [CrossRef]
- da Fonseca, F.X.C.; Henriques, J.C.C.; Gato, L.M.C.; de O. Falcão, A.F. Oscillating flow rig for air turbine testing. Renew. Energy 2019, 142, 373–382. [Google Scholar] [CrossRef]
- Ghisu, T.; Cambuli, F.; Puddu, P.; Virdis, I.; Carta, M.; Licheri, F. A critical examination of the hysteresis in Wells turbines using computational fluid dynamics and lumped parameter models. J. Offshore Mech. Arct. Eng. 2020, 142, 052001. [Google Scholar] [CrossRef]
- Grant, R.J.; Johnson, C.G.; Sturge, D.P. Performance of a Wells turbine for use in a wave energy system, 1981. Available online: https://www.osti.gov/etdeweb/biblio/5281457 (accessed on 29 May 2025).
- Raghunathan, S.; Tan, C.; Wells, N. Theory and performance of a Wells turbine. J. Energy 1982, 6, 157–160. [Google Scholar] [CrossRef]
- ISO 5081:2017(E); Fans—Performance Testing Using Standardized Airways. International Organization for Standardization: Geneva, Switzerland, 2017.
- Gato, L.M.C.; de O. Falcão, A.F. Aerodynamics of the Wells turbine. Int. J. Mech. Sci. 1988, 30, 383–395. [Google Scholar] [CrossRef]
- Gato, L.M.C.; Warfield, V.; Thakker, A. Performance of a High-Solidity Wells Turbine for an OWC Wave Power Plant. J. Energy Resour. Technol. 1996, 118, 263–268. [Google Scholar] [CrossRef]
- Raghunathan, S.; Setoguchi, T.; Kaneko, K. The Effect of Inlet Conditions on the Performance of Wells Turbine. J. Energy Resour. Technol. 1989, 111, 37–42. [Google Scholar] [CrossRef]
- Suzuki, M.; Arakawa, C.; Tagori, T. Fundamental studies on Wells turbine for wave power generator (1st Report, The effect of solidity, and self-starting). Bull. JSME 1984, 27, 1925–1931. [Google Scholar] [CrossRef]
- Camporeale, S.M.; Filianoti, P.; Torresi, M. Performance of a Wells Turbine in a OWC Device in Comparison to Laboratory Tests. In Proceedings of the Ninth European Wave and Tidal Energy Conference (EWTEC2011), Southampton, UK, 5–9 September 2011. [Google Scholar]
- Heikal, H.; Hafiz, A.; Bayomi, N.; Ahmed, M. Theoretical and experimental investigation on the Wells turbine performance. In Proceedings of the 7th Conference on Theoretical & Applied Mechanics, Cairo, Egypt, 11–12 March 2003; pp. 213–233. [Google Scholar]
- Govardhan, M.; Dhanasekaran, T. Effect of guide vanes on the performance of a self-rectifying air turbine with constant and variable chord rotors. Renew. Energy 2002, 26, 201–219. [Google Scholar] [CrossRef]
- Raghunathan, S.; Tan, C.P. Performance of Biplane Wells Turbine. J. Energy 1983, 7, 741–742. [Google Scholar] [CrossRef]
- Thakker, A.; Abdulhadi, R. The performance of Wells turbine under bi-directional airflow. Renew. Energy 2008, 33, 2467–2474. [Google Scholar] [CrossRef]
- Gato, L.M.C.; Curran, R. Performance of the Biplane Wells Turbine. J. Offshore Mech. Arct. Eng. 1996, 118, 210–215. [Google Scholar] [CrossRef]
- Gato, L.; Curran, R. Performance of the Contrarotating Wells Turbine. Int. J. Offshore Polar Eng. 1996, 6, ISOPE-96-06-1-068. [Google Scholar]
- Gato, L.M.C.; de, O. Fãlcao, A.F. Performance of the Wells Turbine with a Double Row of Guide Vanes. JSME Int. Journal. Ser. 2 Fluids Eng. Heat Transf. Power Combust. Thermophys. Prop. 1990, 33, 265–271. [Google Scholar] [CrossRef]
- Maeda, H.; Santhakumar, S.; Setoguchi, T.; Takao, M.; Kinoue, Y.; Kaneko, K. Performance of an impulse turbine with fixed guide vanes for wave power conversion. Renew. Energy 1999, 17, 533–547. [Google Scholar] [CrossRef]
- Paderi, M.; Puddu, P. Experimental investigation in a Wells turbine under bi-directional flow. Renew. Energy 2013, 57, 570–576. [Google Scholar] [CrossRef]
- Starzmann, R.; Carolus, T.; Tease, K.; Arlitt, R. Wells turbine rotors: A comparison of the predicted and measured aerodynamic performance. In Proceedings of the 9th European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics, ETC 2011, Istanbul, Turkey, 21–25 March 2011; Volume 2, pp. 1085–1094. [Google Scholar]
- Moisel, C.; Carolus, T.H. A facility for testing the aerodynamic and acoustic performance of bidirectional air turbines for ocean wave energy conversion. Renew. Energy 2016, 86, 1340–1352. [Google Scholar] [CrossRef]
- Kumar, A.; Das, T.K.; Samad, A. Experimental study of Wells turbine with multiparameter modification for wave energy conversion. In Proceedings of the OCEANS 2021: San Diego—Porto, San Diego, CA, USA, 20–23 September 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Das, T.K.; Kumar, K.; Samad, A. Experimental Analysis of a Biplane Wells Turbine under Different Load Conditions. Energy 2020, 206, 118205. [Google Scholar] [CrossRef]
- Licheri, F.; Puddu, P.; Ghisu, T.; Cambuli, F. Experimental analysis of the unsteady flow inside a Wells turbine. In Proceedings of the 76th Italian National Congress ATI, Rome, Italy, 15–17 September 2021; Volume 312, p. 11009. [Google Scholar] [CrossRef]
- Puddu, P.; Paderi, M.; Manca, C. Aerodynamic characterization of a Wells turbine under bi-directional airflow. Energy Procedia 2014, 45, 278–287. [Google Scholar] [CrossRef]
- Ghisu, T.; Cambuli, F.; Puddu, P.; Virdis, I.; Carta, M.; Licheri, F. A lumped parameter model to explain the cause of the hysteresis in OWC-Wells turbine systems for wave energy conversion. Appl. Ocean Res. 2020, 94, 101994. [Google Scholar] [CrossRef]
- Setoguchi, T.; Kim, T.W.; Takao, M.; Thakker, A.; Raghunathan, S. The effect of rotor geometry on the performance of a Wells turbine for wave energy conversion. Int. J. Ambient Energy 2004, 25, 137–150. [Google Scholar] [CrossRef]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P. Experimental Analysis of the Three-Dimensional Flow in a Wells Turbine Rotor. Int. J. Turbomach. Propuls. Power 2023, 8, 21. [Google Scholar] [CrossRef]
- Stefanizzi, M.; Camporeale, S.M.; Torresi, M. Experimental investigation of a Wells turbine under dynamic stall conditions for wave energy conversion. Renew. Energy 2023, 214, 369–382. [Google Scholar] [CrossRef]
- Dixon, S.L.; Hall, C.A. Fluid Mechanics and Thermodynamics of Turbomachinery, 6th ed.; Elsevier, Inc.: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P. Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator. Renew. Energy 2022, 197, 583–593. [Google Scholar] [CrossRef]
- Gato, L.M.C.; de O. Falcão, A.F. On the theory of the Wells turbine. J. Eng. Gas Turbines Power 1984, 106, 628–633. [Google Scholar] [CrossRef]
- Inoue, M.; Kaneko, K.; Setoguchi, T.; Raghunathan, S. Simulation of starting characteristics of the Wells turbine. In Proceedings of the 4th Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference, Atlanta, GA, USA, 12–14 May 1986. [Google Scholar] [CrossRef]
- Raghunathan, S.; Tan, C. Aerodynamic performance of a Wells air turbine. J. Energy 1983, 7, 226–230. [Google Scholar] [CrossRef]
- Inoue, M.; Kaneko, K.; Setoguchi, T.; Koura, F. Hysteretic characteristics of wells turbine in reciprocating flow. Trans. Jpn. Soc. Mech. Eng. Ser. B 1987, 53, 3699–3704. [Google Scholar] [CrossRef]
- Webster, M.; Gato, L.M.C.; White, P.R.S. Variation of blade shape and its effect on the performance of the Wells turbine. Int. J. Ambient Energy 1998, 19, 149–156. [Google Scholar] [CrossRef]
- Setoguchi, T.; Takao, M.; Kaneko, K. Hysteresis on Wells turbine characteristics in reciprocating flow. Int. J. Rotating Mach. 1998, 4, 17–24. [Google Scholar] [CrossRef]
- Thakker, A.; Frawley, P.; Bajeet, E.S.; Heffernan, A. Experimental investigation of CA9 blades on a 0.3m Wells turbine rig. In Proceedings of the International Offshore and Polar Engineering Conference, Seattle, WA, USA, May 28–2 June 2000; Volume 4, pp. 345–350. [Google Scholar]
- Webster, M.; Gato, L. The Effect of Rotor Blade Shape On the Performance of the Wells Turbine. Int. J. Offshore Polar Eng. 2001, 11, ISOPE-I-99-027. [Google Scholar]
- Takao, M.; Setoguchi, T.; Nagata, S.; Toyota, K. A Study on the Effects of Blade Profile and Non-Uniform Tip Clearance of the Wells Turbine. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 15–20 June 2008; Volume 6, pp. 625–632. [Google Scholar] [CrossRef]
- Starzmann, R.; Carolus, T.H.; Tease, K.; Arlitt, R. Effect of Design Parameters on Aero-Acoustic and Aerodynamic Performance of Wells Turbines. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Rotterdam, The Netherlands, 19–24 June 2011; Volume 5: Ocean Space Utilization; Ocean Renewable Energy, pp. 299–308. [Google Scholar] [CrossRef]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P.; Carta, M. Effects of tip gap size and aspect ratio on the performance of a Wells turbine. Renew. Energy 2025, 242, 122389. [Google Scholar] [CrossRef]
- Curran, R.; Gato, L. The energy conversion performance of several types of Wells turbine designs. Proc. Inst. Mech. Eng. Part A J. Power Energy 1997, 211, 133–145. [Google Scholar] [CrossRef]
- Takao, M.; Fukuma, S.; Okuhara, S.; Ashraful Alam, M.M.; Kinoue, Y. Performance comparison of turbines for bi-directional flow. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 052002. [Google Scholar] [CrossRef]
- Gish, L.A.; Selby, J.B. Experimental Analysis of Oscillating Water Column Air Turbines. In Proceedings of the OCEANS 2022, Hampton Roads, Hampton Roads, VA, USA, 17–20 October 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Carrelhas, A.; Gato, L.; Morais, F. Aerodynamic performance and noise emission of different geometries of Wells turbines under design and off-design conditions. Renew. Energy 2024, 220, 119622. [Google Scholar] [CrossRef]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P. Wells turbine efficiency improvements: Experimental application of a speed control strategy. J. Phys. Conf. Ser. 2022, 2385, 012132. [Google Scholar] [CrossRef]
- Torresi, M.; Camporeale, S.M. Wind tunnel measurements for the characterization of a small scale monoplane Wells turbin. In Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10 October 2018; pp. 252–256. [Google Scholar] [CrossRef]
- Tease, W.K.; Lees, J.; Hall, A. Advances in Oscillating Water Column air turbine development. In Proceedings of the 7th European wave and tidal energy conference, Porto, Portugal, 11–13 September 2007. [Google Scholar]
- Starzmann, R.; Moisel, C.; Carolus, T.; Tease, K.; Arlitt, R. Assessment method of sound radiated by cyclically operating Wells turbines. Int. J. Mar. Energy 2013, 2, 12–27. [Google Scholar] [CrossRef]
- Coleman, H.W.; Glenn Steel, W., Jr. Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Maeda, H.; Setoguchi, T.; Takao, M.; Sakurada, K.; Kim, T.; Kaneko, K. Comparative study of turbines for wave energy conversion. J. Therm. Sci. 2001, 10, 26–31. [Google Scholar] [CrossRef]
- Kim, T.H.; Takao, M.; Setoguchi, T.; Kaneko, K.; Inoue, M. Performance comparison of turbines for wave power conversion. Int. J. Therm. Sci. 2001, 40, 681–689. [Google Scholar] [CrossRef]
- Gato, L.M.C.; Webster, M. An experimental investigation into the effect of rotor blade sweep on the performance of the variable-pitch Wells turbine. Proc. Inst. Mech. Eng. Part A J. Power Energy 2001, 215, 611–622. [Google Scholar] [CrossRef]
- Alves, J.S.; Gato, L.M.C.; de, O. Falcão, A.F.; Henriques, J.C.C. Experimental investigation on performance improvement by mid-plane guide-vanes in a biplane-rotor Wells turbine for wave energy conversion. Renew. Sustain. Energy Rev. 2021, 150, 111497. [Google Scholar] [CrossRef]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P. Experimental reconstruction of the local flow field in a Wells turbine using a three-dimensional pressure probe. Energy 2024, 296, 131062. [Google Scholar] [CrossRef]
- Bradshaw, P. An Introduction to Turbulence and Its Measurement, 1st ed.; Pergamon: Bergama, Turkey, 1971. [Google Scholar] [CrossRef]
- Jensen, K.D. Flow measurements. J. Braz. Soc. Mech. Sci. Eng. 2004, 26, 400–418. [Google Scholar] [CrossRef]
- Suzuki, M.; Chuichi, A. Influence of Blade Profiles on Flow around Wells Turbine. Int. J. Fluid Mach. Syst. 2008, 1, 148–154. [Google Scholar] [CrossRef]
- Raghunathan, S.; Tan, C. Effect of blade profile on the performance of the Wells self-rectifying air turbine. Int. J. Heat Fluid Flow 1985, 6, 17–22. [Google Scholar] [CrossRef]
- Takao, M.; Thakker, A.; Abdulhadi, R.; Setoguchi, T. Effect of blade profile on the performance of large-scale Wells turbine. In Proceedings of the International Offshore and Polar Engineering Conference, Toulon, France, 23–28 May 2004; pp. 272–276. [Google Scholar]
- Takao, M.; Thakker, A.; Abdulhadi, R.; and, T.S. Effect of blade profile on the performance of a large-scale Wells turbine for wave-energy conversion. Int. J. Sustain. Energy 2007, 25, 53–61. [Google Scholar] [CrossRef]
- Thakker, A.; Abdulhadi, R. Effect of blade profile on the performance of Wells turbine under unidirectional sinusoidal and real sea flow conditions. Int. J. Rotating Mach. 2007, 2007, 51598. [Google Scholar] [CrossRef]
- Harby, A.H.; Shehata, A.S.; Afify, R.S.; Hanafy, A.A. Experimental and mathematical investigation of wells turbine under bi-directional flow. Aip Conf. Proc. 2022, 2437, 020113. [Google Scholar] [CrossRef]
- Setoguchi, T.; Raghunathan, S.; Kaneko, K.; Inoue, M. Studies on a Wells Turbine for a Wave Power Generator. 5th Report on Some Factors Concerning the Stall Condition. Trans. Jpn. Soc. Mech. Eng. Ser. B 1987, 53, 945–949. [Google Scholar] [CrossRef]
- Webster, M.; Gato, L. The effect of rotor blade sweep on the performance of the wells turbine. Int. J. Offshore Polar Eng. 1999, 9, 233–239. [Google Scholar]
- Starzmann, R.; Carolus, T. Effect of blade skew strategies on the operating range and aeroacoustic performance of the Wells turbine. J. Turbomach. 2013, 136, 011003. [Google Scholar] [CrossRef]
- Suzuki, M.; Arakawa, C.; Tagori, T. Fundamental studies on Wells turbine for wave power generator (2nd report. Influences of tip clearances). Trans. Jpn. Soc. Mech. Eng. Ser. B 1988, 54, 609–615. [Google Scholar] [CrossRef]
- Takao, M.; Setoguchi, T.; Kinoue, Y.; Kaneko, K. Effect of end plates on the performence of a wells turbine for wave energy conversion. J. Therm. Sci. 2006, 15, 319–323. [Google Scholar] [CrossRef]
- Takao, M.; Setoguchi, T.; Kinoue, Y.; Kaneko, K. Wells turbine with end plates for wave energy conversion. Ocean Eng. 2007, 34, 1790–1795. [Google Scholar] [CrossRef]
- Setoguchi, T.; Takao, M.; Kinoue, Y.; Kaneko, K.; Inoue, M. Studies on a Wells turbine for wave energy conversion (Improvement of performance by the use of porous fences). Nihon Kikai Gakkai Ronbunshu B Hen/Trans. Jpn. Soc. Mech. Eng. Part B 1999, 65, 262–266. [Google Scholar] [CrossRef]
- Takasaki, K.; Tsunematsu, T.; Takao, M.; Alam, M.M.A.; Setoguchi, T. Wells Turbine for Wave Energy Conversion—Effect of Trailing Edge Shape. Int. J. Fluid Mach. Syst. 2016, 9, 307–312. [Google Scholar] [CrossRef]
- Harby, A.H.; Shehata, A.S.; Afify, R.S.; Hanafy, A.A. Experimental investigation for suction slots of wells turbine and shapes of point absorber. Energy Rep. 2022, 8, 1275–1287, Technologies and Materials for Renewable Energy, Environment and Sustainability. [Google Scholar] [CrossRef]
- Raghunathan, S.; Tan, C.P. Performance of the Wells turbine at starting. J. Energy 1982, 6, 430–431. [Google Scholar] [CrossRef]
- Starzmann, R.; Carolus, T. Model-based selection of full-scale Wells turbines for ocean wave energy conversion and prediction of their aerodynamic and acoustic performances. Proc. Inst. Mech. Eng. Part A 2014, 228, 2–16. [Google Scholar] [CrossRef]
- Raghunathan, S.; Setoguchi, T.; Kaneko, K. Aerodynamics of Monoplane Wells Turbine—A Review. In Proceedings of the International Ocean and Polar Engineering Conference, Edinburgh, UK, 11–16 August 1991; p. ISOPE-I-91-050. [Google Scholar]
- Raghunathan, S. A Methodology for Wells Turbine Design for Wave Energy Conversion. Proc. Inst. Mech. Eng. Part A: J. Power Energy 1995, 209, 221–232. [Google Scholar] [CrossRef]
- Kim, T.; Setoguchi, T.; Kaneko, K.; Raghunathan, S. Numerical investigation on the effect of blade sweep on the performance of Wells turbine. Renew. Energy 2002, 25, 235–248. [Google Scholar] [CrossRef]
- Kumar, A.; Das, T.K.; Samad, A. Effect of blade skew, endplate and casing groove on the aerodynamic performance of Wells turbine for OWC: A review. J. Phys. Conf. Ser. 2022, 2217, 012070. [Google Scholar] [CrossRef]
- Setoguchi, T.; Kaneko, K.; Hamakawa, H.; Inoue, M. Biplane Axial Turbine for Wave Power Generator: (Aerodynamic Characteristics of Noncambered Blades). Trans. Jpn. Soc. Mech. Eng. Ser. B 1989, 55, 1159–1163. [Google Scholar] [CrossRef]
- Morais, F.; Carrelhas, A.; Gato, L. Biplane-rotor Wells turbine: The influence of solidity, presence of guide vanes and comparison with other configurations. Energy 2023, 276, 127514. [Google Scholar] [CrossRef]
- Takao, M.; Setoguchi, T.; Kaneko, K.; Yu, S. Performance of wells turbine with guide vanes for wave energy conversion. J. Therm. Sci. 1996, 5, 82–87. [Google Scholar] [CrossRef]
- Govardhan, M.; Dhanasekaran, T. Effect of guide vanes on the performance of a variable chord self-rectifying air turbine. J. Therm. Sci. 1998, 7, 209–217. [Google Scholar] [CrossRef]
- Setoguchi, T.; Santhakumar, S.; Takao, M.; Kim, T.; Kaneko, K. Effect of guide vane shape on the performance of a Wells turbine. Renew. Energy 2001, 23, 1–15. [Google Scholar] [CrossRef]
- Raghunathan, S.; Beattie, W. Aerodynamic performance of contra-rotating Wells turbine for wave energy conversion. Proc. Inst. Mech. Eng. Part A J. Power Energy 1996, 210, 431–447. [Google Scholar] [CrossRef]
- Folley, M.; Curran, R.; Whittaker, T. Comparison of LIMPET contra-rotating Wells turbine with theoretical and model test predictions. Ocean Eng. 2006, 33, 1056–1069. [Google Scholar] [CrossRef]
- Dick, E. Fundamentals of Turbomachines, 2nd ed.; Fluid Mechanics and Its Applications; Springer: Cham, Switzerland, 2022; p. 600. [Google Scholar] [CrossRef]
- Lekube, J.; Garrido, A.J.; Garrido, I. Variable speed control in wells turbine-based oscillating water column devices: Optimum rotational speed. IOP Conf. Ser. Earth Environ. Sci. 2018, 136, 012017. [Google Scholar] [CrossRef]
- Licheri, F.; Puddu, P.; Cambuli, F.; Ghisu, T. Experimental Investigation on a Speed Controlled Wells Turbine for Wave Energy Conversion. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 5–10 June 2022; Volume 8: Ocean Renewable Energy, p. V008T09A077. [Google Scholar] [CrossRef]
- Gato, L.M.C.; de, O. Falcão, A.F. Aerodynamics of the wells turbine: Control by swinging rotor-blades. Int. J. Mech. Sci. 1989, 31, 425–434. [Google Scholar] [CrossRef]
- Gato, L.M.C.; Eça, L.R.C.; de, O. Falcão, A.F. Performance of the Wells Turbine With Variable Pitch Rotor Blades. J. Energy Resour. Technol. 1991, 113, 141–146. [Google Scholar] [CrossRef]
- Inoue, M.; Kaneko, K.; Setoguchi, T.; Hamakawa, H. Air turbine with self-pitch-controlled blades for wave power generator (estimation of performance by model testing). JSME Int. J. Ser. B: Fluids Therm. Eng. 1989, 32, 19–24. [Google Scholar] [CrossRef]
- Kim, T.; Setoguchi, T.; Takao, M.; Kaneko, K.; Santhakumar, S. Study of turbine with self-pitch-controlled blades for wave energy conversion. Int. J. Therm. Sci. 2002, 41, 101–107. [Google Scholar] [CrossRef]
- Tease, W.K. Dynamic Response of a Variable Pitch Wells Turbine Report; Turbine Department Wavegen: Inverness, Scotland, 2007. [Google Scholar]
- Setoguchi, T.; Kaneko, K.; Takao, M.; Inoue, M. Air turbine with self-pitch-controlled blades for wave energy conversion. Int. J. Offshore Polar Eng. 1996, 7, 70–74. [Google Scholar]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P. Experimental characterization of a variable-pitch Wells turbine. J. Phys. Conf. Ser. 2024, 2893, 012131. [Google Scholar] [CrossRef]
- Licheri, F.; Climan, A.; Puddu, P.; Cambuli, F.; Ghisu, T. Numerical Study of a Wells Turbine with Variable Pitch Rotor Blades. Energy Procedia 2018, 148, 511–518. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P.; Carta, M. Review of Experimental Investigations on Wells Turbines for Wave Energy Conversion. Energies 2025, 18, 3035. https://doi.org/10.3390/en18123035
Licheri F, Ghisu T, Cambuli F, Puddu P, Carta M. Review of Experimental Investigations on Wells Turbines for Wave Energy Conversion. Energies. 2025; 18(12):3035. https://doi.org/10.3390/en18123035
Chicago/Turabian StyleLicheri, Fabio, Tiziano Ghisu, Francesco Cambuli, Pierpaolo Puddu, and Mario Carta. 2025. "Review of Experimental Investigations on Wells Turbines for Wave Energy Conversion" Energies 18, no. 12: 3035. https://doi.org/10.3390/en18123035
APA StyleLicheri, F., Ghisu, T., Cambuli, F., Puddu, P., & Carta, M. (2025). Review of Experimental Investigations on Wells Turbines for Wave Energy Conversion. Energies, 18(12), 3035. https://doi.org/10.3390/en18123035