Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,895)

Search Parameters:
Keywords = root-finding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 15062 KiB  
Article
Short-Term Effects of Visceral Manual Therapy on Autonomic Nervous System Modulation in Individuals with Clinically Based Bruxism: A Randomized Controlled Trial
by Cayetano Navarro-Rico, Hermann Fricke-Comellas, Alberto M. Heredia-Rizo, Juan Antonio Díaz-Mancha, Adolfo Rosado-Portillo and Lourdes M. Fernández-Seguín
Dent. J. 2025, 13(7), 325; https://doi.org/10.3390/dj13070325 (registering DOI) - 16 Jul 2025
Abstract
Background/Objectives: Bruxism has been associated with dysregulation of the autonomic nervous system (ANS). Visceral manual therapy (VMT) has shown beneficial effects on the vagal tone and modulation of ANS activity. This study aimed to evaluate the immediate and short-term effects of VMT [...] Read more.
Background/Objectives: Bruxism has been associated with dysregulation of the autonomic nervous system (ANS). Visceral manual therapy (VMT) has shown beneficial effects on the vagal tone and modulation of ANS activity. This study aimed to evaluate the immediate and short-term effects of VMT in individuals with clinically based bruxism. Methods: A single-blind randomized controlled trial was conducted including 24 individuals with clinically based bruxism. Participants received two sessions of either VMT or a sham placebo technique. Outcome measures included heart rate variability (HRV), both normal-to-normal intervals (HRV-SDNN), and the root mean square of successive normal-to-normal intervals (HRV-RMSSD), as well as muscle tone and stiffness and pressure pain thresholds (PPTs). Measurements were made at T1 (baseline), T2 (post-first intervention), T3 (pre-second intervention), T4 (post-second intervention), and T5 (4-week follow-up). Results: A significant time*group interaction was observed for HRV-SDNN (p = 0.04, η2 = 0.12). No significant changes were found for muscle tone or stiffness. PPTs significantly increased at C4 after the second session (p = 0.049, η2 = 0.16) and at the left temporalis muscle after the first session (p = 0.01, η2 = 0.07). Conclusions: The findings suggest that two sessions of VMT may lead to significant improvements in HRV-SDNN compared to the placebo, suggesting a modulatory effect on autonomic function. No consistent changes were observed for the viscoelastic properties of the masticatory muscles. Isolated improvements in pressure pain sensitivity were found at C4 and the left temporalis muscle. Further research with larger sample sizes and long-term follow-up is needed to determine the clinical relevance of VMT in the management of signs and symptoms in individuals with bruxism. Full article
(This article belongs to the Special Issue Dentistry in the 21st Century: Challenges and Opportunities)
Show Figures

Figure 1

20 pages, 2707 KiB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

20 pages, 3369 KiB  
Article
The Role of Tree Size in Root Reinforcement: A Comparative Study of Trema orientalis and Mallotus paniculatus
by Chia-Cheng Fan, Guan-Ting Chen and Guo-Zhang Song
Forests 2025, 16(7), 1175; https://doi.org/10.3390/f16071175 - 16 Jul 2025
Abstract
Root reinforcement in soil plays a critical role in maintaining forest slope stability. However, accurately estimating the reinforcement provided by the entire root system of a mature tree remains a time-intensive task. Previous experimental studies on root reinforcement have predominantly focused on small [...] Read more.
Root reinforcement in soil plays a critical role in maintaining forest slope stability. However, accurately estimating the reinforcement provided by the entire root system of a mature tree remains a time-intensive task. Previous experimental studies on root reinforcement have predominantly focused on small trees, leaving a knowledge gap concerning larger specimens. This study integrates field pullout test data of individual roots, analyses of root geometry distribution within root systems, and theoretical frameworks, including root distribution and Root Bundle Models, to develop methods for estimating root reinforcement across varying tree sizes. The findings indicate that root system reinforcement in large trees is substantially greater than in smaller counterparts. The methodology proposed herein provides forest management professionals with a practical tool for evaluating root reinforcement in dominant forest trees, thereby facilitating improved assessment of landslide risks in forested slopes. Full article
Show Figures

Figure 1

11 pages, 1428 KiB  
Article
A Modified Bioceramic Sealer with Dual Antibacterial Mechanisms
by Bashayer Baras, Amal Almohaimede, Yara Alshibani, Farah Alzahrani, Raseel Alageel, Michael D. Weir and Hockin H. K. Xu
Bioengineering 2025, 12(7), 768; https://doi.org/10.3390/bioengineering12070768 - 16 Jul 2025
Abstract
Continued efforts have been made to enhance the antibacterial properties of root canal sealers by adding antimicrobial agents to them. This study aims to investigate the antibacterial effect of 0.15% silver nanoparticles (NAg) and 5% dimethylaminohexadecyl methacrylate (DMAHDM) when added to EndoSequence Bioceramic [...] Read more.
Continued efforts have been made to enhance the antibacterial properties of root canal sealers by adding antimicrobial agents to them. This study aims to investigate the antibacterial effect of 0.15% silver nanoparticles (NAg) and 5% dimethylaminohexadecyl methacrylate (DMAHDM) when added to EndoSequence Bioceramic (BC) sealer against Enterococcus faecalis (E. faecalis) biofilm and their impact on its physical properties (flowability and film thickness). Four root canal sealers were tested for flow and film thickness properties, as well as against antibiofilm of E. faecalis-impregnated dentin discs, as follows: group 1: EndoSequence BC sealer only; group 2: EndoSequence BC sealer + 0.15% NAg; group 3: EndoSequence BC sealer + 5% DMAHDM; and group 4: EndoSequence BC sealer + 0.15% NAg + 5% DMAHDM. The findings show that all groups had flow and film thickness values that were in accordance with the ISO requirements. Combining 0.15% NAg and 5% DMAHDM in EndoSequence significantly reduced colony-forming unit (CFU) counts by approximately 5 logs. The combination of NAg and DMAHDM offers a promising strategy for developing endodontic sealers with improved antimicrobial properties and acceptable physical performance. Full article
(This article belongs to the Special Issue Innovative Materials, Instrumentation, and Techniques in Endodontics)
Show Figures

Figure 1

18 pages, 2538 KiB  
Article
Harnessing Streptomyces for the Management of Clubroot Disease of Chinese Cabbage (Brassica rapa subsp. Pekinensis)
by Shan Chen, Yang Zheng, Qing Wang, Rong Mu, Xianchao Sun, Guanhua Ma, Liezhao Liu, Jiequn Ren, Kuo Huang and Guokang Chen
Plants 2025, 14(14), 2195; https://doi.org/10.3390/plants14142195 - 16 Jul 2025
Abstract
Clubroot, caused by Plasmodiophora brassicae Woronin, poses a major threat to Chinese cabbage (Brassica rapa subsp. pekinensis) production worldwide, significantly impacting crop yield, quality, and economic value. Biological control represents a promising approach since it is non-toxic and eco-friendly, and it [...] Read more.
Clubroot, caused by Plasmodiophora brassicae Woronin, poses a major threat to Chinese cabbage (Brassica rapa subsp. pekinensis) production worldwide, significantly impacting crop yield, quality, and economic value. Biological control represents a promising approach since it is non-toxic and eco-friendly, and it reduces the risk of pathogen resistance development. In this study, our objective was to screen for actinomycetes that can effectively inhibit clubroot. We screened 13 actinomycete strains, identifying 2, XDS3-6 and CD1-1, with substantial in vivo inhibitory effects, achieving infection suppression rates above 64% against P. brassicae. Phylogenetic analysis classified XDS3-6 and CD1-1 as Streptomyces virginiae and Streptomyces cinnamonensis, respectively. Both strains exhibited protease and glucanase production capabilities, essential for pathogenic suppression. Additionally, these strains induced host defense responses, as evidenced by increased jasmonic acid (JA) and salicylic acid (SA) accumulation and elevated activities of defense-related enzymes. Colonization studies of XDS3-6 and CD1-1 mutant strains in cabbage roots indicated sustained root colonization, with peak colony-forming units (CFUs) at 20 days post-inoculation, reaching 11.0 × 104 CFU/g and 8.5 × 104 CFU/g, respectively, and persisting for at least 30 days. Overall, these findings underscore the potential of Streptomyces strains XDS3-6 and CD1-1 as effective biocontrol agents, providing a theoretical foundation for their application in managing clubroot in Chinese cabbage. Full article
(This article belongs to the Collection Plant Disease Diagnostics and Surveillance in Plant Protection)
Show Figures

Figure 1

19 pages, 3379 KiB  
Article
Performance Assessment of Advanced Daily Surface Soil Moisture Products in China for Sustainable Land and Water Management
by Dai Chen, Zhounan Dong and Jingnan Chen
Sustainability 2025, 17(14), 6482; https://doi.org/10.3390/su17146482 - 15 Jul 2025
Abstract
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic [...] Read more.
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic Soil Moisture Monitoring Network. All products were standardized to a 0.25° × 0.25° grid in the WGS-84 coordinate system through reprojection and resampling for consistent comparison. Daily averaged station observations were matched to product pixels using a 10 km radius buffer, with the mean station value as the reference for each time series after rigorous quality control. Results reveal distinct performance rankings, with SMAP-based products, particularly the SMAP_IB descending orbit variant, achieving the lowest unbiased root mean square deviation (ubRMSD) and highest correlation with in situ data. Blended products like ESA CCI and NOAA SMOPS, alongside reanalysis datasets such as ERA5 and MERRA2, outperformed SMOS and China’s FY3 products. The SoMo.ml product showed the broadest spatial coverage and strong temporal consistency, while FY3-based products showed limitations in spatial reliability and seasonal dynamics capture. These findings provide critical insights for selecting appropriate soil moisture datasets to enhance sustainable agricultural practices, optimize water resource allocation, monitor ecosystem resilience, and support climate adaptation strategies, therefore advancing sustainable development across diverse geographical regions in China. Full article
18 pages, 2244 KiB  
Article
Associations Between Daily Heart Rate Variability and Self-Reported Wellness: A 14-Day Observational Study in Healthy Adults
by James Hannon, Adrian O’Hagan, Rory Lambe, Ben O’Grady and Cailbhe Doherty
Sensors 2025, 25(14), 4415; https://doi.org/10.3390/s25144415 - 15 Jul 2025
Abstract
Heart rate variability (HRV), particularly the root mean square of successive differences (RMSSD), is widely used as a non-invasive indicator of autonomic nervous system activity and physiological recovery. This study examined whether daily short-term HRV, measured under standardised morning conditions, was associated with [...] Read more.
Heart rate variability (HRV), particularly the root mean square of successive differences (RMSSD), is widely used as a non-invasive indicator of autonomic nervous system activity and physiological recovery. This study examined whether daily short-term HRV, measured under standardised morning conditions, was associated with self-reported wellness in a non-clinical adult population. Over a 14-day period, 41 participants completed daily five-minute HRV recordings using a Polar H10 chest sensor and the Kubios mobile app, followed by ratings of sleep quality, fatigue, stress, and physical recovery. Bayesian ordinal mixed-effects models revealed that higher RMSSD values were associated with better self-reported sleep (β = 0.510, 95% HDI: 0.239 to 0.779), lower fatigue (β = 0.281, 95% HDI: 0.020 to 0.562), and reduced stress (β = 0.353, 95% HDI: 0.059 to 0.606), even after adjusting for covariates. No association was found between RMSSD and perceived muscle soreness. These findings support the interpretability of RMSSD as a physiological marker of daily recovery and stress in real-world settings. While the effect sizes were modest and individual variability remained substantial, results suggest that consistent HRV monitoring may offer meaningful insight into subjective wellness—particularly when contextualised and tracked over time. Full article
Show Figures

Figure 1

16 pages, 3287 KiB  
Article
Interference Effect Between a Parabolic Notch and a Screw Dislocation in Piezoelectric Quasicrystals
by Yuanyuan Gao, Guanting Liu, Chengyan Wang and Junjie Fan
Crystals 2025, 15(7), 647; https://doi.org/10.3390/cryst15070647 - 15 Jul 2025
Abstract
This study investigates the coupling mechanism between a parabolic notch and dislocations in one-dimensional (1D) hexagonal piezoelectric quasicrystals (PQCs) based on the theory of complex variable functions. By applying perturbation techniques and the Cauchy integral, analytical solutions for complex potentials are derived, yielding [...] Read more.
This study investigates the coupling mechanism between a parabolic notch and dislocations in one-dimensional (1D) hexagonal piezoelectric quasicrystals (PQCs) based on the theory of complex variable functions. By applying perturbation techniques and the Cauchy integral, analytical solutions for complex potentials are derived, yielding closed-form expressions for the phonon–phason stress field and electric displacement field. Numerical examples reveal several key findings: significant stress concentration occurs at the notch root, accompanied by suppression of electric displacement; interference patterns between dislocation cores and notch-induced stress singularities are identified; the J-integral quantifies distance-dependent forces, size effects, and angular force distributions reflecting notch symmetry; and the energy-driven dislocation slip toward free surfaces leads to the formation of dislocation-free zones. These results provide new insights into electromechanical fracture mechanisms in quasicrystals. Full article
Show Figures

Figure 1

19 pages, 2405 KiB  
Article
Antifungal Activity of Quaternary Pyridinium Salts Against Fusarium culmorum in Wheat Seedlings
by Tamara Siber, Elena Petrović, Jasenka Ćosić, Valentina Bušić, Dajana Gašo-Sokač and Karolina Vrandečić
Appl. Sci. 2025, 15(14), 7889; https://doi.org/10.3390/app15147889 - 15 Jul 2025
Abstract
Wheat (Triticum aestivum L.) is a major cereal crop globally, but its production is increasingly threatened by fungal pathogens, particularly Fusarium culmorum (Wm. G. Sm.) Sacc., which causes seedling blight and root rot, leading to yield losses and mycotoxin contamination. Conventional control [...] Read more.
Wheat (Triticum aestivum L.) is a major cereal crop globally, but its production is increasingly threatened by fungal pathogens, particularly Fusarium culmorum (Wm. G. Sm.) Sacc., which causes seedling blight and root rot, leading to yield losses and mycotoxin contamination. Conventional control strategies, such as crop rotation and the use of fungicides, are often inadequate and contribute to the development of resistance, particularly with the overuse of similar modes of action. This study investigated quaternary pyridinium salts—nicotinamide and isonicotinamide derivatives—as potential sustainable antifungal agents. In vivo tests involved treating sterilized wheat seeds grown in sterile sand that had been inoculated with F. culmorum, using compounds previously confirmed to be active in vitro. Disease index, shoot and root length, and fresh and dry biomass were measured. Among the tested compounds, nicotinamide derivatives (2) and (3) showed the lowest disease index (0.9) at a concentration of 10 µg/mL. Most compounds promoted plant and root growth. Isonicotinamide derivatives (6) and (7) at 100 µg/mL increased root dry weight, while compound (6) at 10 µg/mL resulted in the most significant increase in plant length. These findings highlight the dual antifungal and growth-promoting potential of certain eco-friendly derivatives for managing F. culmorum and supporting wheat seedling development. Full article
Show Figures

Figure 1

26 pages, 354 KiB  
Article
Book–Tax Differences and Earnings Persistence: The Moderating Role of Sales Decline
by Mark Anderson and Sina Rahiminejad
J. Risk Financial Manag. 2025, 18(7), 389; https://doi.org/10.3390/jrfm18070389 - 14 Jul 2025
Viewed by 143
Abstract
This study investigates why firms with large book–tax differences (BTDs) exhibit lower earnings persistence, particularly during periods of revenue declines. While prior literature has linked BTDs, especially large positive BTDs (LPBTDs), to earnings management, we propose an alternative explanation rooted in operational disruptions. [...] Read more.
This study investigates why firms with large book–tax differences (BTDs) exhibit lower earnings persistence, particularly during periods of revenue declines. While prior literature has linked BTDs, especially large positive BTDs (LPBTDs), to earnings management, we propose an alternative explanation rooted in operational disruptions. Using a large panel of U.S. firms from 1995 to 2016, we examine whether short-term earnings persistence is affected by sales trends and the direction of BTDs. Our findings reveal that both large positive and large negative BTDs are significantly associated with reduced earnings persistence when sales decline. The effect is pronounced in both accrual and cash flow components of earnings. We develop and test a framework based on “operations theory,” which attributes this reduction to real business shocks, such as asset write-downs, facility closures, and reserve adjustments, that arise during sales decline periods. These results highlight the importance of distinguishing operationally driven BTDs from those arising through discretionary accruals. Our findings have implications for investors, regulators, and researchers seeking to interpret BTDs more accurately in volatile economic environments. Full article
(This article belongs to the Special Issue Tax Avoidance and Earnings Management)
30 pages, 2664 KiB  
Article
Comparative Phytochemical Analysis and Antimicrobial Properties of Ethanol and Macerated Extracts from Aerial and Root Parts of Achillea nobilis
by Aiman Berdgaleeva, Zere Zhalimova, Akzharkyn Saginbazarova, Gulbanu Tulegenova, Dana Zharylkassynova, Aliya Bazargaliyeva, Zhaidargul Kuanbay, Svetlana Sakhanova, Akmaral Ramazanova, Akzhamal Bilkenova and Aigul Sartayeva
Molecules 2025, 30(14), 2957; https://doi.org/10.3390/molecules30142957 - 14 Jul 2025
Viewed by 66
Abstract
Achillea nobilis represents a species of considerable medicinal importance within the Asteraceae family, historically employed in Central Asia and various Eurasian territories for the management of inflammatory, microbial, and gastrointestinal ailments. Notwithstanding its extensive ethnopharmacological significance, the phytochemical profile and pharmacological attributes of [...] Read more.
Achillea nobilis represents a species of considerable medicinal importance within the Asteraceae family, historically employed in Central Asia and various Eurasian territories for the management of inflammatory, microbial, and gastrointestinal ailments. Notwithstanding its extensive ethnopharmacological significance, the phytochemical profile and pharmacological attributes of its various anatomical components have not been comprehensively investigated. This research endeavor sought to delineate the phytochemical constituents and evaluate the antimicrobial efficacy of ethanol extracts derived from both the aerial and root segments of A. nobilis. Qualitative phytochemical analysis and GC–MS characterization unveiled a diverse array of bioactive compounds, encompassing flavonoids, phenolic compounds, organic acids, lactones, alcohols, and heterocyclic derivatives. In particular, the aerial oil extract exhibited the presence of terpenoids, fatty acids and their esters, sterols, hydrocarbons, and minor organosilicon and cyclobutanone derivatives, with notable compounds such as linoleic acid (8.08%), 6-tetradecyne (14.99%), isopropyl linoleate (14.64%), and E,Z-1,3,12-nonadecatriene (22.25%). In vitro antimicrobial activity was assessed against eight clinically relevant microbial strains employing the broth microdilution technique. The aerial ethanol extract exhibited pronounced antimicrobial properties, particularly against MRSA and C. albicans, with MICs ranging from 0.5 to 2 mg/mL, whereas the root ethanol extract displayed MICs of 1 to 3 mg/mL. Additionally, the aerial oil extract showed moderate inhibitory activity, with MIC values ranging from 1.5 to 3 mg/mL, demonstrating effectiveness particularly against C. albicans, C. neoformans, and MRSA. These findings underscore the therapeutic potential of A. nobilis, particularly its aerial component, as a viable natural source of antimicrobial agents. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

27 pages, 6079 KiB  
Article
Bioactive Cyclopeptide Alkaloids and Ceanothane Triterpenoids from Ziziphus mauritiana Roots: Antiplasmodial Activity, UHPLC-MS/MS Molecular Networking, ADMET Profiling, and Target Prediction
by Sylvestre Saidou Tsila, Mc Jesus Kinyok, Joseph Eric Mbasso Tameko, Bel Youssouf G. Mountessou, Kevine Johanne Jumeta Dongmo, Jean Koffi Garba, Noella Molisa Efange, Lawrence Ayong, Yannick Stéphane Fotsing Fongang, Jean Jules Kezetas Bankeu, Norbert Sewald and Bruno Ndjakou Lenta
Molecules 2025, 30(14), 2958; https://doi.org/10.3390/molecules30142958 - 14 Jul 2025
Viewed by 68
Abstract
Malaria continues to pose a significant global health burden, driving the search for novel antimalarial agents to address emerging drug resistance. This study evaluated the antiplasmodial potential of Ziziphus mauritiana Lam. (Rhamnaceae) roots through an integrated phytochemical and pharmacological approach. The ethanol extract, [...] Read more.
Malaria continues to pose a significant global health burden, driving the search for novel antimalarial agents to address emerging drug resistance. This study evaluated the antiplasmodial potential of Ziziphus mauritiana Lam. (Rhamnaceae) roots through an integrated phytochemical and pharmacological approach. The ethanol extract, along with its derived fractions, demonstrated potent in vitro activity against the chloroquine-sensitive Plasmodium falciparum strain 3D7 (Pf3D7), with the ethyl acetate-soluble (IC50 = 11.35 µg/mL) and alkaloid-rich (IC50 = 4.75 µg/mL) fractions showing particularly strong inhibition. UHPLC-DAD-ESI-QTOF-MS/MS-based molecular networking enabled the identification of thirty-two secondary metabolites (132), comprising twenty-five cyclopeptide alkaloids (CPAs), five of which had not yet been described (11, 20, 22, 23, 25), and seven known triterpenoids. Bioactivity-guided isolation yielded thirteen purified compounds (5, 6, 14, 2630, 3236), with betulinic acid (30; IC50 = 19.0 µM) and zizyberenalic acid (32; IC50 = 20.45 µM) exhibiting the most potent antiplasmodial effects. Computational ADMET analysis identified mauritine F (4), hemisine A (10), and nummularine R (21) as particularly promising lead compounds, demonstrating favourable pharmacokinetic properties, low toxicity profiles, and predicted activity against both family A G protein-coupled receptors and evolutionarily distinct Plasmodium protein kinases. Quantitative analysis revealed exceptionally high concentrations of key bioactive constituents, notably zizyberenalic acid (24.3 mg/g) in the root extracts. These findings provide robust scientific validation for the traditional use of Z. mauritiana in malaria treatment while identifying specific cyclopeptide alkaloids and triterpenoids as valuable scaffolds for antimalarial drug development. The study highlights the effectiveness of combining advanced metabolomics, bioassay-guided fractionation, and computational pharmacology in natural product-based drug discovery against resistant malaria strains. Full article
Show Figures

Figure 1

17 pages, 7155 KiB  
Article
Microbial Community Structure and Metabolic Potential Shape Soil-Mediated Resistance Against Fruit Flesh Spongy Tissue Disorder of Peach
by Weifeng Chen, Dan Tang, Jia Huang, Yu Yang and Liangbo Zhang
Agronomy 2025, 15(7), 1697; https://doi.org/10.3390/agronomy15071697 - 14 Jul 2025
Viewed by 80
Abstract
Peach fruit flesh spongy tissue disorder causes dry, porous, and brown areas in the flesh, severely compromising fruit quality and market value. While soil properties and calcium nutrition have been linked to the disorder, the role of rhizosphere microbial communities in disorder resistance [...] Read more.
Peach fruit flesh spongy tissue disorder causes dry, porous, and brown areas in the flesh, severely compromising fruit quality and market value. While soil properties and calcium nutrition have been linked to the disorder, the role of rhizosphere microbial communities in disorder resistance remains unclear. This study investigated both the physicochemical properties and the root-associated microbiomes of disordered (CK) and healthy (TT) peach orchards to explore microbial mechanisms underlying disorder suppression. TT soils exhibited higher pH, greater organic matter, increased exchangeable calcium, and more balanced trace elements compared to CK. Microbial analysis revealed significantly higher diversity and enrichment of beneficial taxa in TT associated with plant growth and disorder resistance. Functional gene prediction showed TT was enriched in siderophore production, auxin biosynthesis, phosphate solubilization, and acetoin–butanediol synthesis pathways. Co-occurrence network analysis demonstrated that TT harbored a more complex and cooperative microbial community structure, with 274 nodes and 6013 links. Metagenomic binning recovered high-quality MAGs encoding diverse resistance and growth-promoting traits, emphasizing the ecological roles of Gemmatimonadaceae, Reyranella, Nitrospira, Bacillus megaterium, and Bryobacteraceae. These findings highlight the combined importance of soil chemistry and microbiome structure in disorder suppression and provide a foundation for microbiome-informed soil management to enhance fruit quality and promote sustainable orchard practices. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 1945 KiB  
Article
Debaryomyces hansenii Enhances Growth, Nutrient Uptake, and Yield in Rice Plants (Oryza sativa L.) Cultivated in Calcareous Soil
by Jorge Núñez-Cano, Francisco J. Ruiz-Castilla, José Ramos, Francisco J. Romera and Carlos Lucena
Agronomy 2025, 15(7), 1696; https://doi.org/10.3390/agronomy15071696 - 14 Jul 2025
Viewed by 104
Abstract
Calcareous soils, characterized by high pH and calcium carbonate content, often limit the availability of essential nutrients for crops such as rice (Oryza sativa L.), reducing yield and nutritional quality. In this study, we evaluated the effect of the halotolerant yeast Debaryomyces [...] Read more.
Calcareous soils, characterized by high pH and calcium carbonate content, often limit the availability of essential nutrients for crops such as rice (Oryza sativa L.), reducing yield and nutritional quality. In this study, we evaluated the effect of the halotolerant yeast Debaryomyces hansenii on the growth, nutrient uptake, and phosphorus acquisition mechanisms of rice plants cultivated in calcareous soil under controlled greenhouse conditions. Plants inoculated with D. hansenii, particularly via root immersion, exhibited significantly higher SPAD chlorophyll index, plant height, and grain yield compared to controls. A modest increase (~4%) in dry matter content was also observed under sterilized soil conditions. Foliar concentrations of Fe, Zn, and Mn significantly increased in plants inoculated with D. hansenii via root immersion in non-sterilized calcareous soil, indicating improved micronutrient acquisition under these specific conditions. Although leaf phosphorus levels were not significantly increased, D. hansenii stimulated acid phosphatase activity, as visually observed through BCIP staining, and upregulated genes involved in phosphorus acquisition under both P-sufficient and P-deficient conditions. At the molecular level, D. hansenii upregulated the expression of acid phosphatase genes (OsPAP3, OsPAP9) and a phosphate transporter gene (OsPTH1;6), confirming its influence on P-related physiological responses. These findings demonstrate that D. hansenii functions as a plant growth-promoting yeast (PGPY) and may serve as a promising biofertilizer for improving rice productivity and nutrient efficiency in calcareous soils, contributing to sustainable agricultural practices in calcareous soils and other nutrient-limiting environments. Full article
Show Figures

Figure 1

24 pages, 26654 KiB  
Article
Short-Term Electric Load Forecasting Using Deep Learning: A Case Study in Greece with RNN, LSTM, and GRU Networks
by Vasileios Zelios, Paris Mastorocostas, George Kandilogiannakis, Anastasios Kesidis, Panagiota Tselenti and Athanasios Voulodimos
Electronics 2025, 14(14), 2820; https://doi.org/10.3390/electronics14142820 - 14 Jul 2025
Viewed by 176
Abstract
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network [...] Read more.
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), to forecast hourly electricity demand is investigated. The proposed models were trained on historical load data from the Greek power system spanning the years 2013 to 2016. Various deep learning architectures were implemented and their forecasting performances using statistical metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) were evaluated. The experiments utilized multiple time horizons (1 h, 2 h, 24 h) and input sequence lengths (6 h to 168 h) to assess model accuracy and robustness. The best performing GRU model achieved an RMSE of 83.2 MWh and a MAPE of 1.17% for 1 h ahead forecasting, outperforming both LSTM and RNN in terms of both accuracy and computational efficiency. The predicted values were integrated into a dynamic Power BI dashboard, to enable real-time visualization and decision support. These findings demonstrate the potential of deep learning architectures, particularly GRUs, for operational load forecasting and their applicability to intelligent energy systems in a market-strained environment. Full article
Show Figures

Figure 1

Back to TopTop